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Abstract - Among the software quality metrics, coupling and cohesion play an important role since they 
provide a clue about the structuring of the classes of the system. They are, therefore, computed at the level 
of the classes. However, when analyzing the architecture of a system, we are not only interested in the class 
level, but also in the higher levels of the system structure, for example the packages and components. This is 
especially true when we need to assess the quality of this structuring on the viewpoint of system 
understanding. In this paper, we first present the motivation for the definition of two new coupling and 
cohesion metrics that are applicable to higher structuring levels than classes. We then present our main 
metric:  the autonomy ratio that measures the “functional structuring” of a system that we believe is 
essential to system understanding. Although, traditionally, the coupling and cohesion metrics are computed 
based on static analysis (i.e. source code analysis to find the potential calls among the elements), we rely on 
dynamic analysis and present the way the metrics are computed. Finally, we present a case study of the 
assessment of a large industrial system based on our metrics and the findings we drew from this experiment. 
We conclude the paper with a discussion of the results and present the future work. The key contribution of 
the paper is the definition of the autonomy ratio metrics for software architecture assessment on the 
viewpoint of system understanding. 
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1. INTRODUCTION 
 
Software metrics have long been used in the assessment of the quality of software systems and 
especially object oriented systems [15][31][30]. However, all of these works focus on the lowest 
structuring level of the software, i.e. the methods and classes. This is enough for low level software 
restructuring (i.e. what package the classes should be located to) and impact analysis purposes [14]. 
When we need to assess the quality of the architecture of some legacy systems on the viewpoint of 
system understanding, this is, however, not enough. We also need to make sense of the large-grain 
components of the software architecture represented, roughly speaking, by the different levels of the 
system substructure (syntactic grouping of elements such as package, modules, components, etc.) and 
to study the communication links between these substructures. Traditionally, software metrics are 
computed based on the static analysis of the software code. However, dynamic techniques, i.e. the 
analysis of the running of the code, have grown in importance especially in the software reengineering 
domain (see, for example, [23] [17][36]). In particular, they have been used to analyze the coupling 
between classes [1][3][27]. As far as software architecture assessment is concerned, there is no 
consensus on any single metric [12], since this process is related to the software quality attribute 
considered (QA) [26]. Therefore, any research on architecture quality assessment should make clear the 
quality attribute considered. In this paper, we clearly focus on system understanding (or the 
“understandability” QA which is strongly linked to the “maintainability” QA). In Section 2, we present 
the motivation for our work and the rationale for the definition of two new cohesion and coupling 
metrics:  hierarchical functional coupling and hierarchical functional cohesion. From the latter, we can 
define, in Section 3, our main metric:  the autonomy ratio of the substructures of the systems. In 
Section 4, we present the way they are computed based on the execution trace of the system. Section 5 
shows a case study and Section 6 presents the related work. Finally, Section 7 concludes the paper and 
presents the future work. 
 
 
2.  PROGRAM UNDERSTANDING AND COMPONENTS COUPLING 
 
It is well known that understanding takes the lion’s share of the maintenance cost. Some studies say 
that code comprehension amounts to 50% of the maintenance effort [34], while others suggest that the 
ratio could be situated between 50%-80% [4]or even more:  50%-90% [11]. However, the system’s 
understandability which is key to code maintainability has different meaning depending on the authors. 
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One widely-accepted definition is given by Biggerstaff and Mitbander [8]:  “A person understands a 
program when able to explain the program, its structure, its behavior, its effects on its operational 
context, and its relationships to its application domain in terms that are qualitatively different from the 
tokens used to construct the source code of the program.” 
 
In principle, any explanation on some phenomenon rests on the relationships we can make with 
something we already know. Explaining software is no different [7]. In particular, this is what we think 
was intended by the expression: “…in terms that are qualitatively different…” in the definition by 
Biggerstaff and Mitbander. However, since software is a formal system, it could be analyzed from the 
syntactic as well as semantic viewpoints. The syntactical structure of a program can be described at 
several granularity levels (i.e. from the level of a single program statement to the level of large 
structures like components or even subsystems) that are themselves associated with semantic 
interpretations. Therefore, any explanation of the software should address some or all of these 
granularity levels (Figure 1). 
 

 
Figure 1:  granularity levels of program structure and semantics 

 
On the syntactic viewpoint, “understanding” means being able to relate the program constructs to the 
operational semantics of the programming language. This operational semantics must, of course, be 
already known by the software engineer for such an explanation to be useful. On the semantic 
viewpoint, “understanding” means being able to relate the program constructs to some external corpus 
of knowledge. The latter is represented by the knowledge of the purpose of the program in the business 
domain (the business function), plus some general computer science knowledge about good 
programming practices. However, the explanations of the program could be targeted to the different 
syntactical levels:  single program statement, set of statements, components, packages and subsystems 
(i.e. sets of components). The granularity levels considered depend on the “explanation level” needed, 
which means the required level of detail on the working of the program. This depends on the software 
engineer’s maintenance tasks and activities to perform on the system [34]. Sometimes, a broad 
overview on the subsystem’s roles and responsibilities would be enough while, in other cases, the 
detailed understanding of some program statements would be required. Depending on the task, program 
understanding may work bottom-up through the syntactical levels (from the program statements up to 
the subsystems) or top down of both [34]. Now, if the task of an engineer is to understand the software 
system globally, for the purpose of assessing the way the program has been implemented, the engineer 
must usually work top-down starting from the whole application level (syntactic viewpoint) mapped to 
its purpose in the application domain (corresponding semantics). Next, he will decompose the system 
gradually according to the syntactical clues found in the program and map each program substructure 
to the corresponding pieces of knowledge in the application domain.  
In this study, we find it more convenient to speak about substructure than component because the latter 
is often related to behavior. Therefore, there is always an ambiguity about the viewpoint adopted:  
syntactic or semantic. Thus, we have: 
 
Definition 1: a substructure of a program or system is a source code declaration that:  

 represents the syntactical grouping of program elements at any level above the 
method/procedure/function declarations; 

and 
 obeys a containment relationship.  

 
For example, in Java, the substructures are the classes and all the packages that group the packages 
and/or the classes at any level of containment. Figure 2 presents the two ways containment could be 
represented in UML. The picture on the right part is very interesting in our context since it represents 



containment as a graph where the nodes are the substructures and the edges represent the containment 
relationship (called “membership” in UML). We will refer to this graph as the containment graph.  
 
 

 
Figure 2:  alternative UML containment representation 

 
Whatever the substructure level considered, understanding will be facilitated if the system exhibits the 
“tree-like hierarchical quasi-decomposability” property [33]. In this case, the substructures could be 
studied in isolation; whatever the decomposition level, their purpose and working could be analyzed 
without needing to understand the other substructures of the system. This property means, in the 
software engineering world, that the substructures should exhibit low coupling and high cohesion. As 
far as system understandability is concerned, however, low coupling and high cohesion for a 
substructure is not enough for it to be understandable. It should also be mappable to some well-defined 
piece of knowledge (or “concept”) in the external corpus of knowledge (application domain model). 
This idea is illustrated in Figure 3. When Counsell et al. empirically studied the intuitive meaning of 
class cohesion among a set of software engineers, they realized that the very notion of cohesion was 
subjective. In one paper they remarked: “In one sense, we could easily replace the word ‘cohesion’ in 
this paper with the word ‘comprehension’ ” [18]. In another paper they strengthened their analysis and 
said: “Finally, if the research supports the view that cohesion is a subjective concept reflecting a 
cognitive combination of class features, then cohesion is also a surrogate for class comprehension” 
[19]. This is close to our view, but we extended this vision to substructure cohesion and coupling since 
we need to comprehend software at higher (coarser) granularity levels. 
 

 
Figure 3:  relationship between program elements and domain elements 

 
In summary, when facing the task of assessing the architecture of some legacy software system from 
the viewpoint (quality attribute) of maintainability, understandability of the system is key. The latter is 
related to the way the system is split into substructures at different levels of granularity and to the links 
we may draw between these substructures and the concepts in the application domain. Therefore, the 
interpretation we give to cohesion and coupling are: 
 

1. Cohesion of a substructure:  strength of the functional relatedness of the elements within the 
substructure. 

2. Coupling of a substructure:  strength of the functional dependencies of the substructure with 
other substructures. 

 
It is worth mentioning that Chidamber and Kemerer, in their seminal paper, justified the “Coupling 
Between Object Classes” (CBO) metric based on reuse and testing arguments only [15]. Moreover, the 
cohesion metric (or rather the lack of, since their metric is called “Lack of Cohesion in Methods,” 
LCOM) claimed to be an indicator of class complexity. In contrast, our work rests on program 
understanding arguments based on the business purpose of the software. Of course, the relationship 
with complexity does exist, but it is not straightforward since the same substructure can be involved in 
several business functions. 
 
 



3. DEFINING SUBSTRUCTURE COUPLING AND COHESION 
 
3.1 Introduction 
 
Cohesion and coupling could be measured based on static information as well as dynamic information. 
However, dynamic information (i.e. information on program execution) has the advantage of actually 
showing the coupling resulting from the actual processing of a scenario of interactions. Since there is 
an infinite number of scenarios that could be run on the system, we will focus on those that have value 
in the business i.e. corresponding to instances of the use-cases. Therefore, what we will study is the 
dynamic functional architecture of the system, i.e. the ways the substructures dynamically interact to 
implement some well-defined business functions (represented by the scenarios). By reference to the 
4+1 views of Kruchten [28] this architecture belongs to the logical view, at the level of components or 
packages. In fact, the programming elements involved in the scenarios can be related to the 
substructures they belong to. Figure 4 illustrates the static structure of a program made up of packages 
and classes on top of which the grayed “cloud” represents the program elements involved in a scenario 
execution (when the “cloud” partly covers an element, this means that only a subset of its methods are 
involved).  If the elements in the “cloud” are tightly coupled, they form what we call a functional 
component i.e. a set of program elements that closely work together to implement a subtask of a 
business function [21].  
 

 
Figure 4:  program substructures and functional components 

 
Therefore, one possible architectural assessment of a system is to observe the extent to which the 
functional components map to the program substructures. If the latter map well to the functional 
components and if they are cohesive and weakly coupled, then we could assign them a meaning from 
the functional components (i.e. from the business function these components implement). Because 
there are generally fewer interactions between program substructures at coarser granularity levels than 
at finer ones, we expect both the cohesion and coupling metrics to be lower at coarser levels. This is 
illustrated in Figure 5 where the thickness of the links represents the “level” of interactions (number of 
messages sent between each other).  
 

 
Figure 5:  coupling and cohesion among substructure levels 

 
As illustrated in Figure 5, the level of interactions between the classes in the same package are 
expected to be higher than the level of interactions among classes belonging to different packages 
which themselves are expected to be higher than the level of interaction among classes from different 
enclosing packages (packages 3 and 6 in the figure). This has some important consequences for the 
measurement of the coupling:  the “benchmark” (i.e. the value against which we compare the metrics 



[30]) will depend on the granularity level of the substructure considered. However, to be able to 
measure these metrics, we must define what coupling means at these different levels. 
 
 
3.2 Computing dynamic coupling and cohesion among substructures 
 
Dynamic coupling and cohesion metrics are computed based on the interactions (i.e. method calls or 
message sent) between program elements. Several studies on the dynamic coupling of object and 
classes and the comparison to static coupling have been published [2][3]. However, for a software 
system architecture assessment, we need to go beyond the class level. Indeed, we need to define 
dynamic coupling and cohesion at a higher (coarser) granularity level than the classes because this is 
the level at which the business functions are implemented. Therefore, highly cohesive and weakly 
coupled substructures could be the sign of a good functional decomposition of the system, hence a 
good “understandability.” Among the authors having published on dynamic coupling we highlight the 
work of Arisholm et al. [3] because they defined a framework we refer to (see the annex, Section 10, 
where the approach of Arisholm is explained in some detail). However, Arisholm concentrates on the 
class level:  the granularity levels above the classes are only shallowly dealt with (see the related work 
section). Since our definitions of coupling and cohesion are specific, we will use different names. 
Substructure coupling will be called hierarchical functional coupling or hf_coupling. Substructure 
cohesion will be called hierarchical functional cohesion or hf_cohesion. This will avoid any confusion 
with the common semantics for these metrics (although there does not seem to be a widely accepted 
one [17]). Nowadays, the software systems are mostly written by reusing open-source or commercial 
frameworks and components. We call the software system’s specific classes the classes specifically 
written in the context of this system. The other classes could come from the reused commercial and 
open-source libraries and frameworks. Therefore, the scope of the metrics measurement could be the 
specific classes only or all the classes (the specific and the reused ones). Since our goal is to assess the 
quality of the software system’s architecture, we only take the specific classes into account. Otherwise, 
we would assess the architecture of the framework, as well.  Here are some definitions we need in 
order to specify our metrics. 
 
Definition 2:  

 S:  set of all the program substructures in the software system that complies with Definition 1 
in Section 2. 

 SC:  set of all possible scenarios (instances of use-cases) that can be executed on the system. 
 Distinct messages:  messages whose identification by the 4-uple [C1,m1, C2, m2] is unique. 

In other words, there is no pair of messages among all messages considered whose 
identification is the same. The interpretation of the 4-uple is:  the method m1 in some instance 
o1 of class C1 calls the method m2 in some instance o2 of class C2. m1 and m2 are identified 
by their signature and C1,C2 by their fully qualified name.  

 
When computing our metrics, we will only take the distinct messages into account. For example, if a 
given method in an instance of some class is called several times by the same method in an instance of 
another class, we count this event only once. In particular, if there are loops in the caller method then 
the repetitions of the same call are ignored. Referring to the definitions of Arisholm et al. [3], we count 
the “object-level distinct method import coupling metric” (IC-OM). The rationale for these choices is 
that we need to assess the architecture of the system from the point of view of the program 
understanding QA. Therefore, we need to know the “tasks” that some substructures delegate to another 
substructure. This task delegation means that the responsibility for the processing is shared among 
several substructures. Usually, the larger the variety of the delegated tasks by some substructure, the 
harder it is to understand the responsibilities of this substructure. (Remark:  in these definitions, the 
classes considered are the actual classes of the instances that send and receive messages. This is 
because we want to know where the action really happens, not where it is defined.)  
 
Definition 3: hf_coupling (hierarchical functional coupling) is a binary function on the set of program 
substructures S and the set of scenarios SC defined as:  

hf_coupling: S x SC  int    (1)
  

It is computed by counting the number of distinct messages sent by all the instances of the classes 
recursively contained by the substructure referenced by the first parameter to all of the instances of the 
classes located outside this substructure when executing some specific scenario referenced by the 
second parameter.  
 



Figure 6, which is based on Figure 5, presents the elements involved in the computation of the 
hf_coupling of Class2, where the lines represent the messages sent by the instances of Class2 to the 
instances of the other classes when running some well-defined scenario. In this example, the metric 
value would be similar to the import coupling of Arisholm et al.  [3], because we are dealing with the 
level of a single class. 
 

 
Figure 6:  elements involved in the computation of the hf_coupling of Class2 

 
Starting from Figure 6, Figure 7 presents the element involved in the computation of the hf_coupling of 
Package1. Again, the lines represent the messages sent by the instances of the classes in Package1 to 
the instances of the classes outside Package1 when running the scenario. This coupling measurement 
has no equivalent in the work of Arisholm et al. because we are now at the granularity level of a 
package. 
 

 
Figure 7:  elements involved in the computation of the hf_coupling of Package1 

 
Finally, starting from Figure 7, Figure 8 presents the element involved in the computation of the 
hf_coupling of Package3. The lines now represent the messages sent by the instances of the classes in 
Package3 to the instances of the classes outside Package3 when running the scenario.  
 

 
Figure 8:  elements involved in the computation of the hf_coupling of Package3 

 



In this computation, we can say that the substructure referenced by the first parameter of the 
hf_coupling function is considered to be a black box; we ignore what is going on inside the black box 
and we observe the message traffic between this black box and the rest of the system.  
 
Definition 4: hf_cohesion (hierarchical functional cohesion) is a binary function on the set of program 
substructures S and the set of scenarios SC defined as:  

hf_cohesion: S x SC  int    (2) 
 
It is computed by counting the number of distinct messages sent among the direct children of the 
substructure referenced by the first parameter in the containment graph, when executing some specific 
scenario referenced by the second parameter.  However, we ignore the messages sent inside the direct 
children themselves which are considered black boxes. We only observe the message traffic between 
these black boxes. 
 
Since the direct children of the substructure referenced by the first parameter may not be classes, we 
need to explain how this is computed. We say that some direct child of a substructure s1 sends a 
message to another direct child of s1 if some instance of a child (if it is a class) or some instance of a 
class recursively contained in the child (if it is not a class, for example a package) sends a message to 
an instance of another child (if it is a class) or to an instance of a class recursively contained in another 
child (if it is not a class). As an example, Figure 9, which is based on Figure 5, presents the elements 
involved in the computation of the hf_cohesion of Package1. The line represents the messages sent by 
the instances of Class1 to the instances of Class2 and vice-versa when running some well-defined 
scenario. For each class in the figure, we ignore the messages sent among the instances of this class and 
the messages from an instance to itself, because the class is considered a black box at this level. 
 

 
Figure 9:  elements involved in the computation of the hf_cohesion of package1 

 
Figure 10, based on Figure 5, presents the elements involved in the computation of the hf_cohesion of 
Package3. For each package in the figure, we ignore the messages sent among the instances of the 
classes recursively contained in the package because it is considered a black box. The lines represent 
the messages sent from some instance of some class recursively contained in Package1 to some 
instance of some class recursively contained in Package2 and vice-versa. 
 

 
Figure 10:  elements involved in the computation of the hf_cohesion of package3 

 
Because of our very definition, the hf_coupling function exhibits the following property (whose 
demonstration based on the set algebra is trivial): 
 

  A, B  S, A = father(B)  hf_coupling(A,s1) ≤ hf_coupling(B,s1)  (3) 
 
Where father(x) returns the substructure that is the father of x in the containment graph. Interpretation: 
the value of the hf_coupling function is either stable or decreasing while moving to some higher level 
substructures.  
 



As can be seen in the definitions, the metrics must always be computed for some specific scenario, 
usually an instance of a use-case of the system. Indeed, the analysis of the functional components of the 
system requires the business functions of the software to be explicitly known. In UML, the latter are 
expressed through scenarios. Finally, we notice that the above metrics are expressed in absolute 
numbers. This raises the well-known problem of the definition of a benchmark for the metrics [30]. In 
fact, we use the two metrics above to define the autonomy ratio of a substructure which is expressed in 
percent and whose interpretation is much easier.  
 
Definition 5: autonomy ratio is a partial binary function on the set of program substructures S and the 
set of scenarios SC defined as:  

autonomy_ratio: S x SC  [0..100] (%)    (4) 
 
 
If hf_cohesion(s1,sc1) + hf_coupling(s1,sc1)  ≠  0, autonomy_ratio is computed as: 
 

 
(5)

 
 
If  hf_cohesion(s1,sc1) + hf_coupling(s1,sc1) =  0,  autonomy_ratio is undefined (no value). 
 
Interpretation:  this ratio represents the “autonomy” of the substructure s1 in the implementation of 
some functional component involved in scenario sc1. The higher that the ratio is, the higher the 
autonomy of the substructure s1 in implementing its duties in the scenario sc1, and the lower the 
collaboration with other substructures. In other words, when running a scenario, we will observe 
several substructures that interact to implement the steps of the processing. If the autonomy ratio is 
high for a given substructure, this means that it autonomously implements some task in the processing. 
The limit values are: 
 autonomy_ratio(s1,sc1) = 100 means that s1 is perfectly autonomous: the subparts of s1 are not 

coupled to any other substructure outside s1 to implement the responsibilities of s1 with respect to 
the scenario sc1. All of the services required by the subparts of s1 are implemented by some other 
subparts of s1. 

 autonomy_ratio(s1,sc1) = 0 means that s1 is not autonomous at all:  the services required by the 
subparts of s1 to implement the responsibilities of s1 with respect to the scenario sc1 are all 
implemented outside s1 and not by any other subpart of s1. 

 autonomy_ratio(s1,sc1) undefined:  this is the case where the subparts of s1 do not interact with 
each other or with any other substructure outside s1. In other words, s1 is only a container of pure 
server subparts that are not functionally connected with each other. In this case, the subparts of s1 
are not put in s1 based on a “functional relatedness” but on some other criteria.  

 
 
3.3 Autonomy_ratio as a way to assess system understandability 
 
When trying to assess the quality of a software architecture from the viewpoint of the understandability 
QA, we compute the autonomy_ratio for all of the substructures of the system (in the case of Java, for 
all the packages) and for all the relevant scenarios. Then, we observe the distribution of the 
autonomy_ratio among the substructures. If each substructure gets a high autonomy_ratio 
(hf_cohesion(s,sc) >> hf_coupling(s,sc)), this means that we can study them almost in isolation and 
assign them some specific functional responsibility. In this case, the substructures exhibit the “quasi-
decomposability” property [33]:  to understand the working of each substructure we do not need to 
understand the other substructures outside them. At the other extreme, if the substructures have a low 
autonomy_ratio (hf_cohesion(s,sc) << hf_coupling(s,sc)) they cannot be understood in isolation since 
they delegate the work to the substructures outside them. We must, therefore, understand the latter to 
understand the working of the former. In summary, the higher the autonomy ratio of a substructure, the 
easier to assign it a role (i.e. a responsibility) in the implementation of some business function.  
 
This shows why the autonomy_ratio is a good indicator of the functional decomposability of a system 
and therefore of its understandability (Section 2). We believe the autonomy ratio to be more 
appropriate as an indicator of system understandability than cohesion or coupling alone because: 
1. It applies to all of the levels of the system’s syntactical decomposition. This is required since the 

understanding of a system does not mean assigning a functional meaning to its lowest level 
elements only, but to all the relevant granularity levels (Section 2). The autonomy ratio indicates 



the extent to which each level of the syntactical decomposition of a system could be assigned a 
functional meaning. 

2. Cohesion is an indicator of the functional relatedness of the components of a substructure. But 
what if each of these components delegates some of their work to remote substructures? In this 
case, we must also understand these remote substructures in order to understand the working of 
the components. This shows that cohesion alone is not enough as an indicator of the 
“understandability” of a substructure. 

3. Coupling is an indicator of the functional dependencies among substructures. Then, low coupling 
means low delegation of work to other substructures and we could hope to be able to understand a 
weakly coupled substructure in isolation. But what if the components of such a substructure never 
interact? This would means that the substructure cannot be assigned a unique functional role, but 
rather, a set of possibly unrelated roles. Therefore, coupling alone is not enough as an indicator of 
the functional role of a substructure. 

 
 
4. MEASURING HF_COUPLING, HF_COHESION AND AUTONOMY_RATIO 
 
4.1 Introduction 
 
Since we collect the metrics based on the business function of a system, we must first know the use-
case of this system. In the case of legacy systems it is often the case that no reliable documentation 
exists. Then, we must observe the actual users and abstract out their interaction with the system to 
redocument the use-cases. Next, we instrument the source code of the system to be able to generate a 
trace of the system’s execution. The latter represents the set of the methods called during the execution. 
Finally, we run the system according to each relevant scenario (instance of use-cases) and record the 
corresponding execution trace. From this information, we will compute the metrics associated with 
each scenario. It is worth mentioning that in the case of legacy systems, we redocument the use-cases 
corresponding to the actual system usage. We ignore the scenarios that nobody uses. Since the 
computation of the autonomy_ratio depends on the scenario considered, the result gives us a measure 
of the system understandability with respect to the actual system usage. This is exactly what we need 
when facing system maintenance. 
 
 
4.2 Format of the execution trace 
 
To be able to reproduce the method call hierarchy, we record an event when a method is entered and 
when it is exited. The execution trace is therefore represented by a set of events having the following 
format: 
 

1. [SP] [SC] [DP] [DC] ‘[’ [TN] ‘]’ [MS] [RT] ‘[’ [TS] ‘]’  [PV]  
or 

2. ‘END’ [SP] [SC] [DP] [DC] ‘[’ [TN] ‘]’ [MS] [RT] ‘[’ [TS] ‘]’ 
 
Where: 

 [SP] : full package name of [SC] (“static” package) 
 [SC] : class where the called method is defined (“static” class) 
 [DP] : full package name of [DC] (“dynamic” package) 
 [DC] : class of the instance that received the message (“dynamic” class) 
 [TN] : thread number 
 [MS] : signature of the called method 
 [RT] : returned type of the called method 
 [TS] : time stamp of the call 
 [PV] : parameter values of the called method (printable parameters only) 

 
The first format of the trace event is generated when a method is entered for execution. The second 
format with the prefix keyword ‘END’ is generated when the corresponding method is exited (end of a 
call).  
For example, let us have an instance “a” of Class11 in Package11 whose method m1() defined in 
Class1 of Package1calls the method m2() of some instance “b” of Class21 in Package21, m2() being 
defined in Class2 of Package2. Class1 is therefore a superclass of Class11 and Class2 a superclass of 
Class 21. This method call situation is represented in the sequence diagram of Figure 11. 



 

 
Figure 11:  calls between 2 instances 

 
In this case, we would find the following events in the trace file (if all method run in thread 1). In this 
example, the timestamp is arbitrary: 
 
Package1 Class1 Package11 Class11 [1] m1() int [2345]  
Package2 Class2 Package21 Class21 [1] m2() void [2346] 
END Package2 Class2 Package21 Class21 [1] m2() void [2346] 
END Package1 Class1 Package11 Class11 [1] m1() int [2347] 
 
Here is an example of real trace events: 
 
 pas.evi.cumulus.od iOdImage pas.evi.cumulus.od iOdImage [36] setAssetName(java.lang.String) 

void [12323324] "ffff_gggg_dffer_dfr_2009_3.jpg" 
 END pas.evi.cumulus.od iOdImage pas.evi.cumulus.od iOdImage [36] 

setAssetName(java.lang.String) void [12323324] 
 

The instrumentation of the source code is performed by an instrumentor we developed using the 
javaCC parser generator [25]. The AST of the parsed program is then visited (using the Visitor pattern 
[22]) to decorate the nodes corresponding to the method entry and to exit with the instrumentation 
code. The latter represents calls to an external program that actually writes the events to the trace file. 
Using such an external program minimizes the impact of the instrumentation to the original source file 
of the system to analyze. When the decoration of the AST is completed, the source code of the program 
is re-generated from the AST and recompiled. When the instrumented program is installed on a 
machine, we must also install the library that contains the runtime program that writes the events to the 
trace file. We decided not to write the trace events directly to a database for performance reasons. In 
this way, the impact of the instrumentation on the execution speed of the analyzed system is minimal. 
Figure 12 presents the tools workflow we have implemented to record the execution trace and process 
it. There is nothing new in such a workflow since several authors have used the same kind of technique 
(see, for example, [5]). However, because the volume of the execution trace we generate is quite huge 
(on the order of 106 events), we need to load the trace in a database before being able to process it.  
 

 
Figure 12:  tools workflow for trace generation and analysis 

 



 
4.3 Computing the metrics 
 
Since we record the full package names in the events, it is easy to locate the classes in the containment 
hierarchy and to identify all of the substructures of the program. Then, the algorithm we use to compute 
the hf_cohesion and hf_coupling is simple:  we just need to decompose the full package name to select 
the relevant level of substructure to analyze. For example, starting from the real trace events presented 
in §4.2, if we wanted to compute the autonomy ratio of the “pas.evi” substructure, we would consider 
all of the events having this prefix in their full package name. Then, we would first select the events 
representing the calls among its direct subparts to compute the hf_cohesion metric. Secondly, we 
would select the events representing the calls to substructures outside it (i.e. whose package name 
would not start with “pas.evi”) to compute the hf_coupling metric. 
 
 
5. CASE STUDY 
 
The autonomy ratio metric has been specifically developed to perform the assessment of the 
architecture of the legacy software system in the perspective of the “understandability” QA. We were 
recently approached by the CIO of a company which, several years ago, bought a system from another 
company. However, the CIO always struggled to get this system properly maintained by the other 
company. To solve the situation, the CIO hesitated to buy the source code of the system to maintain it 
in his company. Before doing this transaction, he asked us to assess the architecture of the system and 
provide a possible explanation for the complexity of the maintenance. The system had on the order of 
5300 Java (J2EE) classes distributed in about 600 packages with a high level of nesting.  
 
First, we designed two dozen scenarios that represented about 80% of the common usage of the system. 
The corresponding executed code would then represent the implementation of most of the business 
functions used by the actual users of the system. In the case of maintenance, it would therefore be very 
likely that the problem would be located in this very code. Next, we instrumented the source code 
(JSPs, Servlets and Plain Java Objects) and installed the code on the server (Tomcat). When we 
executed the instrumented system based on the scenarios we observed that about 120 packages were 
involved in about each of the scenarios (counting all the levels of package nesting up to the root of the 
system structure). Finally, we analyzed the whole substructure (package) hierarchy to measure the 
autonomy ratio of all packages. We quickly realized that the autonomy ratio was weak for almost all of 
the packages. The results are presented in Table 1 below for the first 20 scenarios. To synthesize these 
results and show the distribution of the autonomy ratio (AR), we created three categories. We present 
the number of packages whose AR was bigger than 50%, those whose AR was bigger than 30% and 
finally those whose AR was bigger than 0.  

 
TABLE 1 

Results of the execution of 20 scenarios 

 
 

 Scenario # :  scenario number 
 NB pack. :  total number of packages involved in the scenario, taking all levels of nesting into 

account up to the root package. 
 AR  50:  number of packages involved in the scenario for which the autonomy_ratio was 

bigger than or equal to 50.  
 AR  30:  number of packages involved in the scenario for which the autonomy_ratio was 

bigger than or equal to 30. 
 AR > 0:  number of packages involved in the scenario for which the autonomy_ratio was 

bigger than 0. 
 
Analysis of the results: 
1. The number of packages involved in all of the scenarios is remarkably similar, as is the number of 

packages for which the autonomy ratio (AR) is greater or equal to 50, greater or equal to 30 or 



greater than 0. This tends to demonstrate that the functional architecture supporting all of the 
scenarios is rather similar.  

2. The autonomy ratio of the packages is generally weak. About 5% of the packages have AR  50, 
about 10% have AR  30 and less than half of the packages have AR > 0. 

3. The weak number of packages with AR  50 tends to demonstrate that only a few packages may 
actually implement functional components. In fact, the implementation of most of the functions 
seems to be distributed over a lot of packages. Therefore, in the case of maintenance, if some 
function must be modified, there will likely be several packages involved.  

4. A detailed analysis of the packages with AR  50 showed that they are generally the same 
packages for all of the scenarios. This strengthened our feeling that the functional architecture is 
similar among all scenarios. 

5. The packages with AR = 0 (more than half of the packages involved in the scenarios) are 
packages whose direct children are not functionally related. They represent substructures that do 
not collaborate when the business-related scenarios are executed. These components, therefore, do 
not have any functional cohesion (although their subcomponent may have some). 

 
The interpretation of these results was: 

 The architecture of the system is likely not to be based on functional components. 
 The architecture of the system seems to be centered on a very small set of core components 

(server components) that are accessed by a lot of substructures at different levels of 
granularity (client components).  

 The absence of a functional component architecture means that most of the maintenance tasks 
will likely involve several packages. 

 The lack of functional component architecture could explain the relative difficulty to maintain 
the system (due to its low understandability). 

 
Therefore, we advised the CIO not to try to maintain the system in his company because of the likely 
complexity of the system. Later in the project, we had a chance to talk to the development manager of 
the system provider who confirmed our analysis of the architecture of the system. Indeed, it is centered 
on a set of core components that are heavily parameterized and called from a set of smaller components 
that implemented the code specific to each customer. In a sense, each specific application was built as a 
composition of services called in the core components. 

 
 
6. RELATED WORK 
 
First of all, it is worth mentioning that the notion of cohesion does not have a well-accepted definition 
in the OO community [17], while coupling has been more widely studied [9]. Despite this fact, many 
papers have dealt with coupling and cohesion, but at the level of the classes. The seminal work of 
Chidamber and Kemerer [15] was about the first to propose a formal definition of the coupling metric 
(Coupling Between Object, CBO) and cohesion metric (or, rather, the lack of cohesion in methods, 
LCOM). However, it did not address the problem of larger program substructures other than the 
classes. Recently, Abreu at al. published the MOOD metric set among which the COF coupling factor 
computes a global value for the coupling of systems of classes. This metrics is based on the binary 
coupling among pairs of classes:  if one class references the attributes and/or methods of another class, 
the coupling value is 1, 0 otherwise. The COF is the normalized sum of the binary couplings of all of 
the pairs of classes in the system. Again, the coupling is computed at the level of classes only. Later 
Briand, et al. redefined the LCOM metrics of Chidamber and Kemerer to remove some ambiguity by 
presenting five variants [9], but they stayed at the level of the classes. The work of Arsholm et al. 
[2][3] proposed a precise definition of class coupling by distinguishing the object level and class level 
metrics as well as the elements that are counted:  the messages, the methods or the classes. However, 
this work concentrated on the class level. For the levels above, the classes they simply proposed to 
aggregate the results computed at the class level to the next granularity level. However, this treatment 
of a higher (coarser) level of granularity is not appropriate for the assessment of software architecture 
on the viewpoint of the understandability QA. In fact, coupling must measure the need for a 
substructure to rely on some other substructures to implement some business function. The proposal of 
Arisholm et al. does not, however, comply with this intuition since the value for coupling will 
monotonically increase when computed at coarser levels of granularity. Therefore, it basically indicates 
how tightly a set of classes is linked to the rest of the system’s classes, irrespective of the encapsulation 
of the classes in higher level substructures. Counsell et al. introduced the normalized Hamming 
distance metric (NHD) [16] to compute class cohesion. It is based on the measurement of the similarity 



of the method parameter types in a class. The rationale is, for the authors, that the more similar the 
parameter types between all of the methods, the more cohesive the class. Again, this is class metric 
only. The work of Kavitha and Shanmugam [27]presents a framework to compute the class coupling 
using the execution trace. The latter is called the “actual function call information” or AFCI. They then 
claim to use the “standard” coupling formulas (i.e. the one of Arisholm et al.) to compute the metric. 
Therefore, this work did not propose a new way to compute the metric. The work of Lui and Milanova 
[29] deals with the ways to combine static and dynamic analysis for the measurement of the coupling 
among classes. However, the coupling of higher level structures is not addressed. The paper of 
Washizaki et al. proposed a coupling-based complexity metrics for components. However, this paper 
focuses only on the EJB kind of components. In fact, they observed that the traditional coupling 
metrics based on the analysis of the source code of the classes is not relevant for EJB components since 
the environment generates classes at run time from the Home and Object interfaces. Moreover, several 
implementation classes may be required to implement a single EJB component. In this context, the 
coupling between individual implementation classes is not relevant. It must be replaced by the coupling 
among EJB components, i.e. among the classes that belong to different components. Then, they 
proposed a variant of the COF metrics of Abreu et al. using some binary coupling between the EJB 
components:  if a class of a component references a class of another component, then the binary 
coupling among these components is 1, 0 otherwise. The resulting Component Coupling Factor 
(CCOF) is computed as the normalized sum of the binary coupling values among all of the pairs of 
components. This metrics represents the first step in the computation of some coupling metrics at a 
higher granularity level than classes. However, this work differs from ours in several ways. First, our 
metrics can be computed at all the different granularity levels of the system structure. It is not fixed at 
the first component level. Second, we compute the strength of the coupling between the substructures, 
based on the variety of the messages sent. Since we are interested in the autonomy of the substructures 
in their implementation of the system’s functions, it is not enough to compute a binary metric for each 
pairs of substructures. We must know how strong the collaboration is. Third, our coupling metric is not 
an end in and of itself. It is used to compute the autonomy ratio which is our main metric. We believe 
the latter to be more informative on the point of view of system understandability. 
In the context of Aspect Oriented programming, Burrows et al. [10] reviewed the metrics used to assess 
that maintainability of AOP software. These metrics are adapted from the OO context to account for 
the specificities of AOP. Of particular interest are the following metrics where the term module 
indicates either a class or an aspect: 
 CAE (Coupling on Advice Execution):  Number of aspects containing advices possibly triggered 

by the execution of operations in a given module.  
 CIM (Coupling on Intercepted Modules):  Number of modules or interfaces explicitly named in 

the pointcuts belonging to a given aspect. (This is the dual of the CAE metric.) 
 CMC (Coupling on Method Call):  Number of modules or interfaces declaring methods that are 

possibly called by a given module. 
 CFA (Coupling on Field Access):  Number of modules or interfaces declaring fields that are 

accessed by a given module. 
 LCO (Lack of Cohesion in Operations):  Pairs of operations working on different class fields 

minus pairs of operations working on common fields (zero if negative). 
The first two metrics only measure the coupling brought about by the aspects. However, because of the 
definition of the very notion of module, the last three metrics can be applied to non-AOP programs, as 
well. In particular, the CMC and CFA metrics in the non-AOP program corresponds to the Chidamber 
and Kemerer CBO metrics (which takes both the methods and fields into account). Finally, LCO in a 
non-AOP program is similar to the Chidamber and Kemerer LCOM metric. Again all of these metrics 
are defined at the level of the classes (or aspects) only and not at higher levels of granularity of the 
program structure. Therefore, this work is not comparable to ours. 
 
 
7. CONCLUSION AND FUTURE WORK 
 
Our paper dealt with the formal metrics we implemented to assess the quality of the architecture of a 
system from the program understanding point of view (understandability QA). Since the software 
architecture of a program can be defined as:  “the structure or structures of the system, which comprise 
software elements, the externally visible properties of those elements, and the relationship among 
them” [6], we had to first define the structure of a program and the containment relationship of these 
structures. From this definition, we were able to propose new dynamic coupling and dynamic cohesion 
metrics applicable to whatever level of program substructure. We called these metrics hierarchical and 
functional because the value of the metric depends on the granularity level considered (hierarchical) 



and the scenario (functional). Then, we defined our main metric:  a ratio that measures the “autonomy” 
of a given component (substructure) to implement a task of a business function. The reference to the 
scenario is compulsory when computing the dynamic coupling and cohesion, since the value of these 
metrics will likely be different depending on the business function considered. When assessing the 
quality of a system’s software architecture from the program understanding QA point of view, we must 
first identify all of the relevant scenarios. Then, we compute our metrics for each execution trace 
corresponding to each scenario. As a case study, we presented the results of a system architecture 
assessment project we did to help a CIO to take a decision about the maintenance of a system. This 
experiment showed that the autonomy_ratio metric was, in this situation, efficient at predicting the 
likely architecture of the system and provided a possible explanation about the difficulty to maintain 
the system. This analysis was later validated by talking to the system’s provider directly. 
The first contribution of this paper is to recognize that the coupling and cohesion metrics must be 
computed at higher levels of granularity than the classes for these metrics to be useful in the assessment 
of the quality of software architecture. The second contribution is the proposal of a formal definition of 
these metrics as well as a new ratio expressing the functional autonomy of the components.  
As for future work, we intend first to calibrate our metrics with respect to different architectural styles 
(i.e. to show how the style of architecture influences the value of the metrics). Next, we must 
empirically study the relationship between system understandability and the distribution of the values 
of the autonomy ratio among all of the substructures (we will perform the same kind of study as 
reported in[18][19]).  
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10. ANNEX: ARISHOLM FRAMEWORK 
 
In this section we present the framework of Arisholm et al. [2][3] to compute dynamic coupling. 
Dynamic coupling is fundamentally based on the interactions (i.e. method calls or message sent) 
between program elements. Since the method calls happen between instances not classes or packages, 
the first problem is to link the calls between the instances to the corresponding coupling between their 
classes. This is the focus of the work of Arisholm et al. that distinguished object coupling and class 
coupling. Object coupling represents the coupling of the classes that are the actual classes of the 
interacting objects. Class coupling represents the coupling of the classes that define the calling and 
called methods, which could be inherited by the actual classes of the instances. Figure 13 reproduces 
the example presented in [3]. There are four classes A, A’, B, B’ where A’ is a superclass of A and B’ a 
superclass of B. When the instance “a” invokes the method mB’() of instance “b”, we get two 
couplings : 
 object-level coupling :  the coupling between A and B because they are the actual classes of the 

interacting object 
 class-level coupling : the coupling between A’ and B’ because this is the level at which the 

methods involved in the interaction are defined. 
 

The metrics are computed by counting the number of calls between the instances while taking the 
following variants into account:  
 Dynamic messages: we count only one call per distinct triple [caller class & method, called class 

& method, program line where the call takes place]. Then if the same method of the same class is 
called from different locations in the code of the calling method, it will be counted several times. 

 Distinct methods: we count only one call per distinct pair [caller class & method, called class & 
method]. 

 Distinct classes: record only one call per distinct pair [caller class & method, called class]. 
 
Finally the authors distinguish between the import coupling of a class representing the methods called 
in other classes, and the export coupling of a class, representing the methods of this class that are called 



by the other classes. The scope of the analysis is the set of classes taken into account in the 
computation of the metrics.  
 

 
Figure 13 : Arisholm framework for the definition of class coupling 
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