
Soft Computing
https://doi.org/10.1007/s00500-019-03761-6

METHODOLOGIES AND APPL ICAT ION

Smart adaptive run parameterization (SArP): enhancement of user
manual selection of running parameters in fluid dynamic simulations
using bio-inspired andmachine-learning techniques

Hatem Ghorbel1 · Nicolas Zannini1 · Salma Cherif1 · Florian Sauser2 · David Grunenwald3 ·William Droz1 ·
Mahamadou Baradji4 · Djamel Lakehal4

© The Author(s) 2019

Abstract
Computational fluid dynamic (CFD) simulations present numerous challenges in the domain of artificial intelligence. Compu-
tational time, resources and cost that can reach disproportional size before leading a simulation to its fully converged solution
are one of the central issues in this domain. In this paper, we propose a novel algorithm that finds optimal parameter settings
for the numerical solvers of CFD software. Indeed, this research proposes an alternative approach; rather than going deeper
in reducing the mathematical complexity, it suggests taking advantage of the history of previous runs in order to estimate
the best parameters for numerical equation resolution. In fact, our approach is bio-inspired and based on a genetic algorithm
(GA) and evolutionary strategies enhanced with surrogate functions based on machine-learning meta-models. Our research
method was tested on 11 different use cases using various configurations of the GA and algorithms of machine learning such
as regression trees extra trees regressors and random forest regressors. Our approach has achieved better runtime performance
and higher convergence quality (an improvement varying between 8 and 40%) in all of the test cases when compared to a
basic approach which requires manually selecting the parameters. Moreover, our approach outperforms in some cases manual
selection of parameters by reaching convergent solutions that couldn’t otherwise be achieved manually.

Keywords Computational fluid dynamics · Genetic algorithms · Surrogate functions · Machine learning

1 Introduction

Applying parameter optimization techniques to CFD soft-
ware is very challenging since CFD simulations can require
weeks of computation on expensive high-performance clus-
ters. Typical optimization strategies (e.g., Monte Carlo,

Communicated by V. Loia.

B Hatem Ghorbel
hatem.ghorbel@he-arc.ch

1 Data Analytics Group, Haute École Arc Ingénierie,
University of Applied Sciences and Arts Western
Switzerland, Rue de la Serre 7, 2610 Saint-Imier, Switzerland

2 Embedding Computing System Group, Haute École Arc
Ingénierie, University of Applied Sciences and Arts Western
Switzerland, Rue de la Serre 7, 2610 Saint-Imier, Switzerland

3 Interaction Technologies Group, Haute École Arc Ingénierie,
University of Applied Sciences and Arts Western
Switzerland, Rue de la Serre 7, 2610 Saint-Imier, Switzerland

4 Ascomp AG, Zurich, Switzerland

Gradient Descent or genetic algorithms) require thousands of
simulation runs and are often still debatable (Whitley 1994).

Recently there has been an increasing interest in exploit-
ing machine-learning techniques in the aim of accelerating
and enhancing evolutionary computation such as the work
of Asouti et al. (2016). Our approach is carried out in accor-
dance with this trend and combines evolution strategies with
learning algorithms in order to reach good numerical param-
eters within as few trials and errors as possible. Results will
reduce the complexity of the task of parameter choice for
users without sufficient background in numerical simulation
methods.

The current state of simulation resolution by CFD soft-
ware presents many issues. In fact, some simulations cannot
reach convergence by manual parameter selection. Some
others achieve convergence but suffer from a lack of per-
formance, poor solution quality and costly resolution time.
Reaching and improving numerical convergence is still quite
a hard task, costly to obtain and often not achievable in
a traditional trial-and-error method. Therefore, we need an

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-03761-6&domain=pdf
http://orcid.org/0000-0001-5501-9807

H. Ghorbel et al.

algorithm that would explore the space of possible solutions
while keeping an intelligent selection aiming at optimizing
the problem resolution. This concept should be expanded
using meta-heuristics that would minimize the time and
resources within the numerical resolution.

A first intuitive answer to our needs is a genetic algorithm
that explores the search space of solutions and applies vari-
ous mechanisms to guarantee the outcome of the fittest ones.
Yet, to ensure that the genetic algorithm covers a sufficiently
large search space, it is necessary to launch it with a relatively
large population size in each generation. And then we need
to call for each candidate solution the original fitness func-
tion for evaluation. Although it ensures an optimal solution,
this strategy represents the main drawback of the GA: it is
time-consuming and resource intensive. Indeed, each of the
solutions found through mutation and crossover operations
should be assessed using the numerical solver itself to assign
an objective fitness (i.e., with a population of 10 individuals
and 10 generations, numerical solver is executed 100 times).

To remedy this problem, we propose to use machine-
learning techniques to provide prediction functions as fitness
surrogate in the GA. It works as a data-driven process based
on historical data collected in log files and used to estimate
new fitness from the perspective of previous cases. Hence it
becomes easier for the GA evaluate solutions and send the
most adapted ones to the numerical solver.

In a learning phase, parameter settings that are observed
to work well for specific problems will be fingerprinted and
recorded into a learning model. In a production phase, the
model will be used to speed up the genetic algorithm and
quickly find optimal parameter settings. Effectively, this con-
sists in aggregating the knowledge and experience of more
advanced users into a database that is then used to the benefit
of all users. In fact, historical data are first filtered, catego-
rized and used to train a machine-learning-based surrogate
model in theGA. In order to find out the best surrogate fitness
function, we have conducted a comparison between differ-
ent supervised machine-learning models such as regression
trees, extra trees regressors, and random forest regressors.

By combining a bio-inspired approach with machine-
learning techniques, the task of choosing the optimal numer-
ical parameters will effectively be shifted from the user to the
software. This will make a significant impact on the usability
of the CFD software. Consequently, the CFD software will
be accessible to users that do not necessarily have strong
expertise in numerical methods. The remainder of this paper
is structured as follows. We will first lay out the related work
previously conducted to our research in Sect. 2, then we will
present our methodology to solve the problem in Sect. 3,
namely the GA and surrogate model. Then, in Sect. 4, we
will illustrate and discuss the results we obtained and eval-
uate the approach using metrics of the domain. Finally, in
Sect. 5 we will end up with a conclusion of our work.

2 Related work

In CFD, the nonlinear Navier–Stokes equations are com-
monly solved using a combination of iterative methods. In
the literature, there is a quite large number of such meth-
ods, each parameterized by several free parameters, and
performing differently in different scenarios. The simplest
example is perhaps the relaxation method used to update the
solution at each iteration using a combination of the cur-
rent values and the predicted values. Convergence properties
of the solver are then highly dependent on the choice of
the relaxation factors. Low relaxation stabilizes the method
at the expense of an increased computational cost. Con-
versely, high relaxation factors tend to speed up the numerical
method but also decrease stability, which may lead to numer-
ical blowup. Recent studies Dragojlovica and Kaminskib
(2004) have shown that optimum relaxation factors can be
found using exploratory computation. Accelerating the con-
vergence of CFD solver in general has been seen as an
optimization problem where optimum numerical values are
explored in a large search space. Different optimization
methods using either local optimization techniques (such
as gradient methods, quasi-Newton methods, and simplex
methods), or global techniques (such as simulated anneal-
ing, Monte Carlo, genetic algorithms) have been generally
used by scholars to improve resolution performance (Asouti
et al. 2016).

2.1 Global optimization techniques: genetic and
evolutionary approach

Local optimization techniques such as gradient methods,
quasi-Newtonmethods, and simplexmethodsdepend strongly
on the solution domain and tend to be tied to the initial
guess. As a result, this tight coupling enables these meth-
ods to take advantage of the solution space characteristics,
resulting in relatively fast convergence to local maxima or
minima. However, differentiability and/or continuity rapidly
create constraints on the solution domain. These limitations
make local methods generally restricted to smooth and uni-
modal objective functions and therefore not unsuitable for
real-world research fraughtwith discontinuities,multimodal,
and noisy search spaces (Haupt et al. 1998; Goldberg 2006).

Global optimization techniques such as simulated anneal-
ing, genetic algorithms, andMonteCarlomethods are largely
independent of the solution space and place few constraints.
They better cope with solution spaces having discontinuities,
constrained variables, nonlinear relations, or a large number
of dimensions. They are more robust than local techniques
andyield optimumornear-optimumsolutions insteadof local
optimum (Whitley 1994).

Genetic algorithms (GA) are considered more efficient
when compared to simulated annealing as they are based on a

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

populationmethod rather than a single-statemethod.GApro-
vides faster convergence and is more adapted to parallelism.
They are particularly suitable for complex engineering prob-
lems (Gen and Cheng 2000) such as CFD problem solving.
For instance, Marco et al. (1999) presented a GA based on
a multi-objective optimization to solve the problem of the
design of an airfoil in Eulerian flow. In Kotragouda (2007)
firstly developed and optimized a four-jet control system
using a continuous GA and the results are compared with the
EARND GA results (Huang 2004). Secondly, an unsteady
two-jet control system (synthetic jets) is setup and opti-
mized using the Continuous GA. Fabritius (2014) used GA
to improve different turbulence models applied to various
types of flows, particularly to improve for the k − ε and the
SpalartAllmaras models.

2.2 Surrogate modeling

GA is found to be slow when the search space is huge,
especially in tangible engineering problems such as CFD
solvers. Several attempts to accelerate the solution search
using surrogate functions have been proposed. Buche et al.
(2005) have used Gaussian process to model fitness func-
tion in the optimization of stationary gas turbine compressor
profiles. Voutchkov and Keane (2010) discuss the idea of
using surrogate models for multi-objective optimization and
demonstrate this idea using several response surface meth-
ods on a pre-selected set of test functions from the literature
such as F5 and ZDT1-ZDT6.

Zvoianu et al. (2013) have proposed an on-the-fly auto-
mated creation of highly accurate and stable surrogate fitness
functions based on artificial neural networks to solve the
problem of performance optimization of electrical drives.
They achieved to enhance the computational time of the opti-
mization process by 4672%. Similarly, Brownlee andWright
(2015) discuss surrogate fitness models to solve the prob-
lem of building design. Proposed surrogates are based on
radial basis function networks, combined with a determinis-
tic scheme to deal with approximation error in the constraints
by allowing some infeasible solutions in the population. For-
rester et al. (2006) investigate polynomial regression-based
surrogate methods for improving CFD simulations for global
aerodynamic optimization. They build a strategy of combin-
ing expecting improvement updates with partially converged
CFD results in order to improve the efficiency of the global
approximation. They finally show that this strategy outper-
forms the traditional surrogate-based optimization.

Moreover, Dragojlovica and Kaminskib (2004) have
reported a novel method for accelerating convergence of iter-
ativeCFD solvers achieved by a control algorithmwhich uses
fuzzy logic as a decision-making technique in order to guide
the under-relaxation of the discretized Navier–Stokes equa-

tions. The control criteria are derived from observation over
a large interval of previous consecutive iterations.

The evaluation of the method has shown a five-time
acceleration of the number of iterations in case of mixed
convection and of a two-time acceleration in case of natural
convection. Other approaches proposed by Lee and Takagi
(1993), Alba et al. (1996) have introduced controlling algo-
rithms from the perspective of the combination of fuzzy logic
to genetic algorithms.

Several works have proposed systems designed to use
experience from previous designs and/or simple modeling
tools. Giannakoglou (2002) have reviewed the use of genetic
algorithms to solve problems in aeronautics, particularly
numerical optimization methods such as CFD solvers. They
have pointed out the typical problemsof the population-based
search algorithms such as the excessive number of candidate
solutions and proposed surrogate models mainly based on
neural networks to reduce computing cost. They stored pre-
viously evaluated individuals along with their fitness values
in databases. For each new individual, the database is scanned
and the closest neighbors to the new individual are identified
and used to train the local neural network which finally esti-
mates the new individual fitness. They have pointed out that
several versions of neural networks outperformed the con-
ventional genetic algorithms (without surrogate model) in
terms of CPU time efficiency.

Similarly, the enhancement of genetic algorithms by
means of machine-learning techniques such as neural net-
works (Llor et al. 2007; Kyriacou et al. 2014), support
vector machines (Barros et al. 2007), and symbolic regres-
sion (Schmidt and Lipson 2008) was applied in developing
CFD controller systems. Shirayama (2005) have viewed the
acceleration of CFD convergence from a recommendation
system perspective, i.e., for each evolution of the algorithm,
the search space of individuals is reduced using knowledge
rules extracted from historical data. They modeled the prob-
lem as a genetic algorithm where a recommendation system
proposes the best computational parameters in each evolution
according to a knowledge database gathered from previous
experiences. Authors have reported that the proposed sys-
tem was implemented and that the recommendation system
is highly efficient and parallelized.

Similar to previous work in surrogate modeling applied
to accelerate convergence in evolutionary computing such
as Forrester et al. (2006), Schmidt and Lipson (2008), Bar-
ros et al. (2007), Zvoianu et al. (2013), we explore in the
present work a machine-learning approach where we learn
from previous CFD resolution to calculate an on-the-fly esti-
mation of the fitness function. As machine learning needs a
careful choice of training data, the strategy of CFD partial
convergence as in Forrester et al. (2006) is applied. Best par-
tial convergence solutions compete to become the best-fitted
solutions.

123

H. Ghorbel et al.

3 Methodology

Applying parameter optimization techniques to CFD soft-
ware is very challenging since CFD simulations are com-
putationally expensive. Typical optimization strategies (e.g.,
Monte Carlo, Gradient Descent or genetic algorithms)
require thousands of simulation runs and are often not feasi-
ble. Our approach will instead combine evolution strategies
with learning algorithms as surrogate model, so as to reach
good numerical parameters in as few trials and errors as pos-
sible. In a learning phase, parameter settings that are observed
to work well for specific problems will be fingerprinted and
recorded into a learning model. In a production phase, the
model will be used to speed up the evolutionary algorithm
and quickly find optimal parameters. Effectively, this con-
sists in aggregating the knowledge and experience of more
advanced users into a database that is then used to the benefit
of all users.

In this section, our genetic algorithm approach is firstly
presented. Secondly, the combined machine-learning surro-
gate model is described.

3.1 Genetic algorithm

Genetic algorithms (GA) are a family of computational mod-
els inspired by Darwin’s evolution theory and Mendel’s
genetic laws. These models encode a potential solution to a
specific problem on a simple chromosome-like structure and
apply bio-inspired recombination operators to these struc-
tures in such a way as to create more adapted solution to
the problem. The biological inspiration consists in preserv-
ing significant features and searching for those that would
be better adapted to the problem resolution, over successive
generations. Genetic algorithms are often viewed as function
optimizers, although the range of problems to which genetic
algorithms have been applied is quite broad (Goldberg 2006).

An implementation of a genetic algorithm begins with a
population of chromosomes. Each one is evaluated and allo-
cated reproductive opportunities by mutation and crossover
in such a way that those which hold a better solution to the
problem are given more chances to be selected to “repro-
duce” than those which hold poorer solutions. The rightness
of a solution is typically defined with respect to the current
population and generation. In this research, it is measured by
an original fitness function chosen according to the quality of
a partial convergence. The selected solutions represent a new
population onwhichwe iteratively conduct the same process.
Hence, a new generation of solutions is created after each
iteration until the stopping criteria are reached. The stopping
criterion could be related to the number of generations, time
constraint or the quality of the achieved solutions (stationary
fitness score).

In this paper, the proposed GA is developed as a controller
wrapped around the CFD software with the aim of automati-
cally selecting the free parameters before running numerical
simulations. It is designed to select the fittest solution in a
finite population of solutions evolved over different genera-
tions according to evolution rules and genetic operations as
will be detailed below. The only information the GA requires
is one payoff value per objective for each candidate solution
according to an elaborated fitness function.

3.1.1 GA launching conditions

Basically, the GA are robust methods for optimization in
high-dimensional search spaces. However, they typically
require a large number of calls of the fitness function. In the
case of CFD solvers, evaluating the fitness function is very
costly and this may drastically decrease the overall computa-
tional performance. To avoid this problem, the GA should be
activated only when it is needed. This is when it could pro-
vide a capital gain on the computation time, typically when
the simulation diverges or does not converge fast enough.
This is explained through Fig. 1.1

Moreover, the activation conditions vary depending on the
simulated cases: steady or unsteady cases. More specifically,
the simulation is launched with the user initial parameters
and once one of the following conditions occurs, the GA is
activated:

(i) For steady cases:

– Simulation converges slowly or diverges (according
to the slope of residuals);

– Pressure solver reaches the maximum number of iter-
ations too often (a threshold of consecutive times is
reached).

(ii) For unsteady cases:

– Too small time step is reached (a threshold value is
reached);

– Time step decreases rapidly (according to the slope
of residuals);

– Pressure solver reaches its maximum number of iter-
ations too often (a threshold of percentage/ratio of
iterations in a time step are reached);

– Time step does not converge for a threshold value of
consecutive times.

3.1.2 GA structure

The initial population for this GA is generated from the
chromosome formed from the initial parameters (Fig. 2)

1 TransAT is the CFD software used in this article.

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

Fig. 1 GA launching after
detecting convergence problems

Fig. 2 The different stages of
the GA

setup by the user. Then N −1 mutations are applied to obtain
an N -individuals’ population containing N−1mutated chro-
mosomes in addition to the initial chromosome as illustrated
in Fig. 4. A value of N varying between 5 and 11 has been
used in various GA experiments. Since computational time
is an issue, N = 5 has given the best performance in most of
the cases. Mutation is detailed in Sect. 3.1.3.

Chromosomes are composed of genes. These genes hold
the free parameters used to optimize numerical solvers
(Fig. 3).2 With the help of CFD experts and based on the
history of previous simulations, fixed ranges for parameters
were defined. These parameters can have one of the three
types:

(i) numerical type, defined by a range of values delimited
by [min, max] (e.g., CFLMIN, the CourantFriedrich-
sLewy condition [0.05, 1.0]);

(ii) enumerate type, represented by a list of possible val-
ues. (e.g., eqn_solver(2): solver1”, solver2”, solver3”,
”solver4, solver);

(iii) boolean type, have one of two possible values (e.g.,
autorelaxation: True, False).

Details of these parameters are stored alongside in a dif-
ferent description file where we describe their types, ranges,
possible values. We constructed these descriptions by a pre-
processing phase that analyses the experts’ tuning process of
solutions that are either originally non-convergent or badly
convergent ones. This analysis gave us a concrete idea about
the different parameters and their relevance to the solvers as

2 The values stated in the example below are not correct and are merely
there to serve the purpose of comprehension.

well as their varying behavior and ranges, and their effects
on the simulation.

Finally, the new chromosomes we create applying genetic
operations are the result of multiple combinations derived
from the intersection of chromosome description file with
current simulation case.

3.1.3 Genetic operations

Genetic operations create new chromosomes based on an
existing population. In this paper, it consists in applying
crossover followed by a mutation on chromosomes in each
generation, apart from the first generation where we directly
apply a mutation on the initial chromosome (Fig. 4). Regard-
ing mutation, it is applied on a random number of newly
created chromosomes in each generation. Mutation consists
in muting random parts of genes according to a prede-
finedmutation probability.Mutationwhen applied enables to
diversify solutions from the search space and thus prevents
the algorithm to be trapped in local minima. In the imple-
mented GA, 30% of new chromosomes undergo a mutation
of 20%of their genes.Mutation operations are varied accord-
ing to parameters’ types as following.

– Numerical parametersPull a randomnumber according
to a Gaussian distribution. The Gaussian is centered on
the current value and is bounded by the min and max
values allowed for the parameter;

– ListedSelect randomly another item in the list of possible
choices;

– Boolean Invert Boolean value.

123

H. Ghorbel et al.

Fig. 3 An example of a
chromosome

Fig. 4 Adopted GA strategy

Regarding crossover, we chose to work with single-point
crossover randomly defined.

According to the encoding method and the predefined
physical rules, we always have to be certain to maintain the
overall consistency of the underlying solution and the valid-
ity of the individuals in our population. These physical rules
are general constraints defined by CFD experts and applied
to ensure the resolution coherence within a solver. This is
to avoid having a solution with a good score, but having
no physical sense when interpreted. Thus, following each
genetic operation, a consistency check process is applied to
each potential solution. In case duplicated chromosomes are
created, further mutations are applied to create separate ones.
The main reason behind is to stimulate the diversity of the
population considered as relatively small-sized one and so
very to exposed to uniformity.

3.1.4 Selection

The basic part of the selection process is to stochastically
select which individuals from one generation that would sur-
vive and populate the next generation. The assumption is
that the fittest individuals have a greater chance of survival
than least fitted ones. The latter are not without a chance.
Theymayhave genetic coding that shows usefulness to future
generations. Different selection strategies are applied while
dealing with this problem:

– Truncation From one generation to the other, we only
keep the P (population size) best chromosomes;

– Roulette This technique is analogous to a roulette wheel
with each slice proportional in size to the fitness score

assigned in such a way that higher score is always more
favorable to be selected for next generation;

– Tournament Provides selective pressure by holding a
tournament competition among S individuals S ≤ P .
The best individual from the tournament is the one with
the highest fitness, which is the winner of the P;

Finally, in all different cases, we found out that keeping a
portion of the generation’s solutions selected using truncation
strategy always enhances the results and guarantees that the
best solution is constantly selected for the next generation.
Thus, we apply truncation alongside with a second selection
strategy in each generation. This hybrid solution accentuates
the randomness of the algorithm and guarantees a sufficient
exploration of the search space.

3.1.5 Halt criteria

We dealt with two families of cases, steady and unsteady
ones. In steady flows, conditions (velocity, pressure and cross
section) may vary from point to point but do not vary with
time. Simulations are executed during n iterations. However,
the properties of an unsteady flow vary with time at any point
of the fluid. Simulations are executed during N time steps.
Genetic evolution stops when one of the halt criterium is
reached. These criteria vary from steady to unsteady cases.

(i) For steady cases

– The best solution found so far hasn’t been improved
for X consecutive generations (default X = 4);

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

– The maximum number of generations is reached
without the GA convergence criteria being reached.
In this case, if one or more solutions have been found
during the process, the fittest one is selected. If no fit
solution is found, the simulation stops.

(ii) For unsteady cases

– The last time step of a solution has converged;
– The best solution found so far hasn’t been improved
for X consecutive generations (default X = 4);

– Similar to the steady case, the maximum number of
generations is reached without the GA convergence
criteria being reached.

3.1.6 Fitness function

In each generation, individuals are evaluated with the CFD
software in order to score their fitness. This is conducted
by calling the CFD software which starts solving the CFD
equations for the next k iterations (steady cases) or time
steps (unsteady cases). The obtained residuals are analyzed
and then scored according to which extent the objectives of
obtaining an efficient, high quality and stable convergence
are achieved.

Even if we are in amulti-objective problem (maximize the
convergence quality, the stability quality, and minimize the
distance to the target), we have solved the problem using a
single-objective approximation given by a scoring function
defined as a weighted sum of these three objectives. Conse-
quently, the fitness function is defined as a linear combination
of the following three objectives: (i) distance of the residual
to the target, (ii) quality and (iii) stability of convergence. The
weight of each indicator in the scoring function is adjusted
experimentally by observing historical data related to simu-
lations performed by beginners and expert users alike.

In order to quantify the stability and the quality of con-
vergence at a point i , we apply the method of least squares
approximation on thewindow [i−w, i]. The scoring function
will, consequently, take the following form:

fi (di , ci , ei) = −α| lg(di)| − βci − γ lg(ei), i ∈ [w, n]
(1)

where

w = the size of the least square analysis windows

di = distance of the current residual to the target

ci = convergence quality (slope of the least

square estimation)

ei = stability quality(mean error of least square estimation)

α = distance to the target coefficient,α ∈ [0, 1]

β = convergence quality coefficient, β ∈ [0, 1]
γ = stability quality coefficient, γ ∈ [0, 1]
α + β + γ = 1

n = number of iterations

The fitness function defined in Eq. 1 indicates the current
simulation performance at the progress point i and serves
as a metaheuristic to give insights to the genetic algorithm.
For steady simulations, it is used as it is in the next steps of
the selection. However, for unsteady simulations, two extra
qualitative contraints are appended to select the fittest chro-
mosomes. One is related to the convergence of the last time
step and the other to the duration of time steps. In these cases,
the selection of the fittest chromosomes is done sequentially
as following:

1. Select the chromosomes with converged time steps;
2. Select the chromosomes with the highest time steps out

of the set created in 1;
3. Select the chromosomes with the highest fitness at the

last time step out of the set created in 2.

3.2 Combining genetic algorithm and
machine-learning-based surrogate modeling

In order to accelerate the GA runtime, we propose to sur-
rogate the fitness function by an estimated function using
machine-learning techniques (Witten et al. 2016). This repre-
sents the second challenge of this research. In fact, currently,
the fitness of a solution is evaluated according to its capability
to efficiently reach the CFD solver convergence. This eval-
uation is quantified by calling the CFD software and starts
running the analytic resolution using parameters set up of
the solution, but only for the first k iterations or time steps
(the progress point i in Eq. 1). In more details, the obtained
residuals are first analyzed then scored according to which
extent the objectives of obtaining an efficient, high quality
and stable convergence are achieved.

Nevertheless, this is clearly a time expensive strategy
especially if we extend the search space to larger number
of generations and individuals. Therefore, we propose to
develop an estimation fitness function capable of predicting
the fitness value of some candidate solutions from the per-
spective of historical data; previous runs; and previous user
expertise of the tool. Thus, instead of keeping the evolution
process search for a best solution “naturally” (by evaluat-
ing them every time using the CFD software), we redefine
the rules of evolution by integrating an associative memory
that evaluates the current solution according to learnt expe-
riences. Such a bias in the evolution process gives rise to a

123

H. Ghorbel et al.

self-adapting strategy and decreases the number of calls to
the original fitness function.

This approachhas been the focus of several academic stud-
ies (Llor et al. 2007; Schmidt and Lipson 2008; Shirayama
2005; Barros et al. 2007) and has been shown to improve
the computational performance. The estimationmodelingwe
conduct is founded on machine-learning techniques regres-
sion trees, and random forest regressors.

The idea, as detailed in Fig. 5, is to launch the GA in a
regular conduct in order to feed the machine-learning algo-
rithmwith its output data labeled by the scores of the original
fitness function (CFD Software). Based on the so far gener-
ated history, when the size of the labeled data is sufficient,
we train the machine-learning model. As for the following
generations, we use the trained model to predict the fitness of
the candidate solution without having to launch each time the
CFD software. Subsequently, based on this predictive model
selection, only 50% of the best-predicted solutions are eval-
uated with original fitness function using the CFD software.
Thus, we reduce by half the number of calls of the CFD
software.

3.2.1 Training corpus

The training corpus is composed of samples of previous solu-
tions labeled with their score as quantified by the fitness
function. To construct this dataset, we collected a sample
of about 10,000 solutions; 2000 per case in all the 5 cases on
which we worked along with the GA. Steady and unsteady
cases are separated; hence two different training corpora are
constructed.

Although a considerable amount of datasets was accumu-
lated, the data need to be filtered and preprocessed before
being used to feed the machine-learning algorithm. Depend-
ing on the type of simulation (steady or unsteady), the
filtering takes into consideration the actual progress of the

simulation, the fitness previously allocated to each simula-
tion, and the physical and geometric properties of the cases.
Data filtering allows for better targeting the training set by
selecting only similar cases to improve prediction perfor-
mance.

The generated database includes two sets of data depend-
ing on the way they are generated. First, history data include
chromosomes generated and scored during previous runs of
same/similar cases. This dataset is collected during previous
user simulations and stored in dedicate databases within the
CFD software. Similar cases are found using nearest neigh-
borhood (NN) algorithm (Altman 1992) where neighbor is
the closest case in themultidimensional feature space formed
by physical properties such as boundaries, grid properties,
Block-based Mesh Refinement (BMR) levels, and surface
tree. Details are out of the scope of this article but the
approach is very similar to that of Morbitzer et al. (2003).
Second, local data include generated scored chromosomes
generated on-the-fly during the current run with previous
generations of the GA.

3.2.2 Training and prediction strategies

The strategy we adopted once the fitness prediction module
is activated is as follows (see Fig. 6):

– Verify whether history data exist for this particular sim-
ulation or if only the chromosomes created during the
current GA run should be relied on;

– Once the appropriate sample of data is located, proceed
to selecting chromosomes that are similar to the current
chromosome in terms of state and progress level. The
selection is solely applied on data from chromosomes
that are in the same phase, progress or state as the current
chromosome for which the fitness is to be predicted;

Fig. 5 Fitness prediction
module added to the GA

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

Fig. 6 Detailed flow of the fitness prediction module

– Check whether the training sample size complies with
the training size fixed threshold. Training dataset size
thresholds were defined empirically from the study of
the different models performances in varying the size of
the training sample and analyzing the results (see details
in Sect. 3.2.4). As a result, minimum thresholds were
fixed for eachmodel in order to get satisfactory prediction
results;

– If the training sample selected after a cross-validation
process is not large enough to get satisfactory model per-
formances, the fitness predictionmodel is not applied and
the GA proceeds to evaluate all the chromosomes;

– If training data are sufficient, actively train the machine
learning algorithm on the selected data to generate the
prediction model;

– The fitness of the chromosomes of the current generation
is predicted based on the applied model;

– Return the chromosomes with the best-predicted fitness
to be passed on to the next generation.

3.2.3 Machine-learning techniques

Two types of machine-learning models were implemented:
classifiers and regressors (Friedman et al. 2001).

The former type of model has a binary behavior. Chro-
mosomes can be either fit or unfit depending on their fitness.

These chromosome classes are uniformly distributed within
the training data. This classification method is an efficient
way to eliminate cases that are quickly diverging. Although
this model is not able to order two solutions in the same class,
it remains faster than regressors.

With regressors, regression is used to predict the actual
value of the fitness value. It gives more accurate results than
with classifiers. The estimation of the fitness function as a
continuous function allows the differentiation and ordering
of chromosomes. Nonlinear regression models are used to
handle the complexity of the problems at hand.

The list of trained algorithms is as follows. Python
Scikit-learn framework is used for training and predicting
(Pedregosa et al. 2011; Raschka and Vahid 2017).

– Regression trees A non-parametric supervised learning
method used for classification. The goal is to create a
model that predicts the value of a target variable by learn-
ing simple decision rules inferred from the data features
(Ross 1986);

– Bagging regressor An ensemble meta-estimator that fits
base regressors each on random subsets of the original
dataset and then aggregates their individual predictions
(either by voting or by averaging) to form a final predic-
tion. The base estimator used is a regression tree one. This
regressor improves the stability and accuracy ofmachine-
learning algorithms and reduces the variance and helps
to avoid overfitting (Breiman 1996a, b);

– extra trees regressor A meta-estimator that fits a num-
ber of randomized regression trees (a.k.a. extra trees) on
various subsamples of the dataset and use averaging to
improve the predictive accuracy and control overfitting
(Matloff 2017);

– Random forest regressor A meta-estimator that fits a
number of classifying regression trees on various sub-
samples of the dataset and use averaging to improve the
predictive accuracy and control overfitting. The subsam-
ple size is always the same as the original input sample
size (Matloff 2017).

3.2.4 Cross-validation

In order to validate the stability of ourmachine-learningmod-
els, a tenfold cross-validation method was applied. This did
not only give us an idea about how well our model does on
data used to train it, but also the error estimation is averaged
over all 10 trials to get total effectiveness of our model. This
significantly reduces bias as we are using most of the data
for fitting and also significantly reduces variance as most of
the data are also being used in validation set.

The cross-validation method was used to test the differ-
ent machine-learning algorithms for fitness estimation. This
method is a model validation technique for assessing how

123

H. Ghorbel et al.

results of a statistical analysis generalize to an independent
data set. It is mainly used to avoid overfitting. It works as a
rotation estimator as it randomly splits data into two different
datasets, one for the training and one for the testing.

A tenfold cross-validation method was applied to the gen-
erated local data by running locally stored test cases with the
GA.

To guarantee the prediction models good performance,
a certain size of data is required to train. The dataset size
threshold ensuring significant results was found empirically
by analyzing the performances of the different prediction
models with varying size of datasets ranging from 72 to 429
as detailed in Table 1. If this threshold is not reached, the
prediction model step is skipped altogether.

4 Comparative results

In this section, both results of the genetic algorithm and the
combined machine-learning surrogate model are presented
and compared.

4.1 Genetic algorithm results

The choice of the cases ismotivated by the convergence speed
and the complexity of the physical properties. Simple, mod-
erate and complex cases are selected by numerical simulation
experts to form test samples for steady and unsteady cases.
GA parameters are adjusted for each class, namely the size
of the population is set bigger for unsteady cases as these are
slower in convergence. And mutation rates are set higher for
small populations to stimulate diversity.

4.1.1 Steady cases

TheGAwas first testedwith the following set of steady cases:

– Case3 Natural convection
– Channel_no_cond Flow of a liquid around a cube with
2 levels of turbulence

– Channel_flow_flux_pitched Force convection in an
inclined channel

– Backwardstep Laminar flow past a backward-facing
step modeled with an embedded object

– Impinging_jet Jet impinging on a flat plate
– Ra_10p8 Natural convection in a square cavity at a
Rayleigh number of 108.

(i) Baseline
Our baseline is the user manual selection of parame-
ter when manipulating the CFD software. We distin-
guish two sorts of users: beginners and experts. The
former are generally students and trainers who have
sufficient skills to manipulate the CFD software but
limited experience in manual selection of physical mod-
els. The latter have, however, high skills in all the
simulation processes. The baseline simulations for Back-
wardstep, Ra_10p8 and Impinging_jet did not converge,
the aim was to fix the convergence issue. The remain-
ing baseline cases—i.e., Case3, Channel_no_cond and
Channel_flow_flux_pitched—were already converging.
The aim was to accelerate the convergence and enhance
its quality. The Case3 test case was particularly slow.
The results obtained in each of these cases are reported in

Table 1 Steady-case threshold
variation, cross-validation
results representing the
percentage of correctly
predicted chromosome fitness

Dataset size 72 143 214 286 357 429

Bagging regressor 81.82% 95.35% 87.5% 88.37% 94.39% 96.90%

Random forest regressor 72.73% 95.35% 87.5% 86.05% 90.65% 93.80%

Extra trees regressor 81.82% 95.39% 90.63% 90.70% 94.39% 93.80%

Regression trees 81.82% 90.70% 93.85% 100% 100% 96.90%

Table 2 Baseline experiments showing user performance with manual parameter selection in steady cases

Simulation Beginner Expert

Time Iterations Time Iterations

Case3 104s 582 49 s 322

Channel_no cond – – 46s 123

Channel_flow_flux_pitched – – 79s 187

Backward_step No convergence No convergence 41s 375

Impinging_jet No convergence No convergence 322s 1705

Ra_10p8 – – No convergence No convergence

Beginners, generally students, and experts’ performances are separated. It is important to note that there are cases which ended up without achieving
convergence. Empty values stand for cases that were not proposed to beginners due to their complexity

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

Table 3 Runtime and iteration number of converged solutions after the application of the GA in steady cases

Simulation Best Average

GA time (s) Iterations Total time (s) GA time (s) Iterations Total time (s)

Case3 50 538 129 95 528 173

Channel_mo cond 44 122 82 51 122 91

channel_flow_flux_pitched 203 186 276 255 186 324

Backward_step 47 269 88 110 456 166

Impinging_jet 1245 405 1324 2087 1031 2242

Ra_10p8 352 857 554 1567 857 1752

The average values were calculated on 10 different runs

the following two Tables 2 and 3 containing details that
correspond before and after the application of the GA,
respectively.

(ii) Evaluation metrics
To compare User’s solutions and those found by the GA,
we used the three following metrics:

– LoadGARatio of the time spent in theGA compared
to the total execution time. The aim is to measure
the time load of the added GA with respect to the
entire runtime as it is expected that the GA should
slow down the CFD resolution. This metric was quite
significant to chose the appropriate GA parameters
(population size, mutation rates, etc.) to achieve a
GA load that doesn’t exceed 60%.

LoadGA = GA.Time

Total.Time
(2)

– Quality Indicator related to the number of iterations
(n) in a simulation. Best quality is obtained with as
few as possible iterations.

Quality = 1

n
(3)

– Performance Indicator related to the computation
time required for the numerical simulation
when we do not consider the GA time. The aim is
to measure the performance of the numerical simula-
tion conducted using the parameters provided by the
GA.

Performance = 1

Total.Time − GA.Time
(4)

Evaluation using load, quality, and performance is
depicted in Table 4.

4.1.2 Discussion

Concerning “Backward_step” and “Impinging_jet” cases,
the GA achieved, starting from a beginner’s solution, to out-
perform experts’ solutions regarding the performance and
quality metrics. However, for “Case3”, even if it achieved
to outperform beginners’ solutions and the quality of the
experts’ solution, the performance of the latter remains the
best. Furthermore, curiously, the GA succeeded in find-
ing a solution to the case “Ra_10p8” which had no prior
known user solution. As for “channel_no_cond” and “chan-

Table 4 Comparison between GA and expert results in steady cases in terms of load, quality, and performance

Simulation Load GA Quality Performance

Best GA (%) Best GA Expert Gain (%) Best GA Expert Gain (%)

Backward_step 53.41 3.72E−03 2.67E−03 39.41 2.44E−02 2.44E−02 0.00

Case3 38.76 1.86E−03 3.11E−03 40.15 1.27E−02 2.04E−02 − 37.97

Ra_10p8 63.54 1.17E−03 0.00E+00 0.00 4.95E−03 0.00E+00 100.00

Channel_mo cond 53.66 8.20E−03 8.13E−03 0.82 2.63E−02 2.17E−02 21.05

channel_flow_flux_pitched 73.55 5.38E−03 5.35E−03 0.54 1.37E−02 1.27E−02 8.22

Impinging_jet 94.03 2.47E−03 5.87E−04 320.99 1.27E−02 3.11E−03 307.59

Average 62.82 66.99 66.48

Variance 19.19 125.92 126.53

Even if the GA load is relatively high (an average of 62.8% and a variance of), an average gain in the quality (53.65%) and the performance (66.4%)
of the convergence is achieved. The results are pronounced in some cases more than others, which explains the high value of the variance

123

H. Ghorbel et al.

Fig. 7 Graph representing the
residual across the number of
iterations in backward_step

Fig. 8 Physical simulation of the found solution representing the veloc-
ity

nel_flow_flux_pitched” cases, their initial solutions were
already good, but theGA still managed to improve their qual-
ity and performance. In all cases, the GA has significantly
improved the initial input user solution.

To sum up, in spite of the high load of the GA, i.e., the
additional time it takes in the convergence runtime, the gain
in the quality of convergence (measured in terms of gain in
number of iterations) and in the performance (measured by
the gain in iterative convergence runtime) is achieved. There-
fore, further investigation should focus on GA acceleration
using by fitness surrogate using prediction models.

From a physical viewpoint, Fig. 7 depicts the physical
interpretation of the results. The convergence graph of the
Backward_step simulation before applying the GA is plot-
ted. It is noticed that from iteration 70, the residual starts to
diverge. The obtained solution after 300 iterations is physi-
cally meaningless as seen in Fig. 8. However, after the call
of the GA at iteration 70 triggered by the residual diver-
gence, the algorithm achieves to find a better solution (span
between iteration 70 and 85 in Fig. 9) that finally converges in
200 iterations and gives a physically meaningful simulation
(Fig. 10).

4.1.3 Unsteady cases

The GA was also tested with the following set of unsteady
test cases:

– Ra_10p10 Natural convection in a rectangular cavity at
a Rayleigh number of 1010

– Network_smart Two-phase flow through a network of
pipes

– Ra_10p5 (Windows only)Natural convection modeling
in a square cavity at Rayleigh number of 105 using a
compressible flow

– Elbow_Water_Annulus Two-phase upward flow in an
elbow with water air coming in at the center of the pipe
and water in an annulus around air inflow

– CapillaryTube: capillary tube flow

(i) Baseline
Theoriginal simulations forCapillaryTube,Elbow_Water
_Annulus andRa_10p5 (Windows only) did not converge
when parameters are set by either beginners or experts.
For the Ra_10p5 test case, no known set of parameters
making it converge was found until then on Windows
whereas it converged on Linux with the hyper solver (not
available onWindows) (seeTable 5). The results obtained
for each of these cases are reported in the following two
Tables 5 and 6 containing results before and after the use
the GA, respectively.

(ii) Evaluation metrics
To compare user solutions and those found by the GA,
we used the three following metrics:

– Load GA
Ratio of the time spent in the GA compared to the
total execution time. The aim is to measure the time
load of the added GA with respect to the entire run-
time as it is expected that the GA should slow down
the CFD resolution. This metric was quite significant
to chose the appropriate GA parameters (population
size, mutation rates, etc.) to achieve a GA load that
doesn’t exceed 40%. This ratio is the same as used in
steady cases, nevertheless, in unsteady where CFD
resolution takes relatively more time, the time load
of the GA should not be too high so as to prevent
slowing down the total runtime.

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

Fig. 9 Graph representing the
residual across the number of
iterations in backward_step after
the call of the GA at iteration 70

Fig. 10 Physical simulation of the found solution representing the
velocity

LoadGA = GA.Time

Total.Time
(5)

– Efficiency
Instead of taking about quality in the steady cases,
we talk about efficiency which is a time-related indi-
cator since in these cases we talk about time steps
instead of iterations. Efficiency is hence calculated
as the ratio of the physical duration of the simulation
and the number of time steps N need to converge the
CFD resolution. When N decreases, this indicates
that CFD resolution takes less time.

Efficiency = Phys.Time

N
(6)

– Performance Indicator related to the computa-
tion time required for the numerical simulation
when we do not consider the GA time. The aim is
to measure the performance of the numerical simula-
tion conducted using the parameters provided by the
GA.

Performance = 1

Total.Time − GA.Time
(7)

4.1.4 Discussion

According to Table 7, the interesting point in unsteady results
is that all the simulations with the GA converged to a solution
even when experts failed. As a matter of fact, unsteady sim-
ulations take in general much more time to run than steady
ones; for instance, the runtime of steady cases is between 82
and 1324s whereas the unsteady cases take between 4100
and 384,888s (4.5 days). Consequently, we notice that the
load of GA decreases as the total runtime of the simulations
becomes high (for instance 88% of in Ra_10p5 and capil-
laryTube cases whose runtime is, respectively, in the range
of 2000–4000s.

The GA has also achieved to converge the three cases
(“Ra_10p5”, “network_smart” and Elbow Water Annulus”)
for which the experts have found no solution. The simulated
physical time of the expert solution of the case “Ra_10p10”

Table 5 Baseline experiments showing user performance with manual parameter selection in unsteady cases

Simulation Beginner Expert

Time step Phys. time Total time Time step Phys. time Total time

Ra_10p10 – – – 10,000 49.73 s 50,948 s

Network_smart – – – No converg. No converg. No converg.

Ra_10p5 (Windows) – – – No converg. No converg. No converg.

Elbow water annulus – – – No converg. No converg. No converg.

CapillaryTube No converg. No converg. No converg. 1000 0.2356 s 1083 s

Beginners, generally students, and experts’ performances are separated. It is important to note that there are cases ended up without achieving
convergence. Empty values stand for cases that were not proposed to beginners due to their complexity

123

H. Ghorbel et al.

Table 6 Runtime and number of iterations of converged solutions after the application of the GA in unsteady cases

Simulation Best Average

Step Phys. time (s) GA time (s) Total time (s) Step Phys. time (s) GA time (s) Total time (s)

Ra_10p10 10,000 170.8 2089 43,807 10,000 167.87 2608 46,573

Network_smart 5614 1 5714 22,112 5003 1 8730 25,757

Ra_10p5 (Windows) 500 2.384 1916 2168 500 2.384 2263 2495

Elbow water annulus 15,272 0.3292 16,137 384,888 15,272 0.3292 16,137 384,888

CapillaryTube 439 0.5 1961 4096 566 0.5 2408 5953

The average values were calculated on 10 different runs

Table 7 Comparison between GA and expert results for unsteady cases in terms of load, quality, and performance

Simulation Load GA Performance Efficiency

Best GA (%) Best GA Expert Gain (%) Best GA Expert Gain (%)

Ra_10p10 4.77 3.89E−03 9.76E−04 299.44 1.71E−02 4.97E−03 243.45

Ra_10p5 (Windows) 88.38 1.09E−03 None 100 4.77E−03 None 100

network_smart 25.87 4.52E−05 None 100 1.78E−04 None 100

capillaryTube 47.88 1.22E−04 2.18E−04 − 43.89 1.14E−03 2.36E−04 383.43

Elbow water annulus 4.19 8.55E−07 None 100 2.16E−05 None 100

Average 34.21 125.42 185.38

Variance 35.21 122.34 126.95

Even if the GA load is relatively high (an average of 62.82% and a variance of 19.19%), an average gain in the quality (66.99%) and the performance
(66.48%) of the convergence is achieved. The results are pronounced in some cases more than others, which explains the high value of the variance

has tripled with the GA (maintaining the same number of
time steps). The GA performance is, however, mitigated. For
instance, in the capillaryTube case, starting from a beginner’s
solution that does not converge, the GA found a solution
but could not outperform the experts. The total runtime GA
solution is still higher (5953s) than that of the expert (1083s).
47.88% of the GA runtime solution is consumed by the GA
itself to search for the best parameter setup and the rest for the
numerical resolution. Although the physical time simulated
with the expert solution (0.5 s) is less than that simulated
by the GA one, we believe that there is still much to do to
improve the GA performance.

In fact, enlarging the search space by creatingmore gener-
ations and more numerous populations often makes the GA
able to find out best performing solutions. This is because it
provides the algorithm the capabilities of exploring further
new solutions by adding new individuals throughmutation to
its population, and exploiting pertinent ones by making them
survive several generations to ripen and reach their full poten-
tial. Nevertheless, doing so is also often time and resource
consuming, since every individual needs to be assessed by
the CFD software in different stages of the simulation. Thus,
a high number of calls to the original fitness function and
hence to the CFD software is needed, which may drastically
decrease computational performance and consume important
resources.

4.2 Machine-learning surrogate results

4.2.1 Steady cases

Theproposed surrogate functions predict thefitness valueof a
solution in each iteration using a regressivemachine-learning
models that were previously trained on labeled data. The fol-
lowing Table 8 depicts the obtained results of simulations
conducted to solve the “backwardstep” case after applying
several machine-learning models. A comparison to the base-
line simulation (without the use of the surrogate function) is
also provided and the rate of the improvement is calculated.

4.2.2 Discussion

We note that fitness prediction using machine-learning mod-
els achieved a 40% reduction in total calculation time
when compared to the baseline model. This is substantially
achieved due to a 60% reduction in the number of calls to
TransAT CFD numeric solver. These results are considered
as quite significant improvement in the simulation tool that
outperforms human expert performance in parameter selec-
tion. The quality of the solution (number of iterations) has,
however, slightly deteriorated as the number of iterations
increases by 13%. But, this hasn’t affected the physical cor-
rectness of the solution.

123

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

Table 8 Results of the integration of the aggregate model to the GA with the “backwardstep” steady case

Algorithm Nb GA GA time Iterations Total time GA impact Nb TransAT Nb FP

Without prediction 2.8 350.2 516.8 506 0.65 28 0

Regression trees 3.2 226.4 571.2 386.8 0.54 18.6 12.2

Bagging regressor 1.4 114.2 631 273.4 0.39 9.2 4.8

Extra trees regressor 1.4 103 546.2 237.4 0.43 8.4 5.6

Random forest regressor 1.8 146 594 299 0.44 11.6 6.4

Mean without prediction 2.8 350.2 516.8 506 0.65 28 0

Mean with prediction 1.95 147.4 585.6 299.15 0.45 11.95 7.25

Improvement (%) 30.4 58 −13.3 40.9 31.4 57.3

The baseline simulation conducted without prediction model is compared to a mean result of the performances of different machine-learning
regression models. Comparison is based on the number of times the GA is called (Nb GA), the runtime of the GA including predictions (GA time),
the number of iterations of the retained solution (Iterations), the global simulation runtime until convergence (Total time), the time portion allocated
to the GA with respect to the total simulation time (GA Impact), the number of times the TransatAT is called to evaluate the retained solution (Nb
TransAT), and the number of times the prediction model is trained for fitness prediction (Nb FP)

Comparison is provided on the basis of the mean per-
formance of all tested regression models. Nevertheless, if
we compare the best results found by extra trees regres-
sor to the baseline, the former significantly outperforms the
latter.

Indeed, random forest and extra trees differ in the
sense that the splits of the trees in the former case are
deterministic whereas they are random in the latter case.
According to bias/variance analysis shown by Geurts et al.
(2006), extra trees work by decreasing variance while at
the same time increasing bias. When the randomization
is increased above the optimal level, variance decreases
slightly while bias increases often significantly. This tech-
nique is quite efficient particularly in problems where the
proportion of irrelevant attributes is high, the case of our
study. This is why extra trees performs the best among the
others.

4.2.3 Unsteady cases

Similarly, we applied the same fitness prediction using the
proposed surrogate model to the “Capillary Tube” case.
Results are depicted in Table 9. Even if the unsteady cases are
physically more complex than steady cases, quite significant
results are also achieved.

4.2.4 Discussion

Similar to steady cases, fitness prediction in unsteady cases
using machine-learning models achieved an 8% reduction in
total calculation time when compared to the baseline model.
This is substantially achieved due to a 24% reduction in
the number of calls to TransAT CFD numeric solver. These
results are considered as quite a significant improvement in
the simulation tool asmanual parameter selection in unsteady

Table 9 Results of the integration of the aggregate model to the GA with the “Capillary Tube” unsteady case

Algorithm Nb GA GA time N Total time GA impact Physical time Nb TransAT Nb FP

Without prediction 2.6 3645.4 545.6 6628.4 0.55 0.5 54 0

Regression trees 2.4 2405.8 614.2 5665.2 0.41 0.5 36 2.4

Bagging regressor 2.2 2726 599.2 6313.6 0.41 0.5 37 3

Extra trees regressor 2.6 2509.4 569.6 6012 0.39 0.5 39 2.6

Random forest 3 3480.4 554.8 6525.2 0.47 0.5 53 3.8

Without prediction 2.6 3645.4 545.6 6628.4 0.55 0.5 54 0

With prediction 2.55 2780.4 584.45 6129 0.42 0.5 41.25 2.95

Improvement (%) 2 24 −7 8 23 0 24

The baseline simulation conducted without prediction model is compared to a mean result of the performances of different machine-learning
regression models. Comparison is based on the number of times the GA is called (Nb GA), the runtime of the GA including predictions (GA time),
the number of time steps (N), the global simulation runtime until convergence (Total time), the time portion allocated to the GA with respect to the
total simulation time (GA Impact), the physical time of the simulation (physical Time), the number of times the TransatAT is called to evaluate the
retained solution (Nb TransAT), and the number of times the prediction model is trained for fitness prediction (Nb FP)

123

H. Ghorbel et al.

simulations is considered as a hard and time-consuming task
conducted basically using a trial-and-error approach. The
quality of the solution (number of iterations) has, however,
slightly deteriorated as the number of iterations increases by
7%. But, this hasn’t affected the physical correctness of the
solution.

Comparison is provided on the basis of the mean perfor-
mance of all tested regression models. Nevertheless, if we
compare the best results found by extra trees regressor to
the baseline, the former largely outperforms the latter for the
same reasons described above in steady cases.

5 Conclusion

As we have shown in the first part of this paper, evolutionary
and genetic approach has enhanced the performance and the
quality of parameter selection in numeric simulation in both
steady and unsteady simulation cases. We have formulated
the problem of genetic optimization using a heuristic fitness
function defined by the distance of the solution to the target,
its quality and its stability.

However, it was noticed that the calculus of such orig-
inal fitness function during simulation is a time-consuming
task. To overcome these limitations, we proposed a machine-
learning approach for estimating the fitness. The proposed
solution has significantly improved the simulation runtime
by a ratio varying between 8 and 40% according to the tested
case.

Nevertheless, the application of machine-learning tech-
niques is not free of challenges, as performance drastically
varies according to the adopted strategies for the selection of
training data and learning algorithms. The obtained results in
this project are relevant for the use cases tested here. More-
over, customized tools are provided for human operator in
order to adapt machine-learning strategies to the simulation
context. This work is now deployed and integrated in the
SarPmodule of the TransAt CFD software and currently user
exploitation by users.

Acknowledgements This work was funded by the Swiss Commission
for Technology and Innovation (CTI) Project No. 17412.1 PFIW-IW.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Alba E, Cotta C, Troya JM (1996) Type-constrained genetic pro-
gramming for rule-base definition in fuzzy logic controllers. In:
Proceedings of the 1st annual conference on genetic programming.
MIT Press

Altman NS (1992) An introduction to kernel and nearest-neighbor non-
parametric regression. Am Stat 46(3):175–185

Asouti VG, Kyriacou SA, Giannakoglou KC (2016) PCA-enhanced
metamodel-assisted evolutionary algorithms for aerodynamicopti-
mization. In:Application of surrogate-based global optimization to
aerodynamic design. Springer, pp 47–57. http://link.springer.com/
chapter/10.1007/978-3-319-21506-8_3. Accessed 14 June 2017

Barros M, Guilherme J, Horta N (2007) GA-SVM feasibility model
and optimization kernel applied to analog IC design automation.
In: Proceedings of the 17thACMGreat Lakes symposiumonVLSI
(GLSVLSI’07), 11–13 March, Stresa-Lago Maggiore, Italy

Breiman L (1996a) Stacked regressions. Mach Learn 24(1):41–64
Breiman L (1996b) Bagging predictors. Mach Learn 26(2):123–140
BrownleeAEI,Wright JA (2015)Constrained,mixed-integer andmulti-

objective optimisation of building designs byNSGA-IIwith fitness
approximation. Appl Soft Comput 33:114–126

Buche D, Schraudolph NN, Koumoutsakos P (2005) Accelerating
evolutionary algorithms with Gaussian process fitness function
models. IEEE Trans Syst Man Cybern Part C (Appl Rev)
35(2):183–194

Deb K et al (2002) A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans Evol Comput 6(2):182–197

Dragojlovica Z, Kaminskib DA (2004) A fuzzy logic algorithm for
acceleration of convergence in solving turbulent flow and heat
transfer problems.NumerHeat Transf Part BFundam Int JComput
Methodol 46(4):301–327

Fabritius B (2014) Application of genetic algorithms to problems in
computational fluid dynamics. Dissertation

Forrester AIJ, Bressloff NW, Keane AJ (2006) Optimization using
surrogate models and partially converged computational fluid
dynamics simulations. In: Proceedings of the royal society of Lon-
don A: mathematical, physical and engineering sciences, vol 462,
no 2071. The Royal Society

Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical
learning. Springer series in statistics, vol 1. Springer, New York

Gen M, Cheng R (2000) Genetic algorithms and engineering optimiza-
tion, vol 7. Wiley, Hoboken

Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees.
Mach Learn 63(1):3–42

Giannakoglou KC (2002) Design of optimal aerodynamic shapes using
stochastic optimization methods and computational intelligence.
Prog Aerosp Sci 38(1):43–76

GoldbergDE (2006)Genetic algorithms. PearsonEducation India, Lon-
don

Haupt RL, Haupt SE, Haupt SE (1998) Practical genetic algorithms,
vol 2. Wiley, New York

Huang L (2004) Optimization of blowing and suction control on
NACA0012 airfoil using genetic algorithm with diversity control.
Ph.D. thesis, University of Kentucky

Kotragouda NB (2007) Application of genetic algorithms and CFD for
flow control optimization. Dissertation

Kyriacou SA, Asouti VG, Giannakoglou KC (2014) Efficient PCA-
driven EAs and metamodel-assisted EAs, with applications in
turbomachinery. Eng Optim 46(7):895–911

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://link.springer.com/chapter/10.1007/978-3-319-21506-8_3
http://link.springer.com/chapter/10.1007/978-3-319-21506-8_3

Smart adaptive run parameterization (SArP): enhancement of user manual selection of running…

Lee ML, Takagi H (1993) Dynamic control of genetic algorithms using
fuzzy logic techniques. In: Forrest S (ed) Proceedings of the 5th
international conference ongenetic algorithms.MorganKaufmann
Publishers Inc., San Francisco, CA, USA, pp 76–83

Llor X, Sastry K, Yu T-L, Goldberg DE (2007) Do not match, inherit:
fitness surrogates for genetics-based machine learning techniques.
In: Proceedings of the 9th annual conference on genetic and evo-
lutionary computation (GECCO ’07), 07–11 July, London, UK

Marco N, Désidéri J-A, Lanteri S (1999) Multi-objective optimization
in CFD by genetic algorithms. Dissertation, INRIA

Matloff N (2017) Statistical regression and classification: from linear
models to machine learning. CRC Press, Boca Raton

Morbitzer C, Strachan P, Simpson C (2003) Application of data mining
techniques for building simulation performance prediction anal-
ysis. In: Proceedings of the 8th international IBPSA conference
Eindhoven, Netherlands, 11–14 August

Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J
Mach Learn Res 12:2825–2830

Raschka S, Mirjalili V (2017) Python machine learning. Packt Publish-
ing Ltd, Birmingham

Ross QJ (1986) Induction of decision trees. Mach Learn 1(1):81–106
Schmidt MD, Lipson H (2008) Predicting solution rank to improve

performance. In: Proceedings of the 12th annual conference on
genetic and evolutionary computation (GECCO ’10), 12–16 July,
Atlanta, GA, USA

Shirayama S (2005) The framework of a system for recommending
computational parameter choices. In: New developments in com-
putational fluid dynamics. Notes on numerical fluidmechanics and
multidisciplinary design (NNFM), vol 90, pp 186–197

Voutchkov I, Keane A (2010) Multi-objective optimization using sur-
rogates. In: Computational intelligence in optimization. Springer,
Berlin, pp 155–175

Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practi-

cal machine learning tools and techniques. Morgan Kaufmann,
Burlington

Zitzler E, LaumannsM, Thiele L (2001) SPEA2: improving the strength
Pareto evolutionary algorithm. TIK-report 103

Zvoianu AC, Bramerdorfer G, Lughofer E, Silber S, Amrhein W, Kle-
ment EP (2013) Hybridization of multi-objective evolutionary
algorithms and artificial neural networks for optimizing the perfor-
mance of electrical drives. Eng Appl Artif Intell 26(8):1781–1794

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Smart adaptive run parameterization (SArP): enhancement of user manual selection of running parameters in fluid dynamic simulations using bio-inspired and machine-learning techniques
	Abstract
	1 Introduction
	2 Related work
	2.1 Global optimization techniques: genetic and evolutionary approach
	2.2 Surrogate modeling

	3 Methodology
	3.1 Genetic algorithm
	3.1.1 GA launching conditions
	3.1.2 GA structure
	3.1.3 Genetic operations
	3.1.4 Selection
	3.1.5 Halt criteria
	3.1.6 Fitness function

	3.2 Combining genetic algorithm and machine-learning-based surrogate modeling
	3.2.1 Training corpus
	3.2.2 Training and prediction strategies
	3.2.3 Machine-learning techniques
	3.2.4 Cross-validation

	4 Comparative results
	4.1 Genetic algorithm results
	4.1.1 Steady cases
	4.1.2 Discussion
	4.1.3 Unsteady cases
	4.1.4 Discussion

	4.2 Machine-learning surrogate results
	4.2.1 Steady cases
	4.2.2 Discussion
	4.2.3 Unsteady cases
	4.2.4 Discussion

	5 Conclusion
	Acknowledgements
	References

