
Assessing Legacy Software Architecture
with the Autonomy Ratio Metric

Philippe Dugerdil

Geneva School of Business Administration, Univ. of Applied Sciences of Western Switzerland,
7 route de Drize CH-1227 Geneva, Switzerland

philippe.dugerdil@hesge.ch

Abstract - Among the software quality metrics, coupling and cohesion play an important role since they
provide a clue about the structuring of the classes of the system. They are, therefore, computed at the level
of the classes. However, when analyzing the architecture of a system, we are not only interested in the class
level, but also in the higher levels of the system structure, for example the packages and components. This is
especially true when we need to assess the quality of this structuring on the viewpoint of system
understanding. In this paper, we first present the motivation for the definition of two new coupling and
cohesion metrics that are applicable to higher structuring levels than classes. We then present our main
metric: the autonomy ratio that measures the “functional structuring” of a system that we believe is
essential to system understanding. Although, traditionally, the coupling and cohesion metrics are computed
based on static analysis (i.e. source code analysis to find the potential calls among the elements), we rely on
dynamic analysis and present the way the metrics are computed. Finally, we present a case study of the
assessment of a large industrial system based on our metrics and the findings we drew from this experiment.
We conclude the paper with a discussion of the results and present the future work. The key contribution of
the paper is the definition of the autonomy ratio metrics for software architecture assessment on the
viewpoint of system understanding.

Keywords – Software metrics, system understanding, software architecture assessment, dynamic analysis.

1. INTRODUCTION

Software metrics have long been used in the assessment of the quality of software systems and
especially object oriented systems [15][31][30]. However, all of these works focus on the lowest
structuring level of the software, i.e. the methods and classes. This is enough for low level software
restructuring (i.e. what package the classes should be located to) and impact analysis purposes [14].
When we need to assess the quality of the architecture of some legacy systems on the viewpoint of
system understanding, this is, however, not enough. We also need to make sense of the large-grain
components of the software architecture represented, roughly speaking, by the different levels of the
system substructure (syntactic grouping of elements such as package, modules, components, etc.) and
to study the communication links between these substructures. Traditionally, software metrics are
computed based on the static analysis of the software code. However, dynamic techniques, i.e. the
analysis of the running of the code, have grown in importance especially in the software reengineering
domain (see, for example, [23] [17][36]). In particular, they have been used to analyze the coupling
between classes [1][3][27]. As far as software architecture assessment is concerned, there is no
consensus on any single metric [12], since this process is related to the software quality attribute
considered (QA) [26]. Therefore, any research on architecture quality assessment should make clear the
quality attribute considered. In this paper, we clearly focus on system understanding (or the
“understandability” QA which is strongly linked to the “maintainability” QA). In Section 2, we present
the motivation for our work and the rationale for the definition of two new cohesion and coupling
metrics: hierarchical functional coupling and hierarchical functional cohesion. From the latter, we can
define, in Section 3, our main metric: the autonomy ratio of the substructures of the systems. In
Section 4, we present the way they are computed based on the execution trace of the system. Section 5
shows a case study and Section 6 presents the related work. Finally, Section 7 concludes the paper and
presents the future work.

2. PROGRAM UNDERSTANDING AND COMPONENTS COUPLING

It is well known that understanding takes the lion’s share of the maintenance cost. Some studies say
that code comprehension amounts to 50% of the maintenance effort [34], while others suggest that the
ratio could be situated between 50%-80% [4]or even more: 50%-90% [11]. However, the system’s
understandability which is key to code maintainability has different meaning depending on the authors.

dossantosgw
Texte tapé à la machine
Published in Software Engineering an International Journal (SEIJ). Vol. 1, No. 1, Sept. 2011 which should be cited to refer to this work

dossantosgw
Texte tapé à la machine

dossantosgw
Texte tapé à la machine

One widely-accepted definition is given by Biggerstaff and Mitbander [8]: “A person understands a
program when able to explain the program, its structure, its behavior, its effects on its operational
context, and its relationships to its application domain in terms that are qualitatively different from the
tokens used to construct the source code of the program.”

In principle, any explanation on some phenomenon rests on the relationships we can make with
something we already know. Explaining software is no different [7]. In particular, this is what we think
was intended by the expression: “…in terms that are qualitatively different…” in the definition by
Biggerstaff and Mitbander. However, since software is a formal system, it could be analyzed from the
syntactic as well as semantic viewpoints. The syntactical structure of a program can be described at
several granularity levels (i.e. from the level of a single program statement to the level of large
structures like components or even subsystems) that are themselves associated with semantic
interpretations. Therefore, any explanation of the software should address some or all of these
granularity levels (Figure 1).

Figure 1: granularity levels of program structure and semantics

On the syntactic viewpoint, “understanding” means being able to relate the program constructs to the
operational semantics of the programming language. This operational semantics must, of course, be
already known by the software engineer for such an explanation to be useful. On the semantic
viewpoint, “understanding” means being able to relate the program constructs to some external corpus
of knowledge. The latter is represented by the knowledge of the purpose of the program in the business
domain (the business function), plus some general computer science knowledge about good
programming practices. However, the explanations of the program could be targeted to the different
syntactical levels: single program statement, set of statements, components, packages and subsystems
(i.e. sets of components). The granularity levels considered depend on the “explanation level” needed,
which means the required level of detail on the working of the program. This depends on the software
engineer’s maintenance tasks and activities to perform on the system [34]. Sometimes, a broad
overview on the subsystem’s roles and responsibilities would be enough while, in other cases, the
detailed understanding of some program statements would be required. Depending on the task, program
understanding may work bottom-up through the syntactical levels (from the program statements up to
the subsystems) or top down of both [34]. Now, if the task of an engineer is to understand the software
system globally, for the purpose of assessing the way the program has been implemented, the engineer
must usually work top-down starting from the whole application level (syntactic viewpoint) mapped to
its purpose in the application domain (corresponding semantics). Next, he will decompose the system
gradually according to the syntactical clues found in the program and map each program substructure
to the corresponding pieces of knowledge in the application domain.
In this study, we find it more convenient to speak about substructure than component because the latter
is often related to behavior. Therefore, there is always an ambiguity about the viewpoint adopted:
syntactic or semantic. Thus, we have:

Definition 1: a substructure of a program or system is a source code declaration that:

 represents the syntactical grouping of program elements at any level above the
method/procedure/function declarations;

and
 obeys a containment relationship.

For example, in Java, the substructures are the classes and all the packages that group the packages
and/or the classes at any level of containment. Figure 2 presents the two ways containment could be
represented in UML. The picture on the right part is very interesting in our context since it represents

containment as a graph where the nodes are the substructures and the edges represent the containment
relationship (called “membership” in UML). We will refer to this graph as the containment graph.

Figure 2: alternative UML containment representation

Whatever the substructure level considered, understanding will be facilitated if the system exhibits the
“tree-like hierarchical quasi-decomposability” property [33]. In this case, the substructures could be
studied in isolation; whatever the decomposition level, their purpose and working could be analyzed
without needing to understand the other substructures of the system. This property means, in the
software engineering world, that the substructures should exhibit low coupling and high cohesion. As
far as system understandability is concerned, however, low coupling and high cohesion for a
substructure is not enough for it to be understandable. It should also be mappable to some well-defined
piece of knowledge (or “concept”) in the external corpus of knowledge (application domain model).
This idea is illustrated in Figure 3. When Counsell et al. empirically studied the intuitive meaning of
class cohesion among a set of software engineers, they realized that the very notion of cohesion was
subjective. In one paper they remarked: “In one sense, we could easily replace the word ‘cohesion’ in
this paper with the word ‘comprehension’ ” [18]. In another paper they strengthened their analysis and
said: “Finally, if the research supports the view that cohesion is a subjective concept reflecting a
cognitive combination of class features, then cohesion is also a surrogate for class comprehension”
[19]. This is close to our view, but we extended this vision to substructure cohesion and coupling since
we need to comprehend software at higher (coarser) granularity levels.

Figure 3: relationship between program elements and domain elements

In summary, when facing the task of assessing the architecture of some legacy software system from
the viewpoint (quality attribute) of maintainability, understandability of the system is key. The latter is
related to the way the system is split into substructures at different levels of granularity and to the links
we may draw between these substructures and the concepts in the application domain. Therefore, the
interpretation we give to cohesion and coupling are:

1. Cohesion of a substructure: strength of the functional relatedness of the elements within the
substructure.

2. Coupling of a substructure: strength of the functional dependencies of the substructure with
other substructures.

It is worth mentioning that Chidamber and Kemerer, in their seminal paper, justified the “Coupling
Between Object Classes” (CBO) metric based on reuse and testing arguments only [15]. Moreover, the
cohesion metric (or rather the lack of, since their metric is called “Lack of Cohesion in Methods,”
LCOM) claimed to be an indicator of class complexity. In contrast, our work rests on program
understanding arguments based on the business purpose of the software. Of course, the relationship
with complexity does exist, but it is not straightforward since the same substructure can be involved in
several business functions.

3. DEFINING SUBSTRUCTURE COUPLING AND COHESION

3.1 Introduction

Cohesion and coupling could be measured based on static information as well as dynamic information.
However, dynamic information (i.e. information on program execution) has the advantage of actually
showing the coupling resulting from the actual processing of a scenario of interactions. Since there is
an infinite number of scenarios that could be run on the system, we will focus on those that have value
in the business i.e. corresponding to instances of the use-cases. Therefore, what we will study is the
dynamic functional architecture of the system, i.e. the ways the substructures dynamically interact to
implement some well-defined business functions (represented by the scenarios). By reference to the
4+1 views of Kruchten [28] this architecture belongs to the logical view, at the level of components or
packages. In fact, the programming elements involved in the scenarios can be related to the
substructures they belong to. Figure 4 illustrates the static structure of a program made up of packages
and classes on top of which the grayed “cloud” represents the program elements involved in a scenario
execution (when the “cloud” partly covers an element, this means that only a subset of its methods are
involved). If the elements in the “cloud” are tightly coupled, they form what we call a functional
component i.e. a set of program elements that closely work together to implement a subtask of a
business function [21].

Figure 4: program substructures and functional components

Therefore, one possible architectural assessment of a system is to observe the extent to which the
functional components map to the program substructures. If the latter map well to the functional
components and if they are cohesive and weakly coupled, then we could assign them a meaning from
the functional components (i.e. from the business function these components implement). Because
there are generally fewer interactions between program substructures at coarser granularity levels than
at finer ones, we expect both the cohesion and coupling metrics to be lower at coarser levels. This is
illustrated in Figure 5 where the thickness of the links represents the “level” of interactions (number of
messages sent between each other).

Figure 5: coupling and cohesion among substructure levels

As illustrated in Figure 5, the level of interactions between the classes in the same package are
expected to be higher than the level of interactions among classes belonging to different packages
which themselves are expected to be higher than the level of interaction among classes from different
enclosing packages (packages 3 and 6 in the figure). This has some important consequences for the
measurement of the coupling: the “benchmark” (i.e. the value against which we compare the metrics

[30]) will depend on the granularity level of the substructure considered. However, to be able to
measure these metrics, we must define what coupling means at these different levels.

3.2 Computing dynamic coupling and cohesion among substructures

Dynamic coupling and cohesion metrics are computed based on the interactions (i.e. method calls or
message sent) between program elements. Several studies on the dynamic coupling of object and
classes and the comparison to static coupling have been published [2][3]. However, for a software
system architecture assessment, we need to go beyond the class level. Indeed, we need to define
dynamic coupling and cohesion at a higher (coarser) granularity level than the classes because this is
the level at which the business functions are implemented. Therefore, highly cohesive and weakly
coupled substructures could be the sign of a good functional decomposition of the system, hence a
good “understandability.” Among the authors having published on dynamic coupling we highlight the
work of Arisholm et al. [3] because they defined a framework we refer to (see the annex, Section 10,
where the approach of Arisholm is explained in some detail). However, Arisholm concentrates on the
class level: the granularity levels above the classes are only shallowly dealt with (see the related work
section). Since our definitions of coupling and cohesion are specific, we will use different names.
Substructure coupling will be called hierarchical functional coupling or hf_coupling. Substructure
cohesion will be called hierarchical functional cohesion or hf_cohesion. This will avoid any confusion
with the common semantics for these metrics (although there does not seem to be a widely accepted
one [17]). Nowadays, the software systems are mostly written by reusing open-source or commercial
frameworks and components. We call the software system’s specific classes the classes specifically
written in the context of this system. The other classes could come from the reused commercial and
open-source libraries and frameworks. Therefore, the scope of the metrics measurement could be the
specific classes only or all the classes (the specific and the reused ones). Since our goal is to assess the
quality of the software system’s architecture, we only take the specific classes into account. Otherwise,
we would assess the architecture of the framework, as well. Here are some definitions we need in
order to specify our metrics.

Definition 2:

 S: set of all the program substructures in the software system that complies with Definition 1
in Section 2.

 SC: set of all possible scenarios (instances of use-cases) that can be executed on the system.
 Distinct messages: messages whose identification by the 4-uple [C1,m1, C2, m2] is unique.

In other words, there is no pair of messages among all messages considered whose
identification is the same. The interpretation of the 4-uple is: the method m1 in some instance
o1 of class C1 calls the method m2 in some instance o2 of class C2. m1 and m2 are identified
by their signature and C1,C2 by their fully qualified name.

When computing our metrics, we will only take the distinct messages into account. For example, if a
given method in an instance of some class is called several times by the same method in an instance of
another class, we count this event only once. In particular, if there are loops in the caller method then
the repetitions of the same call are ignored. Referring to the definitions of Arisholm et al. [3], we count
the “object-level distinct method import coupling metric” (IC-OM). The rationale for these choices is
that we need to assess the architecture of the system from the point of view of the program
understanding QA. Therefore, we need to know the “tasks” that some substructures delegate to another
substructure. This task delegation means that the responsibility for the processing is shared among
several substructures. Usually, the larger the variety of the delegated tasks by some substructure, the
harder it is to understand the responsibilities of this substructure. (Remark: in these definitions, the
classes considered are the actual classes of the instances that send and receive messages. This is
because we want to know where the action really happens, not where it is defined.)

Definition 3: hf_coupling (hierarchical functional coupling) is a binary function on the set of program
substructures S and the set of scenarios SC defined as:

hf_coupling: S x SC int (1)

It is computed by counting the number of distinct messages sent by all the instances of the classes
recursively contained by the substructure referenced by the first parameter to all of the instances of the
classes located outside this substructure when executing some specific scenario referenced by the
second parameter.

Figure 6, which is based on Figure 5, presents the elements involved in the computation of the
hf_coupling of Class2, where the lines represent the messages sent by the instances of Class2 to the
instances of the other classes when running some well-defined scenario. In this example, the metric
value would be similar to the import coupling of Arisholm et al. [3], because we are dealing with the
level of a single class.

Figure 6: elements involved in the computation of the hf_coupling of Class2

Starting from Figure 6, Figure 7 presents the element involved in the computation of the hf_coupling of
Package1. Again, the lines represent the messages sent by the instances of the classes in Package1 to
the instances of the classes outside Package1 when running the scenario. This coupling measurement
has no equivalent in the work of Arisholm et al. because we are now at the granularity level of a
package.

Figure 7: elements involved in the computation of the hf_coupling of Package1

Finally, starting from Figure 7, Figure 8 presents the element involved in the computation of the
hf_coupling of Package3. The lines now represent the messages sent by the instances of the classes in
Package3 to the instances of the classes outside Package3 when running the scenario.

Figure 8: elements involved in the computation of the hf_coupling of Package3

In this computation, we can say that the substructure referenced by the first parameter of the
hf_coupling function is considered to be a black box; we ignore what is going on inside the black box
and we observe the message traffic between this black box and the rest of the system.

Definition 4: hf_cohesion (hierarchical functional cohesion) is a binary function on the set of program
substructures S and the set of scenarios SC defined as:

hf_cohesion: S x SC int (2)

It is computed by counting the number of distinct messages sent among the direct children of the
substructure referenced by the first parameter in the containment graph, when executing some specific
scenario referenced by the second parameter. However, we ignore the messages sent inside the direct
children themselves which are considered black boxes. We only observe the message traffic between
these black boxes.

Since the direct children of the substructure referenced by the first parameter may not be classes, we
need to explain how this is computed. We say that some direct child of a substructure s1 sends a
message to another direct child of s1 if some instance of a child (if it is a class) or some instance of a
class recursively contained in the child (if it is not a class, for example a package) sends a message to
an instance of another child (if it is a class) or to an instance of a class recursively contained in another
child (if it is not a class). As an example, Figure 9, which is based on Figure 5, presents the elements
involved in the computation of the hf_cohesion of Package1. The line represents the messages sent by
the instances of Class1 to the instances of Class2 and vice-versa when running some well-defined
scenario. For each class in the figure, we ignore the messages sent among the instances of this class and
the messages from an instance to itself, because the class is considered a black box at this level.

Figure 9: elements involved in the computation of the hf_cohesion of package1

Figure 10, based on Figure 5, presents the elements involved in the computation of the hf_cohesion of
Package3. For each package in the figure, we ignore the messages sent among the instances of the
classes recursively contained in the package because it is considered a black box. The lines represent
the messages sent from some instance of some class recursively contained in Package1 to some
instance of some class recursively contained in Package2 and vice-versa.

Figure 10: elements involved in the computation of the hf_cohesion of package3

Because of our very definition, the hf_coupling function exhibits the following property (whose
demonstration based on the set algebra is trivial):

 A, B S, A = father(B) hf_coupling(A,s1) ≤ hf_coupling(B,s1) (3)

Where father(x) returns the substructure that is the father of x in the containment graph. Interpretation:
the value of the hf_coupling function is either stable or decreasing while moving to some higher level
substructures.

As can be seen in the definitions, the metrics must always be computed for some specific scenario,
usually an instance of a use-case of the system. Indeed, the analysis of the functional components of the
system requires the business functions of the software to be explicitly known. In UML, the latter are
expressed through scenarios. Finally, we notice that the above metrics are expressed in absolute
numbers. This raises the well-known problem of the definition of a benchmark for the metrics [30]. In
fact, we use the two metrics above to define the autonomy ratio of a substructure which is expressed in
percent and whose interpretation is much easier.

Definition 5: autonomy ratio is a partial binary function on the set of program substructures S and the
set of scenarios SC defined as:

autonomy_ratio: S x SC [0..100] (%) (4)

If hf_cohesion(s1,sc1) + hf_coupling(s1,sc1) ≠ 0, autonomy_ratio is computed as:

(5)

If hf_cohesion(s1,sc1) + hf_coupling(s1,sc1) = 0, autonomy_ratio is undefined (no value).

Interpretation: this ratio represents the “autonomy” of the substructure s1 in the implementation of
some functional component involved in scenario sc1. The higher that the ratio is, the higher the
autonomy of the substructure s1 in implementing its duties in the scenario sc1, and the lower the
collaboration with other substructures. In other words, when running a scenario, we will observe
several substructures that interact to implement the steps of the processing. If the autonomy ratio is
high for a given substructure, this means that it autonomously implements some task in the processing.
The limit values are:
 autonomy_ratio(s1,sc1) = 100 means that s1 is perfectly autonomous: the subparts of s1 are not

coupled to any other substructure outside s1 to implement the responsibilities of s1 with respect to
the scenario sc1. All of the services required by the subparts of s1 are implemented by some other
subparts of s1.

 autonomy_ratio(s1,sc1) = 0 means that s1 is not autonomous at all: the services required by the
subparts of s1 to implement the responsibilities of s1 with respect to the scenario sc1 are all
implemented outside s1 and not by any other subpart of s1.

 autonomy_ratio(s1,sc1) undefined: this is the case where the subparts of s1 do not interact with
each other or with any other substructure outside s1. In other words, s1 is only a container of pure
server subparts that are not functionally connected with each other. In this case, the subparts of s1
are not put in s1 based on a “functional relatedness” but on some other criteria.

3.3 Autonomy_ratio as a way to assess system understandability

When trying to assess the quality of a software architecture from the viewpoint of the understandability
QA, we compute the autonomy_ratio for all of the substructures of the system (in the case of Java, for
all the packages) and for all the relevant scenarios. Then, we observe the distribution of the
autonomy_ratio among the substructures. If each substructure gets a high autonomy_ratio
(hf_cohesion(s,sc) >> hf_coupling(s,sc)), this means that we can study them almost in isolation and
assign them some specific functional responsibility. In this case, the substructures exhibit the “quasi-
decomposability” property [33]: to understand the working of each substructure we do not need to
understand the other substructures outside them. At the other extreme, if the substructures have a low
autonomy_ratio (hf_cohesion(s,sc) << hf_coupling(s,sc)) they cannot be understood in isolation since
they delegate the work to the substructures outside them. We must, therefore, understand the latter to
understand the working of the former. In summary, the higher the autonomy ratio of a substructure, the
easier to assign it a role (i.e. a responsibility) in the implementation of some business function.

This shows why the autonomy_ratio is a good indicator of the functional decomposability of a system
and therefore of its understandability (Section 2). We believe the autonomy ratio to be more
appropriate as an indicator of system understandability than cohesion or coupling alone because:
1. It applies to all of the levels of the system’s syntactical decomposition. This is required since the

understanding of a system does not mean assigning a functional meaning to its lowest level
elements only, but to all the relevant granularity levels (Section 2). The autonomy ratio indicates

the extent to which each level of the syntactical decomposition of a system could be assigned a
functional meaning.

2. Cohesion is an indicator of the functional relatedness of the components of a substructure. But
what if each of these components delegates some of their work to remote substructures? In this
case, we must also understand these remote substructures in order to understand the working of
the components. This shows that cohesion alone is not enough as an indicator of the
“understandability” of a substructure.

3. Coupling is an indicator of the functional dependencies among substructures. Then, low coupling
means low delegation of work to other substructures and we could hope to be able to understand a
weakly coupled substructure in isolation. But what if the components of such a substructure never
interact? This would means that the substructure cannot be assigned a unique functional role, but
rather, a set of possibly unrelated roles. Therefore, coupling alone is not enough as an indicator of
the functional role of a substructure.

4. MEASURING HF_COUPLING, HF_COHESION AND AUTONOMY_RATIO

4.1 Introduction

Since we collect the metrics based on the business function of a system, we must first know the use-
case of this system. In the case of legacy systems it is often the case that no reliable documentation
exists. Then, we must observe the actual users and abstract out their interaction with the system to
redocument the use-cases. Next, we instrument the source code of the system to be able to generate a
trace of the system’s execution. The latter represents the set of the methods called during the execution.
Finally, we run the system according to each relevant scenario (instance of use-cases) and record the
corresponding execution trace. From this information, we will compute the metrics associated with
each scenario. It is worth mentioning that in the case of legacy systems, we redocument the use-cases
corresponding to the actual system usage. We ignore the scenarios that nobody uses. Since the
computation of the autonomy_ratio depends on the scenario considered, the result gives us a measure
of the system understandability with respect to the actual system usage. This is exactly what we need
when facing system maintenance.

4.2 Format of the execution trace

To be able to reproduce the method call hierarchy, we record an event when a method is entered and
when it is exited. The execution trace is therefore represented by a set of events having the following
format:

1. [SP] [SC] [DP] [DC] ‘[’ [TN] ‘]’ [MS] [RT] ‘[’ [TS] ‘]’ [PV]
or

2. ‘END’ [SP] [SC] [DP] [DC] ‘[’ [TN] ‘]’ [MS] [RT] ‘[’ [TS] ‘]’

Where:

 [SP] : full package name of [SC] (“static” package)
 [SC] : class where the called method is defined (“static” class)
 [DP] : full package name of [DC] (“dynamic” package)
 [DC] : class of the instance that received the message (“dynamic” class)
 [TN] : thread number
 [MS] : signature of the called method
 [RT] : returned type of the called method
 [TS] : time stamp of the call
 [PV] : parameter values of the called method (printable parameters only)

The first format of the trace event is generated when a method is entered for execution. The second
format with the prefix keyword ‘END’ is generated when the corresponding method is exited (end of a
call).
For example, let us have an instance “a” of Class11 in Package11 whose method m1() defined in
Class1 of Package1calls the method m2() of some instance “b” of Class21 in Package21, m2() being
defined in Class2 of Package2. Class1 is therefore a superclass of Class11 and Class2 a superclass of
Class 21. This method call situation is represented in the sequence diagram of Figure 11.

Figure 11: calls between 2 instances

In this case, we would find the following events in the trace file (if all method run in thread 1). In this
example, the timestamp is arbitrary:

Package1 Class1 Package11 Class11 [1] m1() int [2345]
Package2 Class2 Package21 Class21 [1] m2() void [2346]
END Package2 Class2 Package21 Class21 [1] m2() void [2346]
END Package1 Class1 Package11 Class11 [1] m1() int [2347]

Here is an example of real trace events:

 pas.evi.cumulus.od iOdImage pas.evi.cumulus.od iOdImage [36] setAssetName(java.lang.String)

void [12323324] "ffff_gggg_dffer_dfr_2009_3.jpg"
 END pas.evi.cumulus.od iOdImage pas.evi.cumulus.od iOdImage [36]

setAssetName(java.lang.String) void [12323324]

The instrumentation of the source code is performed by an instrumentor we developed using the
javaCC parser generator [25]. The AST of the parsed program is then visited (using the Visitor pattern
[22]) to decorate the nodes corresponding to the method entry and to exit with the instrumentation
code. The latter represents calls to an external program that actually writes the events to the trace file.
Using such an external program minimizes the impact of the instrumentation to the original source file
of the system to analyze. When the decoration of the AST is completed, the source code of the program
is re-generated from the AST and recompiled. When the instrumented program is installed on a
machine, we must also install the library that contains the runtime program that writes the events to the
trace file. We decided not to write the trace events directly to a database for performance reasons. In
this way, the impact of the instrumentation on the execution speed of the analyzed system is minimal.
Figure 12 presents the tools workflow we have implemented to record the execution trace and process
it. There is nothing new in such a workflow since several authors have used the same kind of technique
(see, for example, [5]). However, because the volume of the execution trace we generate is quite huge
(on the order of 106 events), we need to load the trace in a database before being able to process it.

Figure 12: tools workflow for trace generation and analysis

4.3 Computing the metrics

Since we record the full package names in the events, it is easy to locate the classes in the containment
hierarchy and to identify all of the substructures of the program. Then, the algorithm we use to compute
the hf_cohesion and hf_coupling is simple: we just need to decompose the full package name to select
the relevant level of substructure to analyze. For example, starting from the real trace events presented
in §4.2, if we wanted to compute the autonomy ratio of the “pas.evi” substructure, we would consider
all of the events having this prefix in their full package name. Then, we would first select the events
representing the calls among its direct subparts to compute the hf_cohesion metric. Secondly, we
would select the events representing the calls to substructures outside it (i.e. whose package name
would not start with “pas.evi”) to compute the hf_coupling metric.

5. CASE STUDY

The autonomy ratio metric has been specifically developed to perform the assessment of the
architecture of the legacy software system in the perspective of the “understandability” QA. We were
recently approached by the CIO of a company which, several years ago, bought a system from another
company. However, the CIO always struggled to get this system properly maintained by the other
company. To solve the situation, the CIO hesitated to buy the source code of the system to maintain it
in his company. Before doing this transaction, he asked us to assess the architecture of the system and
provide a possible explanation for the complexity of the maintenance. The system had on the order of
5300 Java (J2EE) classes distributed in about 600 packages with a high level of nesting.

First, we designed two dozen scenarios that represented about 80% of the common usage of the system.
The corresponding executed code would then represent the implementation of most of the business
functions used by the actual users of the system. In the case of maintenance, it would therefore be very
likely that the problem would be located in this very code. Next, we instrumented the source code
(JSPs, Servlets and Plain Java Objects) and installed the code on the server (Tomcat). When we
executed the instrumented system based on the scenarios we observed that about 120 packages were
involved in about each of the scenarios (counting all the levels of package nesting up to the root of the
system structure). Finally, we analyzed the whole substructure (package) hierarchy to measure the
autonomy ratio of all packages. We quickly realized that the autonomy ratio was weak for almost all of
the packages. The results are presented in Table 1 below for the first 20 scenarios. To synthesize these
results and show the distribution of the autonomy ratio (AR), we created three categories. We present
the number of packages whose AR was bigger than 50%, those whose AR was bigger than 30% and
finally those whose AR was bigger than 0.

TABLE 1

Results of the execution of 20 scenarios

 Scenario # : scenario number
 NB pack. : total number of packages involved in the scenario, taking all levels of nesting into

account up to the root package.
 AR 50: number of packages involved in the scenario for which the autonomy_ratio was

bigger than or equal to 50.
 AR 30: number of packages involved in the scenario for which the autonomy_ratio was

bigger than or equal to 30.
 AR > 0: number of packages involved in the scenario for which the autonomy_ratio was

bigger than 0.

Analysis of the results:
1. The number of packages involved in all of the scenarios is remarkably similar, as is the number of

packages for which the autonomy ratio (AR) is greater or equal to 50, greater or equal to 30 or

greater than 0. This tends to demonstrate that the functional architecture supporting all of the
scenarios is rather similar.

2. The autonomy ratio of the packages is generally weak. About 5% of the packages have AR 50,
about 10% have AR 30 and less than half of the packages have AR > 0.

3. The weak number of packages with AR 50 tends to demonstrate that only a few packages may
actually implement functional components. In fact, the implementation of most of the functions
seems to be distributed over a lot of packages. Therefore, in the case of maintenance, if some
function must be modified, there will likely be several packages involved.

4. A detailed analysis of the packages with AR 50 showed that they are generally the same
packages for all of the scenarios. This strengthened our feeling that the functional architecture is
similar among all scenarios.

5. The packages with AR = 0 (more than half of the packages involved in the scenarios) are
packages whose direct children are not functionally related. They represent substructures that do
not collaborate when the business-related scenarios are executed. These components, therefore, do
not have any functional cohesion (although their subcomponent may have some).

The interpretation of these results was:

 The architecture of the system is likely not to be based on functional components.
 The architecture of the system seems to be centered on a very small set of core components

(server components) that are accessed by a lot of substructures at different levels of
granularity (client components).

 The absence of a functional component architecture means that most of the maintenance tasks
will likely involve several packages.

 The lack of functional component architecture could explain the relative difficulty to maintain
the system (due to its low understandability).

Therefore, we advised the CIO not to try to maintain the system in his company because of the likely
complexity of the system. Later in the project, we had a chance to talk to the development manager of
the system provider who confirmed our analysis of the architecture of the system. Indeed, it is centered
on a set of core components that are heavily parameterized and called from a set of smaller components
that implemented the code specific to each customer. In a sense, each specific application was built as a
composition of services called in the core components.

6. RELATED WORK

First of all, it is worth mentioning that the notion of cohesion does not have a well-accepted definition
in the OO community [17], while coupling has been more widely studied [9]. Despite this fact, many
papers have dealt with coupling and cohesion, but at the level of the classes. The seminal work of
Chidamber and Kemerer [15] was about the first to propose a formal definition of the coupling metric
(Coupling Between Object, CBO) and cohesion metric (or, rather, the lack of cohesion in methods,
LCOM). However, it did not address the problem of larger program substructures other than the
classes. Recently, Abreu at al. published the MOOD metric set among which the COF coupling factor
computes a global value for the coupling of systems of classes. This metrics is based on the binary
coupling among pairs of classes: if one class references the attributes and/or methods of another class,
the coupling value is 1, 0 otherwise. The COF is the normalized sum of the binary couplings of all of
the pairs of classes in the system. Again, the coupling is computed at the level of classes only. Later
Briand, et al. redefined the LCOM metrics of Chidamber and Kemerer to remove some ambiguity by
presenting five variants [9], but they stayed at the level of the classes. The work of Arsholm et al.
[2][3] proposed a precise definition of class coupling by distinguishing the object level and class level
metrics as well as the elements that are counted: the messages, the methods or the classes. However,
this work concentrated on the class level. For the levels above, the classes they simply proposed to
aggregate the results computed at the class level to the next granularity level. However, this treatment
of a higher (coarser) level of granularity is not appropriate for the assessment of software architecture
on the viewpoint of the understandability QA. In fact, coupling must measure the need for a
substructure to rely on some other substructures to implement some business function. The proposal of
Arisholm et al. does not, however, comply with this intuition since the value for coupling will
monotonically increase when computed at coarser levels of granularity. Therefore, it basically indicates
how tightly a set of classes is linked to the rest of the system’s classes, irrespective of the encapsulation
of the classes in higher level substructures. Counsell et al. introduced the normalized Hamming
distance metric (NHD) [16] to compute class cohesion. It is based on the measurement of the similarity

of the method parameter types in a class. The rationale is, for the authors, that the more similar the
parameter types between all of the methods, the more cohesive the class. Again, this is class metric
only. The work of Kavitha and Shanmugam [27]presents a framework to compute the class coupling
using the execution trace. The latter is called the “actual function call information” or AFCI. They then
claim to use the “standard” coupling formulas (i.e. the one of Arisholm et al.) to compute the metric.
Therefore, this work did not propose a new way to compute the metric. The work of Lui and Milanova
[29] deals with the ways to combine static and dynamic analysis for the measurement of the coupling
among classes. However, the coupling of higher level structures is not addressed. The paper of
Washizaki et al. proposed a coupling-based complexity metrics for components. However, this paper
focuses only on the EJB kind of components. In fact, they observed that the traditional coupling
metrics based on the analysis of the source code of the classes is not relevant for EJB components since
the environment generates classes at run time from the Home and Object interfaces. Moreover, several
implementation classes may be required to implement a single EJB component. In this context, the
coupling between individual implementation classes is not relevant. It must be replaced by the coupling
among EJB components, i.e. among the classes that belong to different components. Then, they
proposed a variant of the COF metrics of Abreu et al. using some binary coupling between the EJB
components: if a class of a component references a class of another component, then the binary
coupling among these components is 1, 0 otherwise. The resulting Component Coupling Factor
(CCOF) is computed as the normalized sum of the binary coupling values among all of the pairs of
components. This metrics represents the first step in the computation of some coupling metrics at a
higher granularity level than classes. However, this work differs from ours in several ways. First, our
metrics can be computed at all the different granularity levels of the system structure. It is not fixed at
the first component level. Second, we compute the strength of the coupling between the substructures,
based on the variety of the messages sent. Since we are interested in the autonomy of the substructures
in their implementation of the system’s functions, it is not enough to compute a binary metric for each
pairs of substructures. We must know how strong the collaboration is. Third, our coupling metric is not
an end in and of itself. It is used to compute the autonomy ratio which is our main metric. We believe
the latter to be more informative on the point of view of system understandability.
In the context of Aspect Oriented programming, Burrows et al. [10] reviewed the metrics used to assess
that maintainability of AOP software. These metrics are adapted from the OO context to account for
the specificities of AOP. Of particular interest are the following metrics where the term module
indicates either a class or an aspect:
 CAE (Coupling on Advice Execution): Number of aspects containing advices possibly triggered

by the execution of operations in a given module.
 CIM (Coupling on Intercepted Modules): Number of modules or interfaces explicitly named in

the pointcuts belonging to a given aspect. (This is the dual of the CAE metric.)
 CMC (Coupling on Method Call): Number of modules or interfaces declaring methods that are

possibly called by a given module.
 CFA (Coupling on Field Access): Number of modules or interfaces declaring fields that are

accessed by a given module.
 LCO (Lack of Cohesion in Operations): Pairs of operations working on different class fields

minus pairs of operations working on common fields (zero if negative).
The first two metrics only measure the coupling brought about by the aspects. However, because of the
definition of the very notion of module, the last three metrics can be applied to non-AOP programs, as
well. In particular, the CMC and CFA metrics in the non-AOP program corresponds to the Chidamber
and Kemerer CBO metrics (which takes both the methods and fields into account). Finally, LCO in a
non-AOP program is similar to the Chidamber and Kemerer LCOM metric. Again all of these metrics
are defined at the level of the classes (or aspects) only and not at higher levels of granularity of the
program structure. Therefore, this work is not comparable to ours.

7. CONCLUSION AND FUTURE WORK

Our paper dealt with the formal metrics we implemented to assess the quality of the architecture of a
system from the program understanding point of view (understandability QA). Since the software
architecture of a program can be defined as: “the structure or structures of the system, which comprise
software elements, the externally visible properties of those elements, and the relationship among
them” [6], we had to first define the structure of a program and the containment relationship of these
structures. From this definition, we were able to propose new dynamic coupling and dynamic cohesion
metrics applicable to whatever level of program substructure. We called these metrics hierarchical and
functional because the value of the metric depends on the granularity level considered (hierarchical)

and the scenario (functional). Then, we defined our main metric: a ratio that measures the “autonomy”
of a given component (substructure) to implement a task of a business function. The reference to the
scenario is compulsory when computing the dynamic coupling and cohesion, since the value of these
metrics will likely be different depending on the business function considered. When assessing the
quality of a system’s software architecture from the program understanding QA point of view, we must
first identify all of the relevant scenarios. Then, we compute our metrics for each execution trace
corresponding to each scenario. As a case study, we presented the results of a system architecture
assessment project we did to help a CIO to take a decision about the maintenance of a system. This
experiment showed that the autonomy_ratio metric was, in this situation, efficient at predicting the
likely architecture of the system and provided a possible explanation about the difficulty to maintain
the system. This analysis was later validated by talking to the system’s provider directly.
The first contribution of this paper is to recognize that the coupling and cohesion metrics must be
computed at higher levels of granularity than the classes for these metrics to be useful in the assessment
of the quality of software architecture. The second contribution is the proposal of a formal definition of
these metrics as well as a new ratio expressing the functional autonomy of the components.
As for future work, we intend first to calibrate our metrics with respect to different architectural styles
(i.e. to show how the style of architecture influences the value of the metrics). Next, we must
empirically study the relationship between system understandability and the distribution of the values
of the autonomy ratio among all of the substructures (we will perform the same kind of study as
reported in[18][19]).

8. ACKNOLEDGEMENTS

We would like to express our gratitude to our teaching assistant, David Sennhauser, who conducted all
of the experiments that lead to the results presented in the case study. We are also grateful to the
reviewers for their suggestions that helped us to improve the quality of the paper.

9. REFERENCES

[1] Abreu F., Goulão M., Esteves R. - Toward the Design Quality Evaluation of Object-Oriented Software Systems. Proc. of

the 5th International Conference on Software Quality, Austin, Texas, 1995.

[2] Arisholm E.– Dynamic Coupling Measures for Object-Oriented Software. IEEE Symposium on Software Metrics
(METRICS’02). 2002.

[3] Arisholm E., Briand L.C., Foyen A. – Dynamic Coupling Measurement of Object Oriented Software. IEEE Trans. on
Software Engineering 30(8). 2004.

[4] Amyot D. Logrippo L. - Feature Interactions in Telecommunications and Software Systems VII, Ottawa, Canada IOS
Press 2003

[5] Antoniol G., Di Penta M. - Library Miniaturization Using Static and Dynamic Information. Proceedings of the IEEE
International Conference on Software Maintenance (ICSM) 2003.

[6] Bass L., Clements P., Kazman R.. Software Architecture in Practice, 2nd edition. Adison-Wesley Inc. 2003.

[7] Belmonte J., Dugerdil Ph. - Using Domain Ontologies in a Dynamic Analysis for Program Comprehension. 2nd
International Workshop on Ontology-Driven Software Engineering. ACM Conference on Systems, Programming,
Languages, and Applications (SPLASH) Reno,Nevada. 2010.

[8] Biggerstaff T.J., Mitbander B. - Program understanding and the concept assignment problem. Comm. of the ACM, 37(5)
1994.

[9] Briand L.C., Daly J.W., Wust J. - A Unified Framework for Coupling Measurement in Object-Oriented Systems.
Empirical Software Eng., vol. 3, no. 1. 1998.

[10] Burrows R., Garcia A., Taïani F. - Coupling Metrics for Aspect-Oriented Programming: A Systematic Review of
Maintainability Studies. Proc. 4th Int. Conf. on Evaluation of Novel Approaches to Software Engineering (ENASE’09)
2009 and in: Evaluation of Novel Approaches to Software Engineering, CCIS, Volume 69, Springer, 2010.

[11] Canfora G., Cimitile A. – Software Maintnance. University of Sannio, Faculty of Engineering at Benevento, Nov. 2000.

[12] Chastek G., Ferguson R. -Toward Measures for Software Architectures. Software Engineering Institute, Tech. Note
CMU/SEI-2006-TN-013, 2006.

[13] Ceccato M., Tonnella P. - Measuring the effect of Sotware Aspectization. Proc. 1st Workshop on Aspect Reverse
Engineering (WARE’04), Delft, The Netherlands. 2004.

[14] Chern R., De Volker K. - The Impact of Static-Dynamic Coupling on Remodularization. ACM Conf. on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA’08). 2008.

[15] Chidamber S.R., Kemerer C.F.– A Metrics Suite for Object Oriented Design. IEEE Trans. on Software Engineering 20(6).
1994.

[16] Counsell S., Mendes E., Swift S., Tucker A. - Evaluation of an object-oriented cohesion metric through Hamming
distances. Tech. Rep. BBKCS-02-10, Birkbeck College, University of London, UK.2002.

[17] Counsell S., Swift S., Carmpton J. - The Interpretation and Utility of Three Cohesion Metrics for Object-Oriented Design.
ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2. 2006.

[18] Counsell S., Swift S., Tucker A. - Object-oriented cohesion as a surrogate of software comprehension: an empirical study.
IEEE Int. Workshop on Source Code Analysis and Manipulation (SCAM’05), 2005.

[19] Counsell S., Swift S., Tucker A. - Object-oriented Cohesion Subjectivity amongst Experienced and Novice Developers: an
Empirical Study. ACM SIGSOFT Software Engineering Notes Vol 31 N° 5, 2006.

[20] Dugerdil P., Jossi S. - Reverse-Architecting Legacy Software Based on Roles: An Industrial Experiment. Communications
in Computer and Information Science (CCIS) 22, pp. 114–127, Springer-Verlag . 2008.

[21] Dugerdil Ph., Repond J. - Automatic Generation of Abstract Views for Legacy Software Comprehension. 3rd Indian /
ACM Conference on Software Engineering (ISEC'2010). 2010.

[22] Gamma E., Helm R., Johnson R., Vlissides J. – Design Patterns. Elements of Reusable Object Oriented Software.
Addison-Wesley Inc. 1995.

[23] Hamou-Lhadj A., Braun E., Amyot D., Lethbridge T -. Recovering Behavioral Design Models from Execution Traces.
Proc IEEE CSMR. 2005.

[24] Jacobson I., Booch G., Rumbaugh J -. The Unified Software Development Process. Addison-Wesley Professional. 1999.

[25] http://javacc.java.net/

[26] Kazman R., Klein M., Clements P. - ATAM: Method for architecture Evaluation. Technical Report CMU/SEI-2000-TR-
004. 2000.

[27] Kavitha A., Shanmugam A. - Dynamic Coupling Measurement of Object Oriented Software Using Trace Events. IEEE
Int. Symposium on Applied Machine Intelligence and Informatics (SAMI ’08). 2008.

[28] Kruchten Ph. - The 4+1 View Model of Architecture. IEEE Software 12(6). 1995.

[29] Lui Y., Milanova A.– Static Analysis for Dynamic Couling Measures. Conf. of the Center for Advanced Studies on
Collaborative research (CASCON '06) 2006.

[30] Lanza M., Marinescu R.– Object Oriented Metrics in Practice. Springer. 2006.

[31] Lorenz M., Kidd J.– Object-Oriented Software Metrics: A Practical G uide. Prentice Hall. 1994.

[32] Page-Jones M. 1998 -

[33] Simon H.A. - The architecture of complexity. In: The Sciences of the Artificial, MIT Press, 1969. (Reprinted in 1981).

[34] von Mayrhauser A., Vans A.M. - Program comprehension during software maintenance and evolution. Computer, 28(8),
1995.

[35] Washizaki H., Nakagawa T., Saito Y., Fukazawa Y. - A Coupling-based Complexity Metric for Remote Component-based
Software Systems Toward Maintainability Estimation. Proc. 13th IEEE Asia Pacific Software Engineering Conference
(APSEC06) 2006.

[36] Yan H., Aldrich J., Garlan D., Kazman R., Schmerl B. - Discovering Architectures from Running Systems: Lessons
Learned. Software Engineering Institute. Tech Report CMU/SEI-2004-TR-016. 2004.

10. ANNEX: ARISHOLM FRAMEWORK

In this section we present the framework of Arisholm et al. [2][3] to compute dynamic coupling.
Dynamic coupling is fundamentally based on the interactions (i.e. method calls or message sent)
between program elements. Since the method calls happen between instances not classes or packages,
the first problem is to link the calls between the instances to the corresponding coupling between their
classes. This is the focus of the work of Arisholm et al. that distinguished object coupling and class
coupling. Object coupling represents the coupling of the classes that are the actual classes of the
interacting objects. Class coupling represents the coupling of the classes that define the calling and
called methods, which could be inherited by the actual classes of the instances. Figure 13 reproduces
the example presented in [3]. There are four classes A, A’, B, B’ where A’ is a superclass of A and B’ a
superclass of B. When the instance “a” invokes the method mB’() of instance “b”, we get two
couplings :
 object-level coupling : the coupling between A and B because they are the actual classes of the

interacting object
 class-level coupling : the coupling between A’ and B’ because this is the level at which the

methods involved in the interaction are defined.

The metrics are computed by counting the number of calls between the instances while taking the
following variants into account:
 Dynamic messages: we count only one call per distinct triple [caller class & method, called class

& method, program line where the call takes place]. Then if the same method of the same class is
called from different locations in the code of the calling method, it will be counted several times.

 Distinct methods: we count only one call per distinct pair [caller class & method, called class &
method].

 Distinct classes: record only one call per distinct pair [caller class & method, called class].

Finally the authors distinguish between the import coupling of a class representing the methods called
in other classes, and the export coupling of a class, representing the methods of this class that are called

by the other classes. The scope of the analysis is the set of classes taken into account in the
computation of the metrics.

Figure 13 : Arisholm framework for the definition of class coupling

Philippe Dugerdil is Professor of Software Engineering at the Geneva School of
Business Administration of the Univ. of Applied Sciences of Western Switzerland
since 2002. Before, he spent 15 years in the software industry, mainly in banking
environments. Philippe holds an engineer degree from the Swiss Federal Insitute of
Technology in Lausanne (EPFL) Switzerland, a PhD Degree in computer science
from Aix-Marseille II University, France and an MBA degree from the Institute of
Management Development (IMD) in Lausanne, Switzerland

