
Use-Case and Scenario Metamodeling for Automated

Processing in a Reverse Engineering Tool

Julien REPOND, Philippe DUGERDIL
Dept. of Information Systems

HEG - Univ. of Applied Sciences
7 route de Drize, CH-1227 Geneva, Switzerland

+41 22 388 17 00

julien.repond@hesge.ch
philippe.dugerdil@hesge.ch

Pietro DESCOMBES
HORTIS GRC SA

12 avenue des Morgines CH-1213 Geneva,
Switzerland

+41 22 860 84 60

pietro.descombes@hortis.ch

ABSTRACT
The reverse engineering methodology we developed is based on

the reverse specification of the use-cases linked to the execution

trace of the legacy system. Basically we aim at recovering the

traceability links between the robustness model that represents the

analysis of the use-case and its actual implementation classes.

Therefore we need to be able to edit the use-cases and the

scenarios of the system so that the environment could process this

information together with the robustness model and the execution

trace to recover the traceability links. We then developed a use-

case and scenario editor that is coupled to a robustness model

editor. In this paper, we present the UML meta-model extensions

we made to formalize the use case and scenario models. Then we

present the techniques we developed to assure the coherence

between both models. Next we present the way we link the use-

case and scenarios to the robustness model and present the

Eclipse-based tool we developed. The key contributions of the

paper are the definition of the use-cases and scenarios meta-

models, the link between the specification and analysis meta

models and the mechanisms we developed to assure their mutual

coherence. Finally, we present the way these models can be edited

and processed in the context of a real tool.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –

languages, methodologies, tools.

General Terms
Design, Experimentation, Algorithm, Standardization.

Keywords
Use case formalization, software specification, use-case modeling,

reverse engineering.

1. INTRODUCTION
Our work on reverse-engineering [7][8] of legacy systems is based

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ISEC '11, February 23-27, 2011 Thiruvananthapuram, Kerala, India.

Copyright © 2011 ACM 978-1-4503-0559-4/11/02 ... $10.00.

on the Unified Process (UP) [12] which is a use-case driven

software development process whose models are designed using

the UML. The iterative and incremental reverse-engineering

technique we developed starts from the recovery of the use-cases

of the system. Then with the help of the analysis models, we can

later incrementally re-create the traceability links between the

functional specification and the source code of the system. In

summary, our reverse-engineering technique works through the

following steps:

1. Re-document the system use-cases;

2. Design the Unified Process’ robustness (analysis) diagrams

associated to each of the use-cases [14];

3. Execute the system according to the use-cases and record

the execution trace;

4. Analyze the execution trace and identify the classes

involved in the trace;

5. Map the classes in the trace to the objects of the robustness

diagram;

6. Re-document the architecture of the system by clustering the

classes based on their role in the implementation of the use-

case.

The key technique in our methodology is to link the steps of the

scenarios to the segments of the corresponding execution trace.

This lets us know what implementation classes are involved at

what step. Since, by use-case analysis [14], we know what

robustness object is involved at what step of the use-case, we can

eventually link the implementation classes to the corresponding

robustness objects. Figure 1 illustrates the central idea of the

method. On the left, a use-case flow is presented with the

robustness objects (boundary, entity and control objects

[13][14][1][2]) associated to each step.

Figure 1. Reverse engineering principle

These represent the analysis objects involved in the realization (in

UP parlance) of the use-case. On the left we present the

dossantosgw
Texte tapé à la machine
Published in Proceedings of the 4th India Software Engineering Conference (ISEC '11). ACM, New York, NY, USA, 135-144. DOI=10.1145/1953355.1953375 http://doi.acm.org/10.1145/1953355.1953375

dossantosgw
Texte tapé à la machine

corresponding execution trace as a list of method calls. Since each

method belongs to an implementation class we can link the

robustness objects to these classes by identifying the segment of

the trace that corresponds to the step of the use-case [7][8].

However, Figure 1 is actually a short cut of the method. In fact,

we do not compare the use-case itself to the execution trace, but

an instance of the use-case i.e. an actual scenario performed by a

user of the system. Therefore, what we try to match with the

execution trace are the steps of the scenario that generated the

trace. Hence, in the reverse engineering environment we are

building, we need to include both a use-case and scenario editor.

Therefore we must have a clear model of how use-cases and

scenarios depend on each other. In the UML, the Use-Case

Model only represents the overall view of all the use-cases of a

system with their actors and relationships. However, the flows are

not formally defined. Here is what we can read in the UML

specification: “The behavior of a use case can be described by a

specification that is some kind of Behavior [...] such as

interactions, activities, and state machines, or by pre-conditions

and post-conditions as well as natural language text where

appropriate. […] Which of these techniques to use depends on the

intended reader [...]” [17]. In this statement the “behavior” of the

use-case is to be understood as the description of the interactions

between the system and the actors. In this paper, we present a

formalization of the use-case flows and use-case relationships as

well as the formalization of use-cases instances (scenarios) as

extensions of the UML meta-model. Moreover, since we must

match the robustness objects to implementation classes based on

their involvement in the step of the use-case, we must be able to

attach some analysis objects to the steps of the use-cases. The

corresponding meta-model will then be described next. Finally we

present the tool we developed to edit the use-case and scenarios of

a legacy systems to reverse-engineer and the way we can link

them to the robustness diagram objects.

The paper is structured as follows. Section 2 presents the

extension of the UML use-case meta-model. Section 3 presents

the way the scenarios are modeled and associated to the use-cases.

In section 4, the link between the use-cases, scenarios and the

objects of the robustness model is explained and formalized. A

case study is presented in section 5 together with the tool we

developed. Section 6 presents the related work and section 7

concludes the paper.

2. META-MODEL

2.1 Informal use-case structure
First of all, it is worth mentioning that the UML specification

doesn't define any informal, even less formal, structure for use

case writing. Consequently different developers may use different

ways to represent the “behavior” of the use-case. When trying to

formalize the use-cases, the first step is therefore to choose the

informal representation to start from. Fortunately best practices

have emerged [4][5] that are of common use today. Then we

based our formalization on these recommendations and tried to

keep it as simple as possible. Following these common practices,

the use-case attributes we kept are presented in Table 1. In the

latter, the expression “use-case execution” is a short cut to mean:

the execution of a scenario that conforms to the description of the

use-case to which it belongs. Although the trigger, pre and post

conditions are generally expressed by a natural language sentence,

or set of sentences, there are several options for the flows. Indeed

not all the authors have the same understanding of the way it

should be specified.

Table 1. Use-case attributes

Attribute name Semantics

Name Name of the use-case

Trigger Action that will trigger the execution of the

use-case

Pre-condition System state expected before the use case

execution begins

Post-condition System state reached after the use case has

been executed

Primary actor Name of the actor who will benefit from the

execution of the use-case

Secondary

actors

Names of the actors who are involved in the

execution of the use-case but will not get

the benefit from it

Main flow Sequence of interaction between the system

and the actors representing the most

common use-case execution

Alternative flow Additional interactions between the system

and the actors representing variants from, or

errors in, the main flow

For some, it should be expressed in a formal way like UML’s

Activity Diagrams [15], Statecharts [21], Petri Nets or even

formal languages. However, we do believe that use-case

specifications should keep their natural language form, because

this is the best way to communicate with the customers. However,

even with the textual form there are variants. For example, some

people advocate the use of full paragraphs of text while some

others prefer to specify a sequential collection of numbered free

text sentences [5] or structured sentences with limited vocabulary

[20]. Each of these sentences represents one step in the flow [5].

Today, the consensus is growing around the idea of a collection of

numbered sentences. Besides, the location of the alternative flows

is also variable among authors. Some of them place them directly

within the main flow with a conditional statement. Others gather

them after the end of the main flow as a separate section of the

use-case. The latter is the most convenient structure since this

makes the reading of the main flow easier. Following Cockburn

[5][6] we chose to represent the flows as separate numbered free-

text sentences (the steps) and to group the alternatives at the end

of the use-case. Since the alternatives are separated from the main

flow, there is some extra information to attach to each alternative.

First, the execution condition must be specified i.e. in what

situation would the alternative be triggered. This is generally

represented in natural language. Second we must identify the step

of the main flow that each alternative extends and the step of the

main flow at which the processing will resume. Third we must

indicate whether the alternative flow replaces the main flow step

or complements it. Finally, there is an issue with the ending of the

scenarios since the end of an alternative flow may mean the end of

the scenario. This must also be indicated. In summary, our use-

case flows are structured as two sections. First we represent the

main flow as a list of numbered steps. Second, we represent all the

alternative flows as lists of numbered steps together with their

extra information. For an alternative, if the step at which to

resume the processing is not indicated, the scenario will end at the

end of the alternative. Table 2 presents the attributes of the

alternative flows we kept in our model.

Table 2. Alternative flow attributes

Attribute name Semantics

Name Alternative flow name together with the

trigger condition.

Extended step Main flow step that is extended / replaced

by the alternative flow. In case the extended

step is not indicated, this means that the

alternative could happen anywhere within

the main flow (like a “cancel” event).

Replace Boolean indicating if the alternative flow

replaces the main flow step or extends it

Back step Identification of the main flow step at

which the processing must resume after the

execution of the alternative flow. In case

the back step is not indicated, the scenario

will end at the end of the alternative flow.

Flow Sequence of interaction between the system

and the actors.

2.2 Formalization of the use-case structure
In this subsection we present the formalization of the use case

flows as extensions of the UML meta model. As shown in Figure

2, a flow is associated to a collection of Steps. The Flow class is

abstract because each flow must be clearly typed as main or

alternative. A step represents an elementary interaction or event. It

contains a description (i.e. a sentence describing the correspond-

ding elementary action) and a number for the user to be able to

identify it visually (not showed on the diagram). Following

Cockburn’s advice [5], alternative flows do not have alternatives

themselves. In all the models below, the darker (red) boxes are

original classes of the UML meta model.

Figure 2. Use case flows meta model

Alternative flows are particular cases differing from the default

behavior. The extendedStep and backStep of the alternative flow

have been represented as directed association to the Step class.

The cardinality of these associations are 0..1 to allow the

modeling of alternative flows that could be triggered anytime. For

example, this is the case of the “Cancel” event triggered by the

user of the system. Therefore, if the extendedStep is not indicated,

this means that the alternative can occur at any time. On the other

hand if the backStep reference is empty, this means that the

current scenario ends at the end of the alternative flow. Figure 3,

represents the Step class hierarchy. There are 4 types of steps

categorized in 2 sub hierarchies. First, AlterableStep represents

the events that can be executed and possibly extended by

alternative flows. Second, NonExecutableStep represents entries

in the use-case flow that cannot be executed. This includes labels

and control information. ActionStep is the most common event

which represents an action executed by an actor or the by system

to meet the goal of the use case [5]. InclusionStep represents the

location where the flow of an included use-case can be inserted

(see section 2.3 below).

GeneralizationStep is used for the modeling of use-case generali-

zation hierarchies. It defines the location at which the flows of a

specialization use case must be inserted in the flow of a

generalized use-case (see use-case relationship below).

Figure 3. Flow step hierarchy

Finally, LoopStep represents control information to specify step

repetitions. This information takes place after the block of steps

that must be repeated. Its reference to beginStep identifies the first

step of the block that must be repeated.

2.3 Use Case Relationships
Beyond the specification of isolated use-cases, UML allows to

represent use-case relationships to help with the reuse of

specifications and to model asynchronous extension of use-cases.

However this facility should be used with care since, according to

Cockburn [5], a common mistake made by specification engineers

is to invest too much time and energy to define use-cases

relationship rather than focusing on the textual content (the

flows). In the worst case, the end result would be a complex

structure of use-cases linked to each other whose global meaning

would be obscure to the customer. Nonetheless the wise use of

use-case relationship does provide a powerful way to reduce their

complexity by isolating parts of behavior which are performed

only in certain circumstances [4]. Therefore we decided to support

the use-case relationship in our meta-model. The key contribution

here is to model exactly where in the target flow the included,

extended or specialized use-case flows must be inserted, while

limiting as much as possible the impact on the original UML

metamodel. Several authors [3][11][15][20][23] acknowledged

the need to model relationships explicitly. However none of them,

but Zelinka at al. [23] referenced explicitly the step at which an

insertion flow must be inserted. However, the impact on the UML

metamodel of Zelinka’s et al. proposal is much bigger than ours.

In fact they introduced an extra relation called FlowInclusion that

links together a flow (set of steps), an inclusion step and an

include relationship. However we consider this modeling

awkward since the UML Include relationship does represent the

inclusion flow (since it relates two use-cases that themselves have

flows). What is needed is simply a reference from the UML’s

Include relationship to the inclusion step, as presented in the sub

section below.

Inclusion relationship
Fundamentally, the inclusion relationship allows the specification

engineer to extract a subsequence of events that is common to

several use-cases and to create a use-case of its own: the inclusion

use-case (sometimes called a sub function level use case [5]).

Then, the writing of the original use-cases will be simplified since

the repeated subsequence will be replaced by an include statement

[14]. The metamodel representation of the Include relationship is

presented in Figure 4. What we added to the UML meta model is

the association with the InclusionStep, since the concept of step is

absent from the UML meta model.

Figure 4. Addition to the UML meta model for inclusions

InclusionStep represents the location in a flow where the set of

steps of an inclusion use-case will be inserted (Figure 3). Such a

step is executable since the steps of the included use-case will

indeed be executed. The included use-case could be inserted as

well in the main flow as in an alternative flow. The UML Include

relationship lets us know which use-case is included. Since a use-

case flow can contain more than one inclusion step referencing

the same included use-case, the Include relationship can be

associated with several InclusionSteps. But each one of the latter

must reference one and only one Include instance. The name of an

inclusion step is composed of the keyword include followed by

the name of the use-case to include [4][5]. For example, if a use

case Pay an invoice requires the user to be authenticated, we

could have the following partial flow, where Authenticate user

represents an included use-case:

Pay an invoice

include “Authenticate user”

Customer selects an invoice.

Customer fills the amount in.

System validates the amount.

…

Extension relationship
The extension relationship (Extend) between use cases is an extra

UML relationship that is much less used than the “include”

relationship. Since its semantics has long been unclear, experts

used to recommend not using it [5][18]. Since UML 2.0 however,

this semantics has been better defined. In fact an “extension use-

case” represents some extra behavior added asynchronously to a

target use case [17]. But the extension use-case is optional and the

extended use-case can be delivered without the extension use-

cases. In contrast, the included use cases are not optional and

must be delivered with the included use-case. The insertion is

controlled by a trigger condition. During use-case execution, that

condition is evaluated and if satisfied, the flow of the extension

use-case is inserted in the target use-case at a specific location

called the extension point. The latter is modeled by the

ExtensionPoint class. The extension point owns a reference to the

flow step after which the flow is inserted, called referenceStep.

Once the execution of the extension use-case is completed, the

execution is resumed just after the extension point (i.e. after the

step referenced by the extension point) in the extended use-case

flow [5][14]. Since the extended use-case can be delivered

without the extensions use-cases, the definition of an extension to

the use-case should be as little intrusive as possible. Figure 5

presents the meta model of the Extend relationship.

Figure 5. Addition to the UML meta model for extensions

What we added to the UML meta model is the association from

the ExtensionPoint to the Step since, again, the concept of step is

absent from the UML meta model. It must be highlighted however

that our interpretation of the extension relationship differs from

the informal UML specification [17], in order to get closer to the

original idea of Jacobson [13][14]. In the UML specification, an

extension use-case is described as an incomplete use-case made of

a collection of use-case fragments. Each fragment is a piece of

behavior (set of steps). The number of fragments in an extension

use-case must comply with the number of insertion points in the

target use-case. When triggered, the extension use-case will insert

each of its fragments to the corresponding insertion point of the

target use-case. From this explanation, it is clear that extension

use-cases are very different from the other kind of use-cases.

Therefore, we preferred to keep a unified definition of the use-

cases for the sake of simplification. Then, an extension use-case

has the same structure as any other use-case with a main flow and

possibly alternative flows. Such a flow will then be inserted at

some specific insertion point in the target use-case identified by

the Extend relationship. The multiplicity of the ExtensionPoint

end of the Extend-ExtensionPoint association accounts for the

multiple locations at which a given extension use-case could be

inserted in the target use-case.

Generalization relationship
The generalization relationship is even less common than the

extension relationship. It is intended to model families of similar

use-case whose flows only differ by a few steps [4][5]. This is the

equivalent of the “template method” design pattern in class

diagrams: some incomplete global behavior is specified in an

abstract class and the specific parts to complete it will be defined

in its specializations. Similarly the flow of a parent use-case

(generalization) will have most of its steps defined but a few

specialized steps to be specified in its child use-cases

(specializations). In contrast with the inclusion relationship, the

generalization relationship is used when most of the behavior is

common among a set of use-cases. Jacobson called the child use

case a concrete use case because it is complete and can be

executed. In fact it will inherit most of its behavior (steps) from

the parent use-case while adding a few more steps. On the

contrary, Jacobson called the parent use case an abstract or semi-

manufactured use case because its flows are incomplete.

Therefore the latter cannot be executed alone. Jacobson even says

that the parent use-cases only exist to be reused [14]. Figure 6

presents a conceptual view of the execution of a specialized use-

case, inspired from [11]. In this example, the execution starts in

the flow of the child use-case, then goes to the parent flow (flow

inheritance) then back to the child’s and finally ends with the

parent flow.

Figure 6. Execution flow in specialized use case

Since the generalization relationship between use-cases is not part

of the UML specification, we had to define the whole use-case

generalization meta-model based on the informal advice of use-

case experts [14][5][4]. First, a generalized use-case must define

the locations in its flows (that we called GeneralizationPoint)

where the specialized subflows must be inserted. Second, the

specialized use-case must define the subflows (that we called the

SpecializationFlow) to insert at each of these locations. The child

use case cannot exist without its parent use-case, and must define

one subflow for each of the generalization points. In the meta-

model, the UseCase class is specialized in two subclasses, the

MainUseCase that represents standard non-specialized use-case

and SpecializationUseCase. A MainUseCase contains a single

main flow. In contrast, a SpecializationUseCase contains a

collection of SpecializationFlow, each of them representing a

single subflow to insert at some GeneralizationPoint in the flow

inherited from its parent.

Figure 7. Generalization meta model

This is why each SpecializationFlow is associated to a single

GeneralizationPoint. Since the insertion mechanism is similar to

the one of extension use-case, the GeneralizationPoint is a

specialization of the ExtensionPoint. However, the referenceStep

that represents the step at which an extension is inserted in some

target use-case is replaced by the GeneralizationStep that is a non-

executable step (i.e. a label in the flow of the generalized use-

case, see Figure 3). Finally, each of the SpecializationFlow has

the same structure as the main flow of a main use case. Especially

it could have alternatives. This is presented in Figure 7.

3. USE CASE INSTANCE (SCENARIO)
During the last decade, the difference between a use case and a

scenario was not clearly defined. Quoting Cockburn: “[...] it

seemed no one could say what a use case was, or name the

difference between a use case and a scenario, the basic, attractive

idea remained: write a short, textual description of how a system

interacts with its surroundings while performing a function of

value to one of its users [...]” [6]. However, long ago Jacobson

already proposed a useful analogy. The use-case is the equivalent

of a class of behavior and the execution of a use-case represents

an instance of the use-case [13]. In our reverse engineering

context this distinction must be formalized and we adhere to the

idea of Jacobson. Being an instance of a use-case, the scenario

represents a specific path among all the possible flows of the use-

case. It is a definite sequence of steps with specific values for each

input and output information. In Figure 8, we present the steps of

a use-case as an directed graph. We call it the use-case graph.

Each node represents a step and the arcs represent the possible

transitions from a step to the next. The numbers in the nodes are

the ones of the steps. A node whose number is composed of 2 sub

numbers separated by a dot is part of an alternative flow. The

main flow is presented in the central part of the graph (steps: 1; 2;

3; 4; 5) and the alternative flows are presented around it (2.1; 2.2

& 4.1). The multiple paths in this graph represent all the possible

executions of the use-case (all possible scenarios). For example,

the dotted line represents one possible scenario. It must be noted

that the steps represented in such a graph could come from a

single use-case or from multiple use-cases such as a parent use-

case, an inclusion use-case or an extension use-case. For example,

in Figure 8, the steps 1, 2, 4 and 5 could come from a parent use

case where step 3 could be defined in a child use-case.

Figure 8. Execution path through use case graph

The meta-model of a scenario is showed in Figure 9. The Scenario

class represents an instance of a use-case i.e. a path through the

use-case graph. This object owns a reference to the use-case it

belongs to through the Scenario-UseCase association. A Scenario

is also associated to a collection of ExecutionLines that represents

the steps of the scenario. The collection is flat since a scenario

represents one path through the use-case graph. For example, if

the use-case flow contained a loop, the corresponding scenario

would contain the actual repetition of steps that would correspond

to the exact number of times the loop was repeated. Each scenario

step (ExecutionLine) owns an association to the step of the use-

1

2

3

4

5

2.1

2.2 4.1

case it corresponds to. However these two objects are not

equivalent since a scenario step includes actual values inputted by

the user or outputted to the screen. Besides, we need to be able to

freeze executed scenarios at some moment in time to represent

executed test cases linked to execution traces. In this situation we

must decouple the scenario from the use-cases. This is yet another

reason why ExecutionLine is separated from Step in the meta

model and also why the cardinality of the step side of the

association is 0..1.

Figure 9. Scenario meta model

The difference between use-case and scenario steps is illustrated

in Figure 10. The first step of the use-case represents the inclusion

of another use-case (Authentication). Therefore, the steps of the

latter are located at the beginning of the scenario. Likewise, the

loop in the use-case identified by the non-executable step:

6.repeat from step 3 has lead to the repetition of the steps 3-5

twice in the scenario.

Use Case

1. Include UC

Authentication

2. User opens RH

management

3. User selects "add a

new employee"

4. User enters firstname

and lastname

5. System validates data

6. Repeat from step 3

7. User closes RH

management

Scenario

1. User enters Guest and 1234

2. System validates login and

password

3. System opens a session

4. User opens RH management

5. User selects "add a new

employee"

6. User enters John and Doe

7. System validates data

8. User selects "add a new

employee"

9. User enters Jane and Doe

10.System validates data

11. User closes RH

management

Figure 10. Use case translation to scenario form

3.1 Path synchronization
When a scenario is edited, it stays connected to the corresponding

use-case since its steps must conform to those of the use case. If

the use-case is later modified, the scenario must be updated

accordingly. In some situation an entire sub path must be

resynchronized. This is for example the case if a scenario runs

through an alternative flow of the use-case that is later deleted.

The editor tool should therefore rebuild a path excluding the

alternative, while maintaining the other editing decisions made by

the user that are not impacted by the change of the use-case.

Figure 11 illustrates the path resynchronization algorithm

implanted in our editing tool.

Figure 11. Two alternatives path

The figure presents a use-case graph with an alternative flow

(2.1), and a loop through the steps 3 and 4. The dotted line

represents a specific scenario which goes through the alternative

path and iterates twice on the steps 3 and 4. The sequence of steps

in the scenario will be: (1; 2; 2.1; 4; 3; 4; 5). If the user decides to

remove the alternative flow (node 2.1) from the use-case, the step

must also be removed from all the scenarios. However, since the

loop is independent from the alternative path, it must be

maintained in the updated scenario. In this case, the recovered

path would be: (1; 2; 3; 4; 3; 4; 5). In summary, the path

resynchronization algorithm works the following way:

1. Instantiate a new scenario from the main flow only.

2. Compare each node of the new scenario to the old one in

sequence.

3. If there is a difference between the nodes, there are two cases:

a. If the old node comes from an alternative path (alternative

flow or loop) that is still available in the use-case. Then

the new scenario is updated to go through this alternative

path.

b. If the difference is due to a removed step, the algorithm

searches the remaining nodes of the new scenario for the

node occurring first in the old scenario. When found the

synchronization resumes from this node on. The nodes in

the old scenario located between the previous

synchronization point and this new synchronization point

are discarded.

4. Once the entire path has been rebuilt, the old scenario is

replaced by the new one in the editor.

Figure 12. Divergence due to missing node(s)

Figure 12 illustrates the work of the path synchronization

algorithm. The new scenario has been instantiated and the first

difference is detected at the third node. Since the node 2.1 has

been removed, we are in situation 3b of the algorithm. The latter

then searches the new scenario for the node occurring first in the

old scenario. This search is symbolized by the arrows that link

both scenarios. The first node is 4 (it occurs before node 3 in the

old scenario). This is the new synchronization point. Next, there is

a new difference between the new node 5 and the old node 3

1 2 3 4 5

2.1

1 2 2.1 4 3 4 5

1 2 3 4 5

divergence

OLD

NEW

Authentication

(Figure 13). In this case the algorithm identifies that a loop is the

origin of the difference (situation 3a of the algorithm).

Figure 13. Difference due to a loops

Then, the new scenario goes through the loop as illustrated by the

second arrow starting from node 4 in the second graph. From this

point, the next nodes are the same between both scenarios and the

algorithm ends. In summary, the algorithm has been able to

remove a deleted node from the scenario while keeping the loop.

4. LINK TO THE ANALYSIS MODEL
As a quick reminder, the UP [14] as well as some other Agile

processes such as Agile Modeling [1] and Iconix [18] advocate

the creation of a robustness model as the result of use-case

analysis. Such a model contains stereotypes representing the roles

the implementation classes will play while realizing the use-case.

There are three possible roles (stereotypes): the entity object

representing the information processed by the use-case, the

boundary object representing an interface to the outside of the

system and the control object representing the “coordinator” of

the use-case as well as the use-case specific processing

[1][2][13][18]. A robustness model is presented on the right of

Figure 14. During the design phase of the development process,

the robustness model is transformed to an implementation model

[14]. Therefore the robustness model bridges the gap between the

informal world of the use-case specification and the formal world

of the implementation technology [18]. It is built by analyzing

each of the steps of the use-case using a responsibility-driven

approach with CRC cards [22]. As a result we get the robustness

model and a link between each robustness object and the steps in

which they are involved. Figure 14 presents the output of such an

analysis. On the left we present the CRC card of the control object

“Lesson Control”. The collaboration displayed in the right column

of the table leads to the association between the corresponding

objects in the robustness diagram presented on the right of the

figure. In forward system engineering, traceability links can be

maintained between the implementation classes and the

corresponding robustness objects. These links allow identifying

quickly the roles of the implementation classes in the system. This

greatly helps software understanding. This is exactly why we

believe the robustness model to be fundamental in reverse

engineering. By recreating the links between the implementation

classes and the analysis objects, we could greatly help the

maintenance engineer with software understanding. In fact, the

latter is known to account for 40-60% of the maintenance effort.

Our reverse engineering set of tools will be able to recreate the

traceability links between the robustness model objects and the

implementation classes, based on the execution trace that

correspond to the steps of the scenarios. Therefore, our

environment must support use-cases, scenarios and robustness

diagrams editing.

Figure 14. CRC cards and robustness model

Once a use-case is analyzed, the next step is to specify what

robustness object is involved at what step of the use-case and

when these objects collaborate. This information is then attached

to each of the steps of the use-case. Our meta model must

therefore allow this information to be explicitly represented. The

Step-Class association identifies which robustness objects are

associated to what Step of a use-case flow. The different kinds of

robustness objects are represented as specialization of the UML

Class meta class. This is illustrated in Figure 15.

Figure 15. Robustness elements linking

The Association class represents a relationship like in a normal

UML class diagram. The Step-Association association represents

the link from a Step to the collaborations between the robustness

objects that are carried out during this step.

Figure 16. Enhanced scenario meta model

Finally, since the scenarios are derived from the use-cases, their

steps must reference the same robustness objects and robustness

objects collaboration as the corresponding steps of the use-cases.

The extended meta model for scenarios is presented in Figure 16

where the ExecutionLine is associated to some Classes and

Associations like the use-case Step from which it is derived.

5. CASE STUDY AND TOOL
Our use-case and scenario editor has been developed as an Eclipse

plug-in that is based on two projects of the Eclipse foundation:

the Eclipse Modeling Framework (EMF) [9] and the Graphical

Modeling Framework (GMF) [10]. EMF is a Java based

1 2 2.1 4 3 4 5

1 2 3 4 5

divergence

3 4 5

OLD

NEW

implementation of the Meta-Object Facility (MOF) specification

[16]. MOF is a meta-meta-model describing UML. The Eclipse

community provides an implementation of the UML notation

using EMF. What we did is to extend the corresponding API to

integrate our formalization of the use case flows and scenarios.

Figure 17, 19 and 20 present some of the screens of our tool.

Figure 17. Use case editing tool

The user interface proposes two diagram editors (Figure 17), one

to edit the robustness diagrams and the other to edit the use-case

model. The latter is linked to two extra Eclipse views to display

the steps of the use-cases and the steps of the scenarios. They are

located at the bottom of Figure 17. The use case model for the

case study, a DVD rental kiosk, is presented in Figure 18. There is

only one actor, Customer, which is the primary actor of all of the

use cases. The main use case is Use automated DVD rental kiosk

which is a generalized use case, specialized by three child use-

cases: Refill card, Return a movie, Rent a movie. Any operation

with the automaton requires the user to be authenticated. This is

why the parent use-case includes the Authentication use case.

Since the parent use case cannot be executed alone it is abstract

(name in italics).

Figure 18. DVD rental kiosk

To edit the flow of a use-case we need to select it in the use-case

model view. Then its flow is displayed in the editing view as

illustrated in Figure 19. This view is split in two columns: the left

column shows the flows of the use cases: the main flow, the

specialization flow or the alternative flow. The right column

shows the sequence of steps corresponding to the flow selected on

the left. In the figure we displayed the main flow steps of the use

case Authentication (see Main Flow selected on the left). The

editor allows variables to be inserted in the steps so that actual

values could be entered in the corresponding scenario (use-case

instance) steps. The variables are identified with the <%......%>

syntax. Finally the editor lets the user map robustness objects to

the step. As we can see, the first step references two robustness

objects: Automate Control and Login Screen. These are the

objects which are involved in this step. In the left column we see

that step number 2 has two possible alternatives listed below it:

first, a wrong secret code is entered, second the user entered a

wrong code for three times.

Figure 19. Use case editing view

When the edition of the use cases is completed, a scenario can be

edited as illustrated in Figure 20. In this figure the scenario

belongs to the use case Rent a movie. Depending on the flows we

select using a contextual menu (see Figure 20) the corresponding

steps are added to the scenario. Moreover, if some step of the use

case involves the inclusion of a use-case, the steps of the latter are

automatically added to the scenario. This can be observed in the

figure where the steps of the Authentication use-case were

automatically inserted. Finally the values of the variables in the

steps are filled either by the user, such as the secret code, or by

the system such as the name of the primary actor. When there are

alternative paths available for a step, the user can select one from

the contextual menu that displays the possible alternative as

showed in the figure. The same idea applies to the specification

of the repetition for the loops.

Figure 20. Scenario view

6. RELATED WORK
In the literature, we found the meta models of Somé [20] and

Hoffmann et al. [11] to be the most elaborated. This is why we

spend more time detailing their proposal than the others. Somé

[20] concentrates on the modeling of the textual description of the

use-case i.e. the description of the interactions between system

and actors. In this work, the “behavior” is represented by a

specialization of the UML metaclass Behavior which owns two

specializations: NormalDescription that represents what he calls

the “traditional use-case” and ExtendDescription to represent

extension use-case. This distinction is necessary since Somé wants

to closely follow the UML definition of extension use-case as sets

of chunks of behavior, each chunk corresponding to an extension

point of the target use-case. Therefore, the interactions are not

modeled the same in both kind of use-cases. For

NormalDescription, the interactions are represented as a

collection of steps. Indeed, it owns a link to the StepSequence

class which itself is associated to a collection of Step. The

modeling of NormalDescription bears therefore some similarity

with our own modeling. However, as explained above, we chose

to stick to the definition of the extension use-cases as proposed by

Jacobson, rather than adopting the UML’s. This is why our work

differs from the one of Somé. In our work, extended use-cases are

full featured use-cases. In Somé’s work, ExtendDescription is

associated to a set of Fragments that are themselves associated to

one StepSequence class which owns a collection of Steps. There

must be as many fragments in an ExtendDescription as

ExtensionPoint in the extended use-case. Finally, Somé does not

model the scenarios nor the generalization relationship among

use-cases. Hoffman et al. [11] called the textual specification of

the behavior the NarrativeDescription since it is narrative in

essence. NarrativeDescription has an association to the class

Flow which itself is a collection of Event. Events are of two kinds:

Action and ContextSwitch. The first represents an executable step,

for example a user interaction with the system, while the second is

a way to model the composition of flows i.e. the “spots in a flow

where behavior of another flow can or must be inserted” [11].

ContextSwitch is further specialized in Inclusion and

ExtensionAnchor. Both of them are further specialized in two

classes to account for the internal or external source of flow to be

inserted. However, the idea of ExtensionAnchor seems redundant

with the ExtensionPoint of the UML meta model. Besides,

Hoffman introduced a sophisticated concept to model the

triggering and insertion conditions of a flow in another flow: the

Context, which is associated to a flow. In particular, the latter is

specialized as InclusionContext and ExtensionContext. These are

associated to the corresponding specialization of ContextSwitch to

model where the flows are inserted. But Hoffmann does not model

the generalization relationship among use-cases. Although his

formalization has its own merits it is very far from the original

UML meta model. Moreover, the relationship of the Hoffman’s

model to the UML meta model is unclear to us since the many

new concepts introduced in this work seem sometimes redundant

with what is already represented in the UML meta model. In

contrast our approach is to comply as much as possible with the

UML meta model. Therefore the models of Hoffman at al. and

ours are barely comparable. The work of Zelinka at al. [23] is

much closer to ours since they explicitly modeled the Flow, the

flow Step and reused these concepts to show where in a flow the

insertion or extension flows must be inserted. However, the

impact on the UML meta model of Zelinka’s proposal is much

bigger than ours. In fact they introduced two extra relations

FlowInclusion and FlowExtension that link together a Flow i.e. a

set of steps, an inclusion (extension step) and the Include (Extend)

relationship. However we consider this modeling awkward since

the UML Include (Extend) relationships do represent the inclusion

(extension) flow since they relate two use-cases that themselves

have flows. Finally Zelinka’s work does not model the

Generalization relationship nor the concept of a scenario.

Nakatani et al. have taken another perspective, that of modeling

the use-case behavior as activity diagrams [15]. Although their

approaches include the definition of many perspectives under

which the use-case can be modeled, we will only comment on the

activity perspective since this is the way the behavior is defined.

Under this perspective, the proposed meta model merges the

Activity and Use Case UML meta model. However, the link

between the Include or Extend UML relationships and their

activity diagram’s counterpart is not formally defined. Moreover

they introduced the concept of Composite Use Case as a

specialization of the UML’s Use Case class without further

explanation on the role of this class and especially its relationship

to the Include or Extend relations. In parallel they defined the

Composite Activity as a Specialization of the Activity class. We

suspect this new class to be somewhat related to the Composite

Use Case class, but this is not explained. All in all, many new

elements have been defined in Nakatani’s meta model whose

theoretical justification is not given. Again, we suspect many of

these new concepts to be redundant or in conflict with what is

already modeled in the UML meta model. But this is hard to tell

considering the scarce explanation provided on the model. The

model proposed by Bragança and Machado [3] concentrates on

the precise definition of the inclusion and extension points. As for

the definition of the behavior, they rely on the Activity concept of

UML. Therefore, inclusion and extension points refer to activities

to identify the location where the new behavior should be

inserted. But, as explained in the introduction, the way UML

models the behavior of use-cases is not very detailed. As a

consequence there does not seem to be any difference between

alternative flows modeled “inside” a use-case and the Extension

use-case. Bragança and Machado seem to have mixed both

concepts. Like in the other articles reviewed, they do not model

the generalization relationship nor the scenario. Finally, Rui and

Butler [19] present an early work on the definition of flows in

use-cases. In fact, the behavior of use-cases is defined as Episodes

themselves made of Events that are further specialized in

Stimulus, Response and Action. But this work does not formally

define the include, extend and generalization relationships, nor

the concept of alternative flow. However, the Episode class has a

“consist-of” dependence to itself that we suspect could represent

some composition constraint between Episodes. Finally the

concept of scenario is not modeled in [19] either.

7. CONCLUSION
The key contribution of this paper is a precise yet simple

modeling of all the relationship between the use-cases with

minimal impact on the standard UML meta model. In particular,

we modeled the Generalization relationship that we did not find

anywhere else. Moreover we precisely defined the difference

between use cases and scenarios and included the latter in the

meta model. This seems to be unique to our work. Then we

showed how the meta model can be extended to account for the

association between the flow steps and the elements of the

robustness diagram. This is the first time the UML specification

and analysis models are formally linked together. From this

background, we are building a reverse engineering environment

were the traceability links between the source code and the use-

cases can be reconstructed. Finally we presented our use-case and

scenario editing tool that is built on top of the proposed meta

model. In fact, we relied on EMF /GMF to actually generate the

Eclipse editors from our meta models. This represents the ultimate

check for meta model completeness. This guarantees that the meta

model complies with all the needed modeling requirements and

constraints. The next step in this project is to implement an

inference engine to exploit the use-case and analysis model’s

information to automate the reconstruction of the traceability links

between the source code and the specifications. The current work

deals with the definition and implementation of the inference rules

and approximate reasoning technique to let us model the source-

code to analysis model mapping heuristics.

8. ACKNOWLEDGMENTS
We gratefully acknowledge the financial support from the Swiss

Confederation’s KTI/CTI, grant N° 10448.1 PFES-ES.

9. REFERENCES
[1] Ambler S.W. 2002. Agile Modeling. John Wiley and Sons.

New-York.

[2] Ambler S.W. 2004. The Object Primer. Cambridge

University Press; 3rd edition. Cambridge UK.

[3] Bragança A., Machado R.J. 2006. Extending UML 2.0

Metamodel for Complementary Usages of the «extend»

Relationship within Use Case Variability Specification.

Proc. of the 10th IEEE Int. Software Product Line Conf.

[4] Bittner, K. and Spence, I. 2002. Use Case Modeling.

Pearsons Education Inc. Boston.

[5] Cockburn, A. 2001. Writing Effective Use Cases. Addison-

Wesley. Reading, Massachusetts.

[6] Cockburn, A. 2002. Use cases, ten years later,

http://alistair.cockburn.us/Use+cases%2c+ten+years+later.

Accessed on August 11th, 2010.

[7] Dugerdil, P. 2006. Reengineering Process Based on the

Unified Process. Proc. of the 22nd IEEE Int. Conf. on

Software Maintenance (ICSM). 2006.

[8] Dugerdil, P. and Jossi, S. 2007. Reverse-engineering of an

industrial software using the unified process: an experiment.

Proc. of the 11th IASTED Int. Conf. on Software

Engineering and Applications.

[9] Eclipse Modeling Framework.

http://www.eclipse.org/modeling/emf/

[10] Graphical Modeling Project.

http://www.eclipse.org/modeling/gmp/

[11] Hoffmann, V., Lichter, H., Nyßen, A. and Walter, A. 2009.

Towards the Integration of UML- and textual Use Case

Modeling. J. of Object Technology, 8(3), May-June 2009.

[12] IBM Rational Unified Process. http://www-

01.ibm.com/software/awdtools/rup/

[13] Jacobson I. 1992. Object-Oriented Software Engineering. A

Use-Case Driven Approach. Addison-Wesley. Reading,

Massachusetts.

[14] Jacobson, I., Booch, G. and Rumbaugh, J. 1999. The

Unified Software Development Process. Addison-Wesley.

Reading, Massachusetts.

[15] Nakatani T., Urai T., Ohmura S., Tamai T. 2001. A

Requirements Description Metamodel for Use Cases. Proc

of the 8th IEEE Asia-Pacific on Software Engineering

Conference, 2001.

[16] OMG. Meta-Object Facility. http://www.omg.org/mof/

[17] OMG. UML Superstructure Specification, Version 2.3.

http://www.omg.org, May 2010.

[18] Rosenberg D., Stephens M. 2007. Use Case Driven Object

Modeling with UML, Theory and Practice. Springer-Verlag

Inc. New-York..

[19] Rui K., Butler G. 2003. Refactoring Use Case Models –

The Meta Model. Proc. 26th Australasian Comp. Science

Conference. Adelaide, South Australia

[20] Somé, S. 2009. A Meta-Model for Textual Use Case

Description. J. of Object Technology, 8(7), Nov.-Dec. 2009.

[21] Whittle J., Jayaraman P.K. 2006. Generating Hierarchical

State Machines from Use Case Charts. Proc 14th IEEE Int.

Requirements Engineering Conference (RE'06)

[22] Wirfs-Brock R., McKean A. 2003. Object Design.

Addison-Wesley. Reading, Massachusetts.

[23] Zelinka L.,Vranic V. 2009. A Configurable UML Based

Use Case Modeling Metamodel. Proc of the First IEEE

Eastern European Conf. on the Engineering of Computer

Based Systems.

http://alistair.cockburn.us/Use+cases%2c+ten+years+later
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://www-01.ibm.com/software/awdtools/rup/
http://www-01.ibm.com/software/awdtools/rup/
http://www.omg.org/mof/
http://www.omg.org/

