Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Résumé

Graph representations have been widely used in pattern recognition thanks to their powerful representation formalism and rich theoretical background. A number of errortolerant graph matching algorithms such as graph edit distance have been proposed for computing a distance between two labelled graphs. However, they typically suffer from a high computational complexity, which makes it difficult to apply these matching algorithms in a real scenario. In this paper, we propose an efficient graph distance based on the emerging field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure and learns a metric with a siamese network approach. The performance of the proposed graph distance is validated in two application cases, graph classification and graph retrieval of handwritten words, and shows a promising performance when compared with (approximate) graph edit distance benchmarks.

Détails

Actions