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ABSTRACT 
The reverse engineering methodology we developed is based on 

the reverse specification of the use-cases linked to the execution 

trace of the legacy system. Basically we aim at recovering the 

traceability links between the robustness model that represents the 

analysis of the use-case and its actual implementation classes. 

Therefore we need to be able to edit the use-cases and the 

scenarios of the system so that the environment could process this 

information together with the robustness model and the execution 

trace to recover the traceability links. We then developed a use-

case and scenario editor that is coupled to a robustness model 

editor. In this paper, we present the UML meta-model extensions 

we made to formalize the use case and scenario models. Then we 

present the techniques we developed to assure the coherence 

between both models. Next we present the way we link the use-

case and scenarios to the robustness model and present the 

Eclipse-based tool we developed. The key contributions of the 

paper are the definition of the use-cases and scenarios meta-

models, the link between the specification and analysis meta 

models and the mechanisms we developed to assure their mutual 

coherence. Finally, we present the way these models can be edited 

and processed in the context of a real tool. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 

languages, methodologies, tools. 

General Terms 
Design, Experimentation, Algorithm, Standardization. 

Keywords 
Use case formalization, software specification, use-case modeling, 

reverse engineering. 

1. INTRODUCTION 
Our work on reverse-engineering [7][8] of legacy systems is based 
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on the Unified Process (UP) [12] which is a use-case driven 

software development process whose models are designed using 

the UML. The iterative and incremental reverse-engineering 

technique we developed starts from the recovery of the use-cases 

of the system. Then with the help of the analysis models, we can 

later incrementally re-create the traceability links between the 

functional specification and the source code of the system. In 

summary, our reverse-engineering technique works through the 

following steps: 

1. Re-document the system use-cases; 

2. Design the Unified Process’ robustness (analysis) diagrams 

associated to each of the use-cases [14]; 

3. Execute the system according to the use-cases and record 

the execution trace; 

4. Analyze the execution trace and identify the classes 

involved in the trace; 

5. Map the classes in the trace to the objects of the robustness 

diagram; 

6. Re-document the architecture of the system by clustering the 

classes based on their role in the implementation of the use-

case.  

The key technique in our methodology is to link the steps of the 

scenarios to the segments of the corresponding execution trace. 

This lets us know what implementation classes are involved at 

what step. Since, by use-case analysis [14], we know what 

robustness object is involved at what step of the use-case, we can 

eventually link the implementation classes to the corresponding 

robustness objects. Figure 1 illustrates the central idea of the 

method. On the left, a use-case flow is presented with the 

robustness objects (boundary, entity and control objects 

[13][14][1][2]) associated to each step.  

 

Figure 1. Reverse engineering principle 

These represent the analysis objects involved in the realization (in 

UP parlance) of the use-case. On the left we present the 
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corresponding execution trace as a list of method calls. Since each 

method belongs to an implementation class we can link the 

robustness objects to these classes by identifying the segment of 

the trace that corresponds to the step of the use-case [7][8]. 

However, Figure 1 is actually a short cut of the method. In fact, 

we do not compare the use-case itself to the execution trace, but 

an instance of the use-case i.e. an actual scenario performed by a 

user of the system. Therefore, what we try to match with the 

execution trace are the steps of the scenario that generated the 

trace. Hence, in the reverse engineering environment we are 

building, we need to include both a use-case and scenario editor. 

Therefore we must have a clear model of how use-cases and 

scenarios depend on each other.  In the UML, the Use-Case 

Model only represents the overall view of all the use-cases of a 

system with their actors and relationships. However, the flows are 

not formally defined. Here is what we can read in the UML 

specification: “The behavior of a use case can be described by a 

specification that is some kind of Behavior [...] such as 

interactions, activities, and state machines, or by pre-conditions 

and post-conditions as well as natural language text where 

appropriate. […] Which of these techniques to use depends on the 

intended reader [...]” [17]. In this statement the “behavior” of the 

use-case is to be understood as the description of the interactions 

between the system and the actors. In this paper, we present a 

formalization of the use-case flows and use-case relationships as 

well as the formalization of use-cases instances (scenarios) as 

extensions of the UML meta-model. Moreover, since we must 

match the robustness objects to implementation classes based on 

their involvement in the step of the use-case, we must be able to 

attach some analysis objects to the steps of the use-cases. The 

corresponding meta-model will then be described next. Finally we 

present the tool we developed to edit the use-case and scenarios of 

a legacy systems to reverse-engineer and the way we can link 

them to the robustness diagram objects. 

The paper is structured as follows. Section 2 presents the 

extension of the UML use-case meta-model. Section 3 presents 

the way the scenarios are modeled and associated to the use-cases. 

In section 4, the link between the use-cases, scenarios and the 

objects of the robustness model is explained and formalized.  A 

case study is presented in section 5 together with the tool we 

developed. Section 6 presents the related work and section 7 

concludes the paper. 

2. META-MODEL 

2.1 Informal use-case structure 
First of all, it is worth mentioning that the UML specification 

doesn't define any informal, even less formal, structure for use 

case writing. Consequently different developers may use different 

ways to represent the “behavior” of the use-case. When trying to 

formalize the use-cases, the first step is therefore to choose the 

informal representation to start from. Fortunately best practices 

have emerged [4][5] that are of common use today. Then we 

based our formalization on these recommendations and tried to 

keep it as simple as possible. Following these common practices, 

the use-case attributes we kept are presented in Table 1. In the 

latter, the expression “use-case execution” is a short cut to mean: 

the execution of a scenario that conforms to the description of the 

use-case to which it belongs. Although the trigger, pre and post 

conditions are generally expressed by a natural language sentence, 

or set of sentences, there are several options for the flows. Indeed 

not all the authors have the same understanding of the way it 

should be specified. 

Table 1. Use-case attributes 

Attribute name Semantics 

Name Name of the use-case 

Trigger Action that will trigger the execution of the 

use-case 

Pre-condition System state expected before the use case 

execution begins 

Post-condition System state reached after the use case has 

been executed 

Primary actor Name of the actor who will benefit from the 

execution of the use-case 

Secondary 

actors 

Names of the actors who are involved in the 

execution of the use-case but will not get 

the benefit from it 

Main flow Sequence of interaction between the system 

and the actors representing the most 

common use-case execution 

Alternative flow Additional interactions between the system 

and the actors representing variants from, or 

errors in, the main flow 

For some, it should be expressed in a formal way like UML’s 

Activity Diagrams [15], Statecharts [21], Petri Nets or even 

formal languages. However, we do believe that use-case 

specifications should keep their natural language form, because 

this is the best way to communicate with the customers. However, 

even with the textual form there are variants. For example, some 

people advocate the use of full paragraphs of text while some 

others prefer to specify a sequential collection of numbered free 

text sentences [5] or structured sentences with limited vocabulary 

[20]. Each of these sentences represents one step in the flow [5]. 

Today, the consensus is growing around the idea of a collection of 

numbered sentences. Besides, the location of the alternative flows 

is also variable among authors. Some of them place them directly 

within the main flow with a conditional statement. Others gather 

them after the end of the main flow as a separate section of the 

use-case. The latter is the most convenient structure since this 

makes the reading of the main flow easier. Following Cockburn 

[5][6] we chose to represent the flows as separate numbered free-

text sentences (the steps) and to group the alternatives at the end 

of the use-case. Since the alternatives are separated from the main 

flow, there is some extra information to attach to each alternative. 

First, the execution condition must be specified i.e. in what 

situation would the alternative be triggered. This is generally 

represented in natural language. Second we must identify the step 

of the main flow that each alternative extends and the step of the 

main flow at which the processing will resume. Third we must 

indicate whether the alternative flow replaces the main flow step 

or complements it. Finally, there is an issue with the ending of the 

scenarios since the end of an alternative flow may mean the end of 

the scenario. This must also be indicated. In summary, our use-

case flows are structured as two sections. First we represent the 



main flow as a list of numbered steps. Second, we represent all the 

alternative flows as lists of numbered steps together with their 

extra information. For an alternative, if the step at which to 

resume the processing is not indicated, the scenario will end at the 

end of the alternative. Table 2 presents the attributes of the 

alternative flows we kept in our model. 

Table 2. Alternative flow attributes 

Attribute name Semantics 

Name Alternative flow name together with the 

trigger condition. 

Extended step Main flow step that is extended / replaced 

by the alternative flow. In case the extended 

step is not indicated, this means that the 

alternative could happen anywhere within 

the main flow (like a “cancel” event). 

Replace Boolean indicating if the alternative flow 

replaces the main flow step or extends it 

Back step Identification of the main flow step at 

which the processing must resume after the 

execution of the alternative flow. In case 

the back step is not indicated, the scenario 

will end at the end of the alternative flow. 

Flow Sequence of interaction between the system 

and the actors. 

2.2  Formalization of the use-case structure 
In this subsection we present the formalization of the use case 

flows as extensions of the UML meta model. As shown in Figure 

2, a flow is associated to a collection of Steps. The Flow class is 

abstract because each flow must be clearly typed as main or 

alternative. A step represents an elementary interaction or event. It 

contains a description (i.e. a sentence describing the correspond-

ding elementary action) and a number for the user to be able to 

identify it visually (not showed on the diagram). Following 

Cockburn’s advice [5], alternative flows do not have alternatives 

themselves. In all the models below, the darker (red) boxes are 

original classes of the UML meta model. 

 

Figure 2. Use case flows meta model 

Alternative flows are particular cases differing from the default 

behavior. The extendedStep and backStep of the alternative flow 

have been represented as directed association to the Step class. 

The cardinality of these associations are 0..1 to allow the 

modeling of alternative flows that could be triggered anytime. For 

example, this is the case of the “Cancel” event triggered by the 

user of the system. Therefore, if the extendedStep is not indicated, 

this means that the alternative can occur at any time. On the other 

hand if the backStep reference is empty, this means that the 

current scenario ends at the end of the alternative flow.  Figure 3, 

represents the Step class hierarchy. There are 4 types of steps 

categorized in 2 sub hierarchies. First, AlterableStep represents 

the events that can be executed and possibly extended by 

alternative flows. Second, NonExecutableStep represents entries 

in the use-case flow that cannot be executed. This includes labels 

and control information. ActionStep is the most common event 

which represents an action executed by an actor or the by system 

to meet the goal of the use case [5]. InclusionStep represents the 

location where the flow of an included use-case can be inserted 

(see section 2.3 below). 

GeneralizationStep is used for the modeling of use-case generali-

zation hierarchies. It defines the location at which the flows of a 

specialization use case must be inserted in the flow of a 

generalized use-case (see use-case relationship below). 

 

Figure 3. Flow step hierarchy 

Finally, LoopStep represents control information to specify step 

repetitions. This information takes place after the block of steps 

that must be repeated. Its reference to beginStep identifies the first 

step of the block that must be repeated. 

2.3 Use Case Relationships 
Beyond the specification of isolated use-cases, UML allows to 

represent use-case relationships to help with the reuse of 

specifications and to model asynchronous extension of use-cases. 

However this facility should be used with care since, according to 

Cockburn [5], a common mistake made by specification engineers 

is to invest too much time and energy to define use-cases 

relationship rather than focusing on the textual content (the 

flows). In the worst case, the end result would be a complex 

structure of use-cases linked to each other whose global meaning 

would be obscure to the customer. Nonetheless the wise use of 

use-case relationship does provide a powerful way to reduce their 

complexity by isolating parts of behavior which are performed 

only in certain circumstances [4]. Therefore we decided to support 

the use-case relationship in our meta-model. The key contribution 

here is to model exactly where in the target flow the included, 

extended or specialized use-case flows must be inserted, while 

limiting as much as possible the impact on the original UML 

metamodel. Several authors [3][11][15][20][23] acknowledged 

the need to model relationships explicitly. However none of them, 

but Zelinka at al. [23] referenced explicitly the step at which an 

insertion flow must be inserted. However, the impact on the UML 

metamodel of Zelinka’s et al. proposal is much bigger than ours. 

In fact they introduced an extra relation called FlowInclusion that 

links together a flow (set of steps), an inclusion step and an 

include relationship. However we consider this modeling 

awkward since the UML Include relationship does represent the 

inclusion flow (since it relates two use-cases that themselves have 

flows). What is needed is simply a reference from the UML’s 

Include relationship to the inclusion step, as presented in the sub 

section below. 



Inclusion relationship 
Fundamentally, the inclusion relationship allows the specification 

engineer to extract a subsequence of events that is common to 

several use-cases and to create a use-case of its own: the inclusion 

use-case (sometimes called a sub function level use case [5]). 

Then, the writing of the original use-cases will be simplified since 

the repeated subsequence will be replaced by an include statement 

[14]. The metamodel representation of the Include relationship is 

presented in Figure 4. What we added to the UML meta model is 

the association with the InclusionStep, since the concept of step is 

absent from the UML meta model.  

 

Figure 4. Addition to the UML meta model for inclusions 

InclusionStep represents the location in a flow where the set of 

steps of an inclusion use-case will be inserted (Figure 3). Such a 

step is executable since the steps of the included use-case will 

indeed be executed. The included use-case could be inserted as 

well in the main flow as in an alternative flow. The UML Include 

relationship lets us know which use-case is included. Since a use-

case flow can contain more than one inclusion step referencing 

the same included use-case, the Include relationship can be 

associated with several InclusionSteps. But each one of the latter 

must reference one and only one Include instance. The name of an 

inclusion step is composed of the keyword include followed by 

the name of the use-case to include [4][5]. For example, if a use 

case Pay an invoice requires the user to be authenticated, we 

could have the following partial flow, where Authenticate user 

represents an included use-case: 

Pay an invoice 

include “Authenticate user” 

Customer selects an invoice. 

Customer fills the amount in. 

System validates the amount. 

… 

Extension relationship 
The extension relationship (Extend) between use cases is an extra 

UML relationship that is much less used than the “include” 

relationship. Since its semantics has long been unclear, experts 

used to recommend not using it [5][18]. Since UML 2.0 however, 

this semantics has been better defined. In fact an “extension use-

case” represents some extra behavior added asynchronously to a 

target use case [17]. But the extension use-case is optional and the 

extended use-case can be delivered without the extension use-

cases. In contrast, the included use cases are not optional and 

must be delivered with the included use-case. The insertion is 

controlled by a trigger condition. During use-case execution, that 

condition is evaluated and if satisfied, the flow of the extension 

use-case is inserted in the target use-case at a specific location 

called the extension point. The latter is modeled by the 

ExtensionPoint class. The extension point owns a reference to the 

flow step after which the flow is inserted, called referenceStep. 

Once the execution of the extension use-case is completed, the 

execution is resumed just after the extension point (i.e. after the 

step referenced by the extension point) in the extended use-case 

flow [5][14]. Since the extended use-case can be delivered 

without the extensions use-cases, the definition of an extension to 

the use-case should be as little intrusive as possible. Figure 5 

presents the meta model of the Extend relationship.  

 

Figure 5. Addition to the UML meta model for extensions 

What we added to the UML meta model is the association from 

the ExtensionPoint to the Step since, again, the concept of step is 

absent from the UML meta model. It must be highlighted however 

that our interpretation of the extension relationship differs from 

the informal UML specification [17], in order to get closer to the 

original idea of Jacobson [13][14]. In the UML specification, an 

extension use-case is described as an incomplete use-case made of 

a collection of use-case fragments. Each fragment is a piece of 

behavior (set of steps). The number of fragments in an extension 

use-case must comply with the number of insertion points in the 

target use-case. When triggered, the extension use-case will insert 

each of its fragments to the corresponding insertion point of the 

target use-case. From this explanation, it is clear that extension 

use-cases are very different from the other kind of use-cases. 

Therefore, we preferred to keep a unified definition of the use-

cases for the sake of simplification. Then, an extension use-case 

has the same structure as any other use-case with a main flow and 

possibly alternative flows. Such a flow will then be inserted at 

some specific insertion point in the target use-case identified by 

the Extend relationship. The multiplicity of the ExtensionPoint 

end of the Extend-ExtensionPoint association accounts for the 

multiple locations at which a given extension use-case could be 

inserted in the target use-case. 

Generalization relationship 
The generalization relationship is even less common than the 

extension relationship. It is intended to model families of similar 

use-case whose flows only differ by a few steps [4][5]. This is the 

equivalent of the “template method” design pattern in class 

diagrams: some incomplete global behavior is specified in an 

abstract class and the specific parts to complete it will be defined 

in its specializations. Similarly the flow of a parent use-case 

(generalization) will have most of its steps defined but a few 

specialized steps to be specified in its child use-cases 

(specializations). In contrast with the inclusion relationship, the 

generalization relationship is used when most of the behavior is 

common among a set of use-cases. Jacobson called the child use 

case a concrete use case because it is complete and can be 

executed. In fact it will inherit most of its behavior (steps) from 

the parent use-case while adding a few more steps. On the 

contrary, Jacobson called the parent use case an abstract or semi-



manufactured use case because its flows are incomplete. 

Therefore the latter cannot be executed alone. Jacobson even says 

that the parent use-cases only exist to be reused [14]. Figure 6 

presents a conceptual view of the execution of a specialized use-

case, inspired from [11]. In this example, the execution starts in 

the flow of the child use-case, then goes to the parent flow (flow 

inheritance) then back to the child’s and finally ends with the 

parent flow. 

 

Figure 6. Execution flow in specialized use case 

Since the generalization relationship between use-cases is not part 

of the UML specification, we had to define the whole use-case 

generalization meta-model based on the informal advice of use-

case experts [14][5][4]. First, a generalized use-case must define 

the locations in its flows (that we called GeneralizationPoint) 

where the specialized subflows must be inserted. Second, the 

specialized use-case must define the subflows (that we called the 

SpecializationFlow) to insert at each of these locations. The child 

use case cannot exist without its parent use-case, and must define 

one subflow for each of the generalization points. In the meta-

model, the UseCase class is specialized in two subclasses, the 

MainUseCase that represents standard non-specialized use-case 

and SpecializationUseCase. A MainUseCase contains a single 

main flow. In contrast, a SpecializationUseCase contains a 

collection of SpecializationFlow, each of them representing a 

single subflow to insert at some GeneralizationPoint in the flow 

inherited from its parent.  

 

Figure 7. Generalization meta model 

This is why each SpecializationFlow is associated to a single 

GeneralizationPoint. Since the insertion mechanism is similar to 

the one of extension use-case, the GeneralizationPoint is a 

specialization of the ExtensionPoint. However, the referenceStep 

that represents the step at which an extension is inserted in some 

target use-case is replaced by the GeneralizationStep that is a non-

executable step (i.e. a label in the flow of the generalized use-

case, see Figure 3). Finally, each of the SpecializationFlow has 

the same structure as the main flow of a main use case. Especially 

it could have alternatives. This is presented in Figure 7. 

3. USE CASE INSTANCE (SCENARIO) 
During the last decade, the difference between a use case and a 

scenario was not clearly defined. Quoting Cockburn: “[...] it 

seemed no one could say what a use case was, or name the 

difference between a use case and a scenario, the basic, attractive 

idea remained: write a short, textual description of how a system 

interacts with its surroundings while performing a function of 

value to one of its users [...]” [6]. However, long ago Jacobson 

already proposed a useful analogy. The use-case is the equivalent 

of a class of behavior and the execution of a use-case represents 

an instance of the use-case [13]. In our reverse engineering 

context this distinction must be formalized and we adhere to the 

idea of Jacobson. Being an instance of a use-case, the scenario 

represents a specific path among all the possible flows of the use-

case. It is a definite sequence of steps with specific values for each 

input and output information. In Figure 8, we present the steps of 

a use-case as an directed graph. We call it the use-case graph. 

Each node represents a step and the arcs represent the possible 

transitions from a step to the next. The numbers in the nodes are 

the ones of the steps. A node whose number is composed of 2 sub 

numbers separated by a dot is part of an alternative flow. The 

main flow is presented in the central part of the graph (steps: 1; 2; 

3; 4; 5) and the alternative flows are presented around it (2.1; 2.2 

& 4.1). The multiple paths in this graph represent all the possible 

executions of the use-case (all possible scenarios). For example, 

the dotted line represents one possible scenario. It must be noted 

that the steps represented in such a graph could come from a 

single use-case or from multiple use-cases such as a parent use-

case, an inclusion use-case or an extension use-case. For example, 

in Figure 8, the steps 1, 2, 4 and 5 could come from a parent use 

case where step 3 could be defined in a child use-case.  

 

Figure 8. Execution path through use case graph 

The meta-model of a scenario is showed in Figure 9. The Scenario 

class represents an instance of a use-case i.e. a path through the 

use-case graph. This object owns a reference to the use-case it 

belongs to through the Scenario-UseCase association. A Scenario 

is also associated to a collection of ExecutionLines that represents 

the steps of the scenario. The collection is flat since a scenario 

represents one path through the use-case graph. For example, if 

the use-case flow contained a loop, the corresponding scenario 

would contain the actual repetition of steps that would correspond 

to the exact number of times the loop was repeated. Each scenario 

step (ExecutionLine) owns an association to the step of the use-

1 

2 

3 

4 

5 

2.1 

2.2 4.1 



case it corresponds to. However these two objects are not 

equivalent since a scenario step includes actual values inputted by 

the user or outputted to the screen. Besides, we need to be able to 

freeze executed scenarios at some moment in time to represent 

executed test cases linked to execution traces. In this situation we 

must decouple the scenario from the use-cases. This is yet another 

reason why ExecutionLine is separated from Step in the meta 

model and also why the cardinality of the step side of the 

association is 0..1. 

 

Figure 9. Scenario meta model 

The difference between use-case and scenario steps is illustrated 

in Figure 10. The first step of the use-case represents the inclusion 

of another use-case (Authentication). Therefore, the steps of the 

latter are located at the beginning of the scenario. Likewise, the 

loop in the use-case identified by the non-executable step: 

6.repeat from step 3 has lead to the repetition of the steps 3-5 

twice in the scenario.  

Use Case

1. Include UC 

Authentication

2. User opens RH 

management

3. User selects "add a 

new employee"

4. User enters firstname 

and lastname

5. System validates data

6. Repeat from step 3

7. User closes RH 

management                 

Scenario

1. User enters  Guest and 1234

2. System validates login and 

password

3. System opens a session

4. User opens RH management

5. User selects "add a new 

employee"

6. User enters John  and Doe

7. System validates data

8. User selects "add a new 

employee"

9. User enters Jane  and Doe

10.System validates data

11. User closes RH 

management  

Figure 10. Use case translation to scenario form 

3.1 Path synchronization 
When a scenario is edited, it stays connected to the corresponding 

use-case since its steps must conform to those of the use case. If 

the use-case is later modified, the scenario must be updated 

accordingly. In some situation an entire sub path must be 

resynchronized. This is for example the case if a scenario runs 

through an alternative flow of the use-case that is later deleted. 

The editor tool should therefore rebuild a path excluding the 

alternative, while maintaining the other editing decisions made by 

the user that are not impacted by the change of the use-case. 

Figure 11 illustrates the path resynchronization algorithm 

implanted in our editing tool.  

 

Figure 11. Two alternatives path 

The figure presents a use-case graph with an alternative flow 

(2.1), and a loop through the steps 3 and 4. The dotted line 

represents a specific scenario which goes through the alternative 

path and iterates twice on the steps 3 and 4. The sequence of steps 

in the scenario will be: (1; 2; 2.1; 4; 3; 4; 5). If the user decides to 

remove the alternative flow (node 2.1) from the use-case, the step 

must also be removed from all the scenarios. However, since the 

loop is independent from the alternative path, it must be 

maintained in the updated scenario. In this case, the recovered 

path would be: (1; 2; 3; 4; 3; 4; 5). In summary, the path 

resynchronization algorithm works the following way: 

1. Instantiate a new scenario from the main flow only. 

2. Compare each node of the new scenario to the old one in 

sequence. 

3. If  there is a difference between the nodes, there are two cases: 

a. If the old node comes from an alternative path (alternative 

flow or loop) that is still available in the use-case. Then 

the new scenario is updated to go through this alternative 

path. 

b. If the difference is due to a removed step, the algorithm 

searches the remaining nodes of the new scenario for the 

node occurring first in the old scenario. When found the 

synchronization resumes from this node on. The nodes in 

the old scenario located between the previous 

synchronization point and this new synchronization point 

are discarded. 

4. Once the entire path has been rebuilt, the old scenario is 

replaced by the new one in the editor. 

 

Figure 12. Divergence due to missing node(s) 

Figure 12 illustrates the work of the path synchronization 

algorithm. The new scenario has been instantiated and the first 

difference is detected at the third node. Since the node 2.1 has 

been removed, we are in situation 3b of the algorithm. The latter 

then searches the new scenario for the node occurring first in the 

old scenario. This search is symbolized by the arrows that link 

both scenarios. The first node is 4 (it occurs before node 3 in the 

old scenario). This is the new synchronization point. Next, there is 

a new difference between the new node 5 and the old node 3 

1 2 3 4 5 

2.1 

1 2 2.1 4 3 4 5 

1 2 3 4 5 

divergence

OLD 

NEW 

Authentication 



(Figure 13). In this case the algorithm identifies that a loop is the 

origin of the difference (situation 3a of the algorithm). 

 

Figure 13. Difference due to a loops 

Then, the new scenario goes through the loop as illustrated by the 

second arrow starting from node 4 in the second graph. From this 

point, the next nodes are the same between both scenarios and the 

algorithm ends. In summary, the algorithm has been able to 

remove a deleted node from the scenario while keeping the loop. 

4. LINK TO THE ANALYSIS MODEL 
As a quick reminder, the UP [14] as well as some other Agile 

processes such as Agile Modeling [1] and Iconix [18] advocate 

the creation of a robustness model as the result of use-case 

analysis. Such a model contains stereotypes representing the roles 

the implementation classes will play while realizing the use-case. 

There are three possible roles (stereotypes): the entity object 

representing the information processed by the use-case, the 

boundary object representing an interface to the outside of the 

system and the control object representing the “coordinator” of 

the use-case as well as the use-case specific processing 

[1][2][13][18]. A robustness model is presented on the right of 

Figure 14. During the design phase of the development process, 

the robustness model is transformed to an implementation model 

[14]. Therefore the robustness model bridges the gap between the 

informal world of the use-case specification and the formal world 

of the implementation technology [18]. It is built by analyzing 

each of the steps of the use-case using a responsibility-driven 

approach with CRC cards [22]. As a result we get the robustness 

model and a link between each robustness object and the steps in 

which they are involved. Figure 14 presents the output of such an 

analysis. On the left we present the CRC card of the control object 

“Lesson Control”. The collaboration displayed in the right column 

of the table leads to the association between the corresponding 

objects in the robustness diagram presented on the right of the 

figure. In forward system engineering, traceability links can be 

maintained between the implementation classes and the 

corresponding robustness objects. These links allow identifying 

quickly the roles of the implementation classes in the system. This 

greatly helps software understanding. This is exactly why we 

believe the robustness model to be fundamental in reverse 

engineering. By recreating the links between the implementation 

classes and the analysis objects, we could greatly help the 

maintenance engineer with software understanding. In fact, the 

latter is known to account for 40-60% of the maintenance effort. 

Our reverse engineering set of tools will be able to recreate the 

traceability links between the robustness model objects and the 

implementation classes, based on the execution trace that 

correspond to the steps of the scenarios. Therefore, our 

environment must support use-cases, scenarios and robustness 

diagrams editing. 

                

Figure 14.  CRC cards and robustness model 

Once a use-case is analyzed, the next step is to specify what 

robustness object is involved at what step of the use-case and 

when these objects collaborate. This information is then attached 

to each of the steps of the use-case. Our meta model must 

therefore allow this information to be explicitly represented. The 

Step-Class association identifies which robustness objects are 

associated to what Step of a use-case flow. The different kinds of 

robustness objects are represented as specialization of the UML 

Class meta class. This is illustrated in Figure 15. 

  

Figure 15. Robustness elements linking 

The Association class represents a relationship like in a normal 

UML class diagram. The Step-Association association represents 

the link from a Step to the collaborations between the robustness 

objects that are carried out during this step. 

 

Figure 16. Enhanced scenario meta model 

Finally, since the scenarios are derived from the use-cases, their 

steps must reference the same robustness objects and robustness 

objects collaboration as the corresponding steps of the use-cases. 

The extended meta model for scenarios is presented in Figure 16 

where the ExecutionLine is associated to some Classes and 

Associations like the use-case Step from which it is derived. 

5. CASE STUDY AND TOOL 
Our use-case and scenario editor has been developed as an Eclipse 

plug-in that is based on two projects of the Eclipse foundation: 

the Eclipse Modeling Framework (EMF) [9] and the Graphical 

Modeling Framework (GMF) [10]. EMF is a Java based 
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implementation of the Meta-Object Facility (MOF) specification 

[16]. MOF is a meta-meta-model describing UML. The Eclipse 

community provides an implementation of the UML notation 

using EMF. What we did is to extend the corresponding API to 

integrate our formalization of the use case flows and scenarios. 

Figure 17, 19 and 20 present some of the screens of our tool.  

 

Figure 17. Use case editing tool 

The user interface proposes two diagram editors (Figure 17), one 

to edit the robustness diagrams and the other to edit the use-case 

model.  The latter is linked to two extra Eclipse views to display 

the steps of the use-cases and the steps of the scenarios. They are 

located at the bottom of Figure 17. The use case model for the 

case study, a DVD rental kiosk, is presented in Figure 18. There is 

only one actor, Customer, which is the primary actor of all of the 

use cases. The main use case is Use automated DVD rental kiosk 

which is a generalized use case, specialized by three child use-

cases: Refill card, Return a movie, Rent a movie. Any operation 

with the automaton requires the user to be authenticated. This is 

why the parent use-case includes the Authentication use case. 

Since the parent use case cannot be executed alone it is abstract 

(name in italics).  

 

Figure 18. DVD rental kiosk 

To edit the flow of a use-case we need to select it in the use-case 

model view. Then its flow is displayed in the editing view as 

illustrated in Figure 19. This view is split in two columns: the left 

column shows the flows of the use cases: the main flow, the 

specialization flow or the alternative flow. The right column 

shows the sequence of steps corresponding to the flow selected on 

the left. In the figure we displayed the main flow steps of the use 

case Authentication (see Main Flow selected on the left). The 

editor allows variables to be inserted in the steps so that actual 

values could be entered in the corresponding scenario (use-case 

instance) steps. The variables are identified with the <%......%> 

syntax. Finally the editor lets the user map robustness objects to 

the step. As we can see, the first step references two robustness 

objects: Automate Control and Login Screen. These are the 

objects which are involved in this step. In the left column we see 

that step number 2 has two possible alternatives listed below it: 

first, a wrong secret code is entered, second the user entered a 

wrong code for three times. 

 

Figure 19. Use case editing view 

When the edition of the use cases is completed, a scenario can be 

edited as illustrated in Figure 20. In this figure the scenario 

belongs to the use case Rent a movie. Depending on the flows we 

select using a contextual menu (see Figure 20) the corresponding 

steps are added to the scenario. Moreover, if some step of the use 

case involves the inclusion of a use-case, the steps of the latter are 

automatically added to the scenario. This can be observed in the 



figure where the steps of the Authentication use-case were 

automatically inserted. Finally the values of the variables in the 

steps are filled either by the user, such as the secret code, or by 

the system such as the name of the primary actor. When there are 

alternative paths available for a step, the user can select one from 

the contextual menu that displays the possible alternative as 

showed in the figure.  The same idea applies to the specification 

of the repetition for the loops. 

 

Figure 20. Scenario view 

6. RELATED WORK 
In the literature, we found the meta models of Somé [20] and 

Hoffmann  et al. [11] to be the most elaborated. This is why we 

spend more time detailing their proposal than the others. Somé 

[20] concentrates on the modeling of the textual description of the 

use-case i.e. the description of the interactions between system 

and actors. In this work, the “behavior” is represented by a 

specialization of the UML metaclass Behavior which owns two 

specializations: NormalDescription that represents what he calls 

the “traditional use-case” and ExtendDescription to represent 

extension use-case. This distinction is necessary since Somé wants 

to closely follow the UML definition of extension use-case as sets 

of chunks of behavior, each chunk corresponding to an extension 

point of the target use-case. Therefore, the interactions are not 

modeled the same in both kind of use-cases. For 

NormalDescription, the interactions are represented as a 

collection of steps. Indeed, it owns a link to the StepSequence 

class which itself is associated to a collection of Step. The 

modeling of NormalDescription bears therefore some similarity 

with our own modeling. However, as explained above, we chose 

to stick to the definition of the extension use-cases as proposed by 

Jacobson, rather than adopting the UML’s. This is why our work 

differs from the one of Somé. In our work, extended use-cases are 

full featured use-cases. In Somé’s work, ExtendDescription is 

associated to a set of Fragments that are themselves associated to 

one StepSequence class which owns a collection of  Steps. There 

must be as many fragments in an ExtendDescription as 

ExtensionPoint in the extended use-case. Finally, Somé does not 

model the scenarios nor the generalization relationship among 

use-cases. Hoffman et al. [11] called the textual specification of 

the behavior the NarrativeDescription since it is narrative in 

essence. NarrativeDescription has an association to the class 

Flow which itself is a collection of Event. Events are of two kinds: 

Action and ContextSwitch. The first represents an executable step, 

for example a user interaction with the system, while the second is 

a way to model the composition of flows i.e. the “spots in a flow 

where behavior of another flow can or must be inserted” [11]. 

ContextSwitch is further specialized in Inclusion and 

ExtensionAnchor. Both of them are further specialized in two 

classes to account for the internal or external source of flow to be 

inserted. However, the idea of ExtensionAnchor seems redundant 

with the ExtensionPoint of the UML meta model. Besides, 

Hoffman introduced a sophisticated concept to model the 

triggering and insertion conditions of a flow in another flow: the 

Context, which is associated to a flow. In particular, the latter is 

specialized as InclusionContext and ExtensionContext. These are 

associated to the corresponding specialization of ContextSwitch to 

model where the flows are inserted. But Hoffmann does not model 

the generalization relationship among use-cases. Although his 

formalization has its own merits it is very far from the original 

UML meta model. Moreover, the relationship of the Hoffman’s 

model to the UML meta model is unclear to us since the many 

new concepts introduced in this work seem sometimes redundant 

with what is already represented in the UML meta model. In 

contrast our approach is to comply as much as possible with the 

UML meta model. Therefore the models of Hoffman at al. and 

ours are barely comparable. The work of Zelinka at al. [23] is 

much closer to ours since they explicitly modeled the Flow, the 

flow Step and reused these concepts to show where in a flow the 

insertion or extension flows must be inserted. However, the 

impact on the UML meta model of Zelinka’s proposal is much 

bigger than ours. In fact they introduced two extra relations 

FlowInclusion and FlowExtension that link together a Flow i.e. a 

set of steps, an inclusion (extension step) and the Include (Extend) 

relationship. However we consider this modeling awkward since 

the UML Include (Extend) relationships do represent the inclusion 

(extension) flow since they relate two use-cases that themselves 

have flows. Finally Zelinka’s work does not model the 

Generalization relationship nor the concept of a scenario.  

Nakatani et al. have taken another perspective, that of modeling 

the use-case behavior as activity diagrams [15]. Although their 

approaches include the definition of many perspectives under 

which the use-case can be modeled, we will only comment on the 

activity perspective since this is the way the behavior is defined. 

Under this perspective, the proposed meta model merges the 

Activity and Use Case UML meta model. However, the link 

between the Include or Extend UML relationships and their 

activity diagram’s counterpart is not formally defined. Moreover 

they introduced the concept of Composite Use Case as a 

specialization of the UML’s Use Case class without further 

explanation on the role of this class and especially its relationship 

to the Include or Extend relations. In parallel they defined the 

Composite Activity as a Specialization of the Activity class. We 

suspect this new class to be somewhat related to the Composite 

Use Case class, but this is not explained. All in all, many new 

elements have been defined in Nakatani’s meta model whose 

theoretical justification is not given. Again, we suspect many of 

these new concepts to be redundant or in conflict with what is 

already modeled in the UML meta model. But this is hard to tell 

considering the scarce explanation provided on the model. The 



model proposed by Bragança and Machado [3] concentrates on 

the precise definition of the inclusion and extension points. As for 

the definition of the behavior, they rely on the Activity concept of 

UML. Therefore, inclusion and extension points refer to activities 

to identify the location where the new behavior should be 

inserted. But, as explained in the introduction, the way UML 

models the behavior of use-cases  is not very detailed. As a 

consequence there does not seem to be any difference between 

alternative flows modeled “inside” a use-case and the Extension 

use-case. Bragança and Machado seem to have mixed both 

concepts. Like in the other articles reviewed, they do not model 

the generalization relationship nor the scenario. Finally, Rui and 

Butler [19] present an early work on the definition of flows in 

use-cases. In fact, the behavior of use-cases is defined as Episodes 

themselves made of Events that are further specialized in 

Stimulus, Response and Action. But this work does not formally 

define the include, extend and generalization relationships, nor 

the concept of alternative flow. However, the Episode class has a 

“consist-of” dependence to itself that we suspect could represent 

some composition constraint between Episodes. Finally the 

concept of scenario is not modeled in [19] either.  

7. CONCLUSION 
The key contribution of this paper is a precise yet simple 

modeling of all the relationship between the use-cases with 

minimal impact on the standard UML meta model. In particular, 

we modeled the Generalization relationship that we did not find 

anywhere else. Moreover we precisely defined the difference 

between use cases and scenarios and included the latter in the 

meta model. This seems to be unique to our work.  Then we 

showed how the meta model can be extended to account for the 

association between the flow steps and the elements of the 

robustness diagram. This is the first time the UML specification 

and analysis models are formally linked together. From this 

background, we are building a reverse engineering environment 

were the traceability links between the source code and the use-

cases can be reconstructed. Finally we presented our use-case and 

scenario editing tool that is built on top of the proposed meta 

model. In fact, we relied on EMF /GMF to actually generate the 

Eclipse editors from our meta models. This represents the ultimate 

check for meta model completeness. This guarantees that the meta 

model complies with all the needed modeling requirements and 

constraints. The next step in this project is to implement an 

inference engine to exploit the use-case and analysis model’s 

information to automate the reconstruction of the traceability links 

between the source code and the specifications. The current work 

deals with the definition and implementation of the inference rules 

and approximate reasoning technique to let us model the source-

code to analysis model mapping heuristics. 
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