Proceedings of Second International
Conference on Genetic and Evolutionary
Computing, WGEC 2008, 25-26 September 2008,
Jingzhou, Hubei, China, which should be
cited to refer to this work.

BAF: A Bio-inspired Agent Framework for
distributed pervasive applications

O. Brousse, G. Sassatelli, T. Gil, Y. Guillemenet, M. Robert, F. Grize!
E. Sanchez?, Y. Thoma?, A. Upegui?, J.M. Moreno?, J. Madrenas?
LIRMM, Univ. Montpellier 2/CNRS; 161 rue Ada, 34392 Montpellier, France.

e-mail: lastname@lirmm.fr

"nstitute of Information Systems, Université de Lausanne (UNIL), Switzerland
2ReDS, HEIG-VD, Yverdon-les-Bains, Switzerland
3Department of Electronic Engineering, Technical University of Catalunya (UPC), Barcelona, Spain

Abstract—In this paper we introduce the Bio-inspired
Agent Framework (BAF) developed within the Perplexus
IST European project!. This BAF is FIPA (Foundation for
Intelligent and Physical Agents) compliant as based on the
JADE Multi-Agent Platform, portable and suitable for Ad-
hoc networks of mobile nodes (MANET). Its bio-inspired
capabilities and reliability services provide a powerful bio-
inspired distributed tool that opens interesting perspec-
tives for adaptive sensor networks.

Index Terms—Bio-inspired, Scalability, Distributed
platform, Ad-hoc Network, Multi-Agent Framework.

I. INTRODUCTION

The Perplexus Project aims at developing a scalable
and ubiquitous platform endowed with bio-inspired fea-
tures to simulate complex phenomena.

The platform is composed of a cluster of communicating
nodes called UBIDULES (UBIquitous moDULES). These
nodes are built around a microprocessor and a specific
reconfigurable integrated circuit that both provide sup-
port to distributed bio-inspired mechanisms. Further-
more, application-specific hardware sensors and actuators
may be appended to any Ubidule for environmental inter-
action purposes.

A. Previous work on bio-inspiration

There exist several theories relating to life, its origin
and all its associated characteristics. It is however usually
considered that life relies on three essentials mechanisms
that are Phylogenesis, Ontogenesis and Epigenesis (P, O
and E in short):

1) Phylogenesis deals with the evolution of a set of
species. Evolution gears species towards a better
adaptation of individuals to their environment; ge-
netic algorithms are inspired from this very princi-
ple of life.

2) Ontogenesis describes the origin and the develop-
ment of an organism from the fertilized egg to its
mature form. Biological processes like healing and
fault tolerance are qualified of ontogenetic.

1[IST-2006-034632] web site : http://www.perplexus.org

3) Epigenesis refers to features that are not related
to the underlying DNA sequence of an organism.
Learning as of performed by Artificial Neural Net-
works (ANN) is a process which scope remains
limited to an individual lifetime and therefore is
Epigenetic.

These three fundamental mechanisms have inspired
researchers and led to the realization of bio-inspired
artificial systems (be they software, hardware or mixed)
that use up to two mechanisms. Some ANN implemen-
tations make use of Epigenesis (learning) and have been
realized in several forms: dedicated digital circuits (such
as proposed in [1] and [2]) or analog circuits [3]. Some
other works combine 2 mechanisms like morphogenetic
which is a PO combination proposed in [4]. In [5], an
evolving ANN is introduced which can be considered as
a PE combination (learning and evolution). Finally, in
[6] variable topology ANNs are presented and can be
considered as OE combinations (growth and learning).

The POEtic chip [7] [8] (realized within the confines
of the POEtic European project [IST-2000-28027]), was
the first chip implementing all three axis of life together,
making it the most “living chip” ever created. The main
objective of this project was to design a specific reconfig-
urable circuit well suited for the implementation of POE
systems, taking advantage of their “natural”, intrinsic
parallelism.

This chip, as depicted in figure 1, contains an embed-
ded processor which runs genetic algorithms (Phyloge-
nesis) and computes the fitness of individuals installed
on an array of configurable processing elements named
“molecules”.

These molecules are similar to FPGA slices and there-
fore rely on Look-Up Tables (LUTS), registers and re-
configurable datapaths. Molecules are grouped together
into “cells” that carry out certain functionalities and may
undergo processes such as migration, replication, etc.

Epigenesis

rf@ Neural Network

hardware simulation

Organisms growth by cell
replication

Figure 1: POEtic chip overview.

B. The Perplexus platform

Based on this work, the goal of the Perplexus Project is
to develop a scalable and distributed hardware platform
endowed with bio-inspired capabilities. This will enable
the simulation of large-scale complex systems and the
study of emergent complex behaviors; this in a virtually
unbounded wireless network of computing modules.

The Perplexus Ubidules integrate at least one bio-
inspired chip (which has an architecture comparable to
the POEtic chip) and an ARM microprocessor that is in
charge of software aspects. Figure 2 gives an overview
of the obtained platform which is represented in form of
network of Ubidules. Each Ubidule is in turn represented
as an unit made of a hardware and a software partition.
An embedded Linux operating system runs on top of the
microprocessor and handles most high-level functionali-
ties.

Three applications are proposed within the project
to demonstrate the advantages of a such platform. In
this paper we focus on an embodied application (i.e.
robotic application) that takes advantage of learning and
evolution capabilities of the platform.

Among the many challenges that form this project, this
paper puts focus on the work realized at the platform level
for:

o Enabling the implementation of distributed applica-
tions that take advantage of the bio-inspired features
of the platform. This work relies on an agent-based
programming methodology (as suggested in Figure
2) and a programming framework made of resident
agents which provide support for the three bio-
inspired mechanisms presented previously.

e Ensuring communication reliability and scalability
among Ubidules. The chosen communication medium
being wireless and Ubidules being mobiles, appropri-
ate software solutions have to be used for guarantee-
ing these two properties.

This paper is organized as follows:

e Section II introduces the Perplexus Platform Net-
work level challenge and the proposed solution.

e Section IIT presents the FIPA compliant program-
ming framework we use as a base for our BAF.

o Section IV presents the proposed solutions to create
a POE dedicated BAF using previously presented

Ubidule i

JADE

Java Agent Development framework

Node radio ranges

Figure 2: Perplexus platform overview.

solutions.
e Section V finally draws some conclusions on the
realized work.

II. NETWORK SUPPORT

The modular structure of the Perplexus platform offers
scalability due to the decentralized network structure
which avoid central bottlenecks. Nevertheless it represents
a challenge at the network level. This challenge becomes
critical when nodes equipped with actuators (for example
motors) are mobile.

In the literature such paradigm is known as MANET for
Mobile Ad-Hoc NETwork. This IETF? working group? is
in charge of proposing routing solution and standardizing
IP routing protocols in the scope of wireless routing with
either static or dynamic topologies.

MANET routing algorithms can be classified into two
families:

« Reactive MANET Protocols (RMP) that search
for a route between A and B nodes when a com-
munication is intended between these nodes. AODV
(for Ad-hoc On-demand Distance Vector) [9] and
DSR (for Dynamic Source Routing) [10] are reactive
protocols.

e Proactive MANET Protocols (PMP) which
nodes regularly exchange messages in order to main-
tain all available routes up to date. OLSR (for
Optimized Link State Routing) [11] is a proactive
protocol.

A. OLSR Protocol

The OLSR routing protocol is among the most pop-
ular and effective solutions [12]. This proactive routing
protocol regularly sends 3 different types of messages to
create and maintain automatically network routes. This
mechanism is well suited for most applications because it
provides reduced communication latency, due to mostly

2IETF: Internet Engineering Task Force
3IETF MANET: www.ietf.org/html.charters/manet-charter.html

up to date routes (in comparison to reactive protocols
that are slower to establish a route).

OLSR has been ported and tuned to the XScale plat-
form. The chosen OLSR implementation offers the pos-
sibility to use plugins to provide additional services such
as name/address translation.

For validating this solution we conducted several ex-
periments which confirmed that proactive protocols such
as OLSR perform better with respect to latency. Figure 3
shows the experimental protocol we used for OLSR. This
map of the premises shows four nodes, three being static
and the last one (Ubidule 3) in motion along the track
(illustrated by the plain arrow on figure 3).

() Ubidule 1
Ubidule 2
PC (Host)

Copy © ubvidute 3
Room

_|
4‘ por| | ()

o

©

Reception

@ ©)
s, \

Figure 3: Mobile test protocol.

~

As suggested in figures 3 and 4, different network
topologies are observed. Changes from one to another
occur whenever a node drops out or cames in the radio
range of another.

Laptop2 Laptop2 Laptop2

TR [\ "

Pe Laptop1
Ubidule Ubidule Ubidule

i1 \ 4

Laptop 1 Laptopl
>

o) @ Q@ e

Figure 4: Time changing Topology.

Figure 5 shows the evolution of the bitrates received
by the mobile node from the three other units; it can
be clearly seen that a change in the network topology
results in a break in the communication that lasts up to
5 seconds.

PC flow

AEPEE f\mﬂ LA UAAA

| /\ |

o 10 20 30 40 50 60 70 80 80
Time (s)

Ubidule1 flow

] Aﬁw

Bitrate [Khitls]
a
3 5
o T T T T T L’\ T T

10 =20 20 P S0)) a0 ES
Time (=)

Ubidule2 flow

a0 EE) 50 60 7 a0 20
Tima (a)

Figure 5: Mobile test: mobile node received message flows.

We consider these results satisfactory for the targeted
applications; furthermore the flexibility of the chosen
OLSR implementation allowed us to use a nameservice
(DNS-like) plug-in that proves mandatory in the follow-
ing. The nameservice plug-in acts in two successive steps:

1) The plug-in uses OLSR to broadcast messages con-

taining IP and hostname information.

2) It collects other nameservice messages and stores

received data in the hostsIP file (i.e. /etc/hosts for
linux OS).

Consequently the nameservice allows each module to
build a local routing table working with IP addresses and
hostnames.

OLSRD and a slightly modified nameservice plug-in
reveals to be a stable and efficient solution. In the case
of our MANET application, this solution perfectly fits
our needs and does not overload CPU with unnecessary
functionalities.

III. THE FIPA MULTI-AGENT SYSTEM

The distributiveness and capabilities of the Perplexus
platform greatly rely on the chosen programming style.
Object-oriented programming (OOP) has become pop-
ular during the past decades mainly thanks to object-
oriented languages like C++ which provided many bene-
fits over other less formally defined languages.

Agent-oriented programming (AOP) derives from the
initial theory of agent orientation which was first proposed
by Yoav Shoham [13]. This programming format infers
OOP by endowing objects with additional characteristics;
they are viewed as entities which exhibit behaviours,
capabilities and are entitled to take decisions. Table T
summarizes the fundamental differences between AOP
and OOP.

| I o0P [AOP]
Basic Unit object agent
Parameter Beliefs,
defining state of unconstrained Commitments,
Basic Unit Choices...
Process of Message passing Message passing
computation and response and response
methods methods
Type of Inform, Request,
messages unconstrained Offer, Accept,
Refuse
Constraints on none Honesty,
methods Consistency...

Table I: OOP/AOP comparison

Agent-orientation was initially defined for promoting
a social view of computing and finds natural applica-
tions in areas such as Artificial Intelligence or social
behaviours modeling. An AOP computation consists in
making Agents interact with each other through typed
messages (i.e. constraint messages) of different natures:
they may be informing, requesting, offering, accepting,
and rejecting requests, services or any other type of infor-
mation. Messages type is generally called a performative.
AOP furthermore fixes constraints on the parameters
defining the state of the Agent (beliefs, commitments and
choices).

These constraints actually define the Agent Oriented
computational system which is then viewed as a set
of communicating software modules that exhibit a cer-
tain degree of awareness. These characteristics naturally
geared the PERPLEXUS modeling framework towards
AOP which fits perfectly the objectives of the platform.

A. FIPA: Foundation for Intelligent and physical Agent

The FIPA* defines standards for interacting Multi-
Agent multi-Platforms systems. Since 2005, this organism
joined the IEEE standardization.

Figure 6 shows the FIPA standard structure of an
Agent Platform (AP). Three main services ensure FIPA
platforms reliability and functionality:

o AMS (Agent Managment System) that is in charge
of the platform’s agent’s lifecycle; it can create, sus-
pend, resume or kill agents. Due to its main function
AMS also provides a white page service containing
all agents “living” on the platform.

o DF (Directory Facilitator) that is in charge to pro-
vide a yellow pages service. This service associates an

4http://www.fipa.org/

FIPA Agent Platform #1

% f‘;’, AMS DF User

<3 Agents
IR o 1
L2 o=

2 2 [Message Transport System

&3

T
1

Communication
Network e.g. TCP/IP
L)

¥

{ Message Transport System J

FIPA Agent Platform #2

Figure 6: FIPA standard overview.

agent to its offered services and a service to agents
that provide it.

e MTS (Message Transport System) that provides all
low-level communication functionalities. Therefore
Agents can communicate with each other regardless
of their location (same or different APs).

Figure 6 shows that AMS and DF are at agent level
signifying that they are specific agents. On the contrary
MTS is at a lower level meaning that it is a set of functions
used by the agents. User agents sit at the same level as
AMS and DF agents.

An important point to notice is that for now the FIPA
standard does not include an AP search service. This
drawback of the standard does not ease the use of multiple
platforms as in our case. In this paper we propose a
solution to address that point presented all along the
following sections.

B. JADE: Java Agent DEvelopment Framework

There exists various Multi-Agent Platforms that allow
to develop agent based applications, such as JADE [14],
JXTA, FIPA OS, JAX or MADKIT [15].

JADE is java coded and therefore portable, FIPA com-
pliant and exists in a lightweight version called LEAP®
[16] that suits our hardware restrictions (PXA270) as it
is running with Sun Microsystems J2ME® JAVA Virtual
Machine.

A SUN phoneME advance JAVA virtual machine was
ported to the XScale processor, for providing the nec-
essary support for the Light Extensible Agent Platform
(LEAP), the light version of JADE. LEAP has almost the
same functionality as JADE but is designed for handheld
devices making it appropriate for our platform.

Agents in a JADE Framework “live” in containers.
These containers exist inside or outside of the original
hardware hosting the JADE platform. JADE provides
support for both communication scenarios:

5Light Extensible Agent Platform
6J2ME: Java2 Micro Edition

1) intra-platform, where agents are registered on the
same platform and are considered to be local even
if they are hosted on remote hardware (left part of
figure 7).

2) inter-platform, where agents are registered on
their platform, services discovery allows Agents to
find other agents to work with (right part of figure
7).

/Main Hardware Hosn / Hardware Host 2 \ (Hardware Host3

JADE Distributed Platform JADE

Container

o X

Service discovery and

Main Container Container1

@ ¢ @
.Q ® @

./® Container2 i
Local communications

S
|k JVM |) Q VM | i JVM |

Figure 7: JADE programming platform.

inter AP communications

In both cases, unless agents are hosted on the same
AP and the same hardware, inter hardware messages are
transmitted through the TCP protocol.

JADE APs communicate with each other over TCP /IP
using Message Transport Protocols (MTP). In our case we
decided to use HTTP MTP in order to ease AP commu-
nications and unify AP name and address with hardware
hostname. This point is discussed in the following section.

As shown in figure 7, an optional specific agent called
RMA (Remote Management Agent) allows user to visu-
alize the current state of the JADE local AP and connect
to remote APs.

IV. BAF BIOMIMETIC CAPABILITIES

Previously described solutions are used as foundations
to develop a Bio-inspired Agent Framework (BAF) suit-
able for distributed and decentralized platforms. This
section focuses on two fundamental aspects of this BAF:

1) Description of the BAF and overview of the pro-

vided functionalities.

2) Description of the POE specific Agents.

A. BAF overview

Figure 8 shows the additional features of the BAF
(grey-shaded areas).

This Framework adds a low level service layer that
comprises the Ad-hoc networking features of the BAF,
depicted in figure 8. This layer includes OLSRD and the
nameservice plug-in. The hostname/IP table (periodically
updated by the nameservice) can easily be accessed by
other software entities such as JADE agents. These func-
tionalities are accessed by any agent through a specific
agent called the Network agent.

POE dedicated MAF

User

Network Agent

25 Agents
&7 AMS DF
<= using
R Sl ESCCTT STTEherrr Srr ey prrrreSPPIY S EEPREREREEESE
=) Name Service
% % Message Transport System
v =

OLSRD with nameservice

Low level
Protocols

1

¥
Ad-hoc TCP/IP
Network

2

[Message Transport System]

An other FIPA Agent Platform

Figure 8: POE dedicated BAF overview.

This agent is a mandatory agent in a BAF platform.
It enables platform modules interactions and ensures
the overall platform reliability. As this particular agent
provides AP level services and low-level functionalities
(such as message broadcasting) it spans on both highest
level layers of the diagram.

The use of the HTTP Message Transport Protocol
allows deducing the AP name and address making a
JADE AP capable of establishing communications with
one another through the ad-hoc network. Figure 9 de-
scribes this peer discovery mechanism.

Once the nameservice has edited the system Host-
name/IP file (step 1), the Network Agent is able to
create the peer platform list (step 2). Other Agent lists
can be created in the same way; all mandatory platform
agents are listed in the network agent and can be joined

transparently.
ﬂst System ¢mmmm) Hostnamh
X

MBAF AP
with http MTS

Name: ams@hostname1:1099/jade
Address: http://hostname1:7778/acc

Host System ¢===d | Hostname2 \ @ HOSt/IP Translation File

Host System ¢==m) | Hostname3 \lPl Hostnamel #myself
\ P2 Hostname2
Host System ¢===) | Hostname4 \1P3 Hostname3

1P4 Hostname4

MBAF AP
with http MTS
Name: ams@hostname4:1099 /jade @

Address: http://hostname4:7778 /acc Peer Platform List

name: ams@Hostname2:1099 /jade
address: http://hostname2:7778/acc

ams@Hostname3:1099/jade

eress: http://hostname3:7778/acc J

Figure 9: BAF AP addresse deduction

An Host agent has been designed to provide a single
interface for the platform controlling. This Agent is able
to remotely schedule applications from a host station

thanks to the Network agent services.

Using the peer discovery service capabilities, a local
application agent can initiate a service search not only
on its own platform -using the local DF- but on all
reachable DF agents thanks to the Network agent. This
“ServiceSearch” service eases the development of fully
distributed application on the BAF.

At a lower level, the ServiceSearch service uses another
functionality of the Network Agent that also provides a
broadcast message service. Such service allows applica-
tion agents or host agents to send messages to a set of
agents without knowing their names or addresses. Figure
10 shows the three main steps of this protocol taking
the example of a Host agent broadcasting orders to the
platform.

The first step is a local request of the Host to its
local Network Agent for broadcasting a given message to
a given set of Agent here Epigenetic Agents (described
later on). Then the first Network Agent broadcasts this
message to others Network Agents (second step), the
message is then transmitted locally to the target agents.

Lo g g g
@

Host Platform

Figure 10: Broadcast message service.

This protocol is mainly used for sending global orders
to the platform such as global “servicesearch” “Start Ap-
plication” “Stop Application” or “Switch Mode” (passing
from software mode to hardware mode of the Perplexus
platform). In this case Network agents are final receivers
of order messages. The main advantage of this method is
that the Host Agent and the user it represents does not
need to know addresses of all final receivers.

B. POE dedicated features

Three specific agents are represented in the “User
Agents” box in Figure 8. These P, O and E agents
implement respectively Phylogenetic, Ontogenetic and
Epigenetic processes.

Table II reports the possible hardware implementation
of these agents in the specific frame of the Perplexus Plat-
form. As hardware implementation requires the Perplexus
bio-chip, hardware that differs from Ubidule are not able
to support it. These hardware features are designed to
speed up simulation of POE applications and more gen-
erally complex systems. The following sections describe
these three Bio-inspired agents.

l [sw [HW |

Phylogenetic agent(s) VA
Ontogenetic agent(s) V4 V4
Epigenetic agent(s) V4 V4

Table II: Agents operating mode

1) P agent: The P agent has no possible hardware
implementation because it is in essence a distributed
genetic algorithm. This agent is responsible of evaluating
the fitness of the individual embodied on the Ubidule.
Selection rules, crossover and mutation processes are
application-specific and eventually lead to the installation
of a new generation on the Ubidule population.

2) O agent: The software implementation of the On-
togenetic agent is actually in charge of creating other
software agents with given parameters. This represents
the growth capabilities of the system.

The hardware implementation of this agent operates
with the same objectives but instead of creating software
agents, it uses runtime partial reconfiguration capabilities
of the bio-chip to install functionalities on the available
hardware functional units.

In both cases (software agents and hardware functional
units) the O agent may create an Epigenetic Agent.

3) E agent: In the Perplexus project Epigenetic pro-
cesses are viewed as Artificial Neural Networks. Therefore
the E agent implements ANN either in software or in
hardware. Some Neural Networks are available ranging
from MLP with backpropagation to Spiking Neural net-
works, other ANN types can be added if needed.

C. Validation application

In order to prove the reliability of the platform, a simple
validation application based on a race of robotic toys was
developed. The used robot is depicted in Figure 2. Due
to the early development of the POE dedicated hardware,
this application uses full software simulation mode as
depicted on figure 11.

P, O and E software agents provide POE support for
the control of the robots. P agent is responsible of the
robot behaviour evolution (generation management and
application high level management). Ontogenetic agent
instantiates an ANN the Epigenetpic agent) based on
the genome provided by the P agent. This Epigenetic
agent is a simple feed-forward ANN which reads binary
information from three proximity sensors installed on the
front, front-left and front-right sides of the robots, and
issues speed orders to the two motors. Figure 11 shows,
next to the P, O, E and N agents two additional agents:
the Interface agent (I agent) that acts as a wrapper for any
agent of the platform to communicate with the sensors
and actuators; and the Ubicom agent (U agent) that
handles communications with the Ubichip (unused here).

For this application robots are moving into a closed
arena containing obstacles and a start/finish line. Robots

1
& .
Robotic Host

Sensors
Data

Actuator
Commands

Epigenetic based orders
and sensor feedback

ANN/chtion
Network

Communications

Genomic
information

Generation related
communications :

- Initial parameters
- Fitness broadcast...

Figure 11: Software application example.

are asked to run one lap of this track. Figure 12 shows
the principle of this genetic race -the laptime gives the
fitness of a given robot. These agents are crossed and/or
mutated to create the next generation replacing inad-
equate behaviours. Generation after generation robots
exhibit smarter behaviours proving the reliability of the
software and the possibility to handle POE problems via
the platform. A demonstration video is available online
at: http://www.lirmm.fr/~brousse/Ubibots.

Figure 12: Arena overview.

V. CONCLUSION

This paper presents some of the work realized within
the confines of the Perplexus Project. These contribu-
tions provide a reliable middleware to support both
bio-inspiration and agent-oriented programming for dis-
tributed pervasive platforms. The proposed BAF has
been designed with broader application fields in mind
and should prove appropriate for many sensor-network
applications where adaptability brings advantages.

This software environment has been tested through a
POE robotic application that proves the reliability of the
platform with satisfying result concerning communication
and basic POE computation. The future availability of the
bio-inspired integrated circuit will soon help demonstrat-
ing the combined advantages of hardware support and

pervasiveness for distributed platforms. Future work relies
on enabling transparent migration between JADE soft-
ware agents and their embodied hardware counterparts.

ACKNOWLEDGEMENTS

This project is funded by the Future and Emerging
Technologies programme IST-STREP of the European
Community, under grant IST-034632 (PERPLEXUS).
The information provided is the sole responsibility of the
authors and does not reflect the Communitys opinion.
The Community is not responsible for any use that might
be made of data appearing in this publication.

REFERENCES

[1] T. Shibata and T. Ohmi, “Neuron MOS binary-logic integrated
circuits. i. design fundamentals and soft-hardware-logic cir-
cuit implementation,” IEEE Transactions on Electron Devices,
vol. 40, no. 3, pp. 570-576, Mar. 1993.

[2] T. Shibata, T. Nakai, Y. N. Mei, Y. Yamashita, M. Konda, and
T. Ohmi, “Advances in neuron-MOS applications,” in IEEE
International Conference on Solid-State Circuits. Digest of
Technical Papers. 43rd ISSCC, 1996, pp. 304-305.

[3] S. Eberhardt, T. Duong, and A. Thakoor, “Design of parallel
hardware neural network systems from custom analog VLSI
‘building block’ chips,” in International Joint Conference on
Neural Networks (IJCNN), vol. 2, 1989, pp. 183-190.

[4] D. Roggen, D. Floreano, and C. Mattiussi, “A Morphogenetic
Evolutionary System: Phylogenesis of the POEtic Tissue,” in
Proc. of the 5th Int. Conf. on Evolvable Systems (ICES 2003),
A. M. Tyrrell, P. C. Haddow, and J. Torresen, Eds. Springer-
Verlag, 2003, pp. 153-164.

[5] S.-W. Moon and S.-G. Kong, “Block-based neural networks,”
IEEFE Transactions on Neural Networks, vol. 12, no. 2, pp. 307—
317, Mar. 2001.

[6] A. Perez-Uribe, “Structure-adaptable digital neural networks,”
Ph.D. dissertation, Ecole Polytechnique Fédérale de Lausanne,
1999.

[7] G. Tempesti, D. Roggen, E. Sanchez, Y. Thoma, R. Canham,
A. Tyrrell, and J. M. Moreno, “A poetic architecture
for bio-inspired hardware,” Conference on the Simulation and
Synthesis of Living Systems (Artificial Life VIII), pp. 111—
115, dec 2002, sydney, Australia,[IST-2000-28027]. [Online].
Available: www.poetictissue.org

[8] Y. Thoma, “Tissu numérique & routage et configuration dy-
namique,” Ph.D. dissertation, Ecole Polytechnique Fédérale de
Lausanne, 2005.

[9] E. M. R. Charle E. Perkins, “Ad-hoc on-demande distance
vector,” Dec. 1998.

[10] D. Johnson and D. Maltz, “The dynamic source routing proto-
col (dsr) for mobile ad hoc networks for ipv4,” Feb. 2007.

[11] P. Jacquet, P. Miihlethaler, T. Clausen, A. Laouiti, A. Qayyum,
and L. Viennot, “Optimized link state routing protocoll for
ad-hoc networks,” 2001, INRIA Roquencourt, HIPERCOM
project.

[12] T. Clausen, P. Jacquet, and L. Viennot, “Comparative study
of CBR and TCP performance of MANET routing protocols,”
Workshop MESA, 2002, INRIA Roquencourt, HIPERCOM
project.

[13] Y. Shoham, “Agent oriented programming,” Journal of Artifi-
cial Intelligence, vol. 60, 1996.

[14] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing
Multi-Agent Systems with JADE (Wiley Series in Agent Tech-
nology). Wiley, April 2007.

[15] G. Nguyen, T. Dang, T, L. Hluchy, M. Laclavik, Z. Balogh,
and I. Budinska, “Agent platform evaluation and comparison,”
2002, slovak Academy of Sciences, Institute of informatics,
Pellucid 5FP IST-2001-34519.

[16] J. Lawrence, “LEAP into Ad-Hoc Networks,” ACM Workshop
on Agents in Ubiquitous and Wearable Computing, AAMAS,
2002.

