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A B S T R A C T

Controlled delivery of intravenous (IV) anesthetics aims at fast and safe achievement and
maintenance of a suitable depth of hypnosis (DOH), by ensuring appropriate effect site (i.e. brain)
exposure to the drug. Today, such drugs are regularly injected by Target Controlled Infusion
(TCI) systems, piloted by an open-loop algorithm based on Pharmacokinetic (PK) models. Yet the
inaccuracy of concentration prediction of current TCI can reach up to 100%. The situation could
be improved by closing the loop with sensors providing regular real measurements of the an-
esthetic concentration in body fluids. In this paper we present a closed-loop algorithm based on
the classic open-loop algorithm combined with a Kalman filter. The latter estimates plasma drug
concentration based on PK model and sensor measurements. The estimates are then used in the
open-loop algorithm. To validate our approach measurements are generated by means of mod-
ulating the population-based plasma concentration values with the maximum inter- and intra-
patient variability of the statistical Eleveld׳s (Eleveld et al., 2014) PK model. This allows us to
stress the system to a maximum level prior to testing it on patients. We also perform robustness
analysis of this algorithm by accounting for realistic measurement periods and delays.

1. Introduction

Every year, only in the US, 40 million people undergo anesthesia. One in every 1000 of them remains awake, some still feel pain
while not being able to move (Burchum et al.,; Orser et al., 2008) and about one in 200,000 dies only because of anesthesia
(Kotsovolis et al., 2009). The toxic actions of anesthetics continue to deserve constant research. Part of this is due to the difficulty of
ensuring a leveraged delivery of anesthetics, analgesics and muscle relaxants, drugs administered in a cocktail during the anesthesia
process. Anesthetics are hypnotic agents, usually short-time acting, administered intravenously. The controlled delivery of IV an-
esthetics aims at fast and safe achievement and maintenance of a given level of DOH, correlated with plasma and effect site (i.e.
brain) concentration of the administered drugs (e.g. propofol, fentanyl, etc.). Today, such drugs are regularly injected by TCI systems
(Orchestra Base Primea), controlled by an open-loop algorithm (Shafer and Gregg, 1992) computing the delivery rate based on plasma
drug concentration quantitatively predicted with respect to a set of patient׳s demographic characteristics by a population PK model.
The classical PK model of propofol is a three compartments PK model extended with a virtual compartment representing the effect
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site. The population propofol PK models supported by TCI systems are those of Schnider et al. (1998, 1999) and Marsh et al. (1991).
However, only due to inter-patient variability, their inaccuracy in estimating drug concentrations can reach up to 100% (Eleveld
et al., 2014).

Instead of relying on predicted drug concentration in plasma, some attempts to improve the situation were made by introducing a
closed-loop control that uses electroencephalogram (EEG) monitoring to derive the bispectral index (BIS) correlated with the DOH (De
Smet et al., 2007; Liu et al., 2011). However, BIS only indirectly depends on drug exposure, is delayed with respect to changes of drug
concentration in plasma, can be affected by various sources of noise, and cannot be used during interventions involving the patient׳s
head. Moreover, when BIS is used to compute personalised drug administration as in De Smet et al. (2007), the rate of drug delivery is
still computed based on a population PK model. The situation could definitely be improved with sensors providing regular mea-
surements of the concentration of anesthetic agents actually circulating in blood and a closing-loop algorithm able to personalise the
delivery rate computation based on these measurements. Some preliminary prototypes of such sensors exist already (Kivlehan et al.,
2012; Langmaier et al., 2011; Stradolini et al., 2017), allowing us to estimate expected measurement noise, delay and possible
measurement period. However, even when the technology is mature enough, closing the control loop based only on sensor mea-
surements will certainly not be fully reliable, since such measurements will be affected by noise and breakdowns. An algorithm
adjusting the delivery rate based on the population PK model and sensor measurements able to deal with huge noise is required to
improve the precision of anesthesia delivery.

In this paper, we present a control algorithm for the closed-loop delivery of propofol. It is a modification of the classical Shafer׳s
open-loop algorithm (Shafer and Gregg, 1992) combined with a Kalman filter estimating drug concentrations in PK compartments
based on both a population PK model and sensor measurements of plasma concentrations. The algorithm calculates the infusion rate
by looking in the future from time n after injecting the drug during sec10 with a set of reference delivery rates, and choses the delivery
rate such that the target effect site concentration is achieved as rapidly as possible without overshoot. In our implementation, the
concentration at the effect site is computed based on regularly updated plasma concentration measurements and population PK
model using Kalman filter. Rather than using the Schnider et al. (1998, 1999) or Marsh et al. (1991) models supported by standard
TCI, we rely on the PK model recently developed by Eleveld et al. (2014). This model is based on measurements performed on a larger
population than the Schnider model and includes patients and volunteers (see Section 3.3). Moreover, it provides both inter- and
intra- patients variability of PK parameters.

Prior to testing such a system on patients, it is essential to verify the robustness of the closed-loop algorithm against the mea-
surement noise, period, and delay. To do so, we emulate the realistic noisy measurements of plasma drug concentrations obtained in a
random patient by using Eleveld׳s model with both inter- and intra- patients variability of PK parameters. The inter-patient variability
is used to simulate a group of 1000 patients having identical demographic characteristics but different PK parameters and, conse-
quently, different concentration-time (CT) profiles. It is important to note that both Schnider and Marsh models, as they are currently
implemented in TCI systems, would give a single CT profile (one for each model) for this group of patients under some predefined
delivery rate. In turn, the intra-patient variability was used to emulate the random normally distributed measurement noise. Using
the maximum possible variability allows us to stress the system to the extreme. Since each measurement may arrive with a certain
period (e.g. every sec15 ) and be delayed, such that its time stamp correspond to some time in the past, we also test the algorithm
robustness for realistic values of measurement periods and delays. We show that the delivery rate adapts well to administer ap-
propriate amounts of drug for a random individual, avoiding major potential overdosing or unexpected awakening in such patients
compared with the standard TCI.

This paper is organised as follows. In Section 2, we present the related work. Section 3 talks about the basics of PK modelling, and
explains how we generate the measurements to test our algorithm. In Section 4, we present the control algorithm and evaluate its
robustness in Section 5.

2. Related work

Controlled delivery of different drugs, such as inhaled or IV injected anesthetics, analgesics, and muscle relaxants, administered to
patients during anesthesia, has received much attention in the past decades from various research groups. The use of PID controller
for anesthesia delivery based on Electromyography (EMG) measurements was presented in several research articles (Silva et al., 2014;
Silva et al., 2015; Zhusubaliyev et al., 2013). Inhaled anesthetic agents are widely used nowadays with feedback control systems
based on the control of ‘MAC’ values, Minimum Alveolar (i.e. fundamental units of the lung) Concentration, associated with the
probability of patient movement in response to surgical stimuli (Bailey and Haddad, 2005). Gentilini et al. (2001) present two
complicated closed-loop controllers for the delivery of inhaled anesthetic isoflurane: one based on the monitoring of arterial pressure
and another one of DOH through BIS. For propofol, an IV anesthetic agent often preferred to inhaled gases, an adaptive cascaded PID
controller for the target driven delivery has been proposed (Simalatsar et al., 2016). The control variable is the plasma concentration
of propofol. All such approaches require an extensive study of system safety and robustness. In this paper, we also focus on closing the
loop for the control of propofol delivery.

A recent review (Dumont and Ansermino, 2013) gives a good survey of existing techniques for the controlled delivery of IV
anesthetics. It classifies control algorithms into three groups: open-loop, closed-loop feed-forward, and feedback control. Feedback
control algorithms are divided into predictive and adaptive control. A classical open-loop algorithm was presented several decades
ago by Shafer and Gregg (1992) and its adapted version is implemented in TCI systems used in hospitals for IV anesthesia deliver, e.g.
the original Diprifusor from AstraZeneca or the more recent one Orchestra Base Primea TCI system from Fresenius (Orchestra Base
Primea). Still, the use of open-loop and feedforward algorithms in controlled anesthesias delivery suffers from large inter- and intra-
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patient variability of underlying models (see Section 3.2). According to Eleveld et al. (2014) the predicted CT profile of a patient with
the same characteristics of the average one can differ up to 100% from the average CT profile (see Section 3.3) only due to the inter-
individual variability.

In this context, there has been multiple attempts to close the loop with measurable parameters, such as EEG (Silva et al., 2010;
Rampil et al., 1998) using either PID controllers (Liu et al., 2011) or Bayesian-based closed-loop systems (De Smet et al., 2007). Silva
et al. (2015) give a good overview of PID controllers designed for a comprehensive group of drug delivered during anesthesia:
anesthetics, e.g. propofol, analgesics, e.g. remifentanil, and muscle relaxants, e.g. atracurium and rocuronium. Liu et al. (2011) present a
PID controller for controlled coadministration of propofol and remifentanil, guided by BIS monitor. The controller allows automated
delivery of propofol and remifentanil that have interdependent pharmacodinamics and maintains BIS values in predetermined
boundaries during general anesthesia better than manual administration. De Smet et al. (2007) implement a Bayesian method to
evaluate the parameters of the Hill sigmoid function describing pharmacodynamics of anesthesia using observed BIS indexes. This
allows the computation of the necessary drug concentration at the effect site to achieve a certain value of the BIS index. However, the
rate of drug delivery for such systems is based on the population PK model of regular TCI pump and thus suffers from the same large
population PK prediction errors. Moreover, all the controllers developed for these drugs are based on controlling either the level of
BIS or the EMG signals. This is likely due to the absence of sensors able to continuously measure drug concentrations in plasma,
though the technologies are about to come to a mature phase (Stradolini et al., 2017). Inspired by their work, we elaborate similar
closed-loop systems for IV delivered drugs. In addition, similar to Abbas et al. (2016), we perform a step of Computer-Aided Clinical
Trials (CACT), during which we evaluate the algorithm robustness against the measurement noise, period, and delay by simulating
the plasma drug concentration measurements using inter- and intra- patient variability of Eleveld model (Eleveld et al., 2014).

3. Pharmacokinetic modeling

The PK model of propofol is usually described by three-compartment model extended with a virtual compartment representing the
effect site, i.e. brain (Fig. 1). The central compartment with volume of distribution V1 represents the plasma and rapidly exchanging
interstitial fluids of a patient. The drug is delivered to the central compartment at rate U (changing over time) and is cleared from it
with elimination rate k10, defined as CL V/ 1 with CL corresponding to drug clearance. The two compartments with volumes V2 and V3
and inter-compartmental clearances Q2 and Q3 are the rapid and the slow peripheral compartments, respectively. They are needed to
model the drug׳s distribution and its further release into/by various tissues, regulated by k12, k21, k13 and k31, the first-order transfer
rate constants from compartment i to compartment j.

The following system of differential Eqs. (1), (2), and (3) describes the evolution of drug amounts in the three compartments:

= + + + +dA
dt

A k A k A k k k U( )1
2 21 3 31 1 10 12 13 (1)

=dA
dt

A k A k2
1 12 2 21 (2)

=dA
dt

A k A k3
1 13 3 31 (3)

where A1, A2, and A3 represent the amount of drug in the central, rapid, and slow peripheral compartments, respectively. To get the
concentration in a compartment, the amount must be divided by the corresponding volume of distribution ( =C A V/i i i). The re-
lationships between the microconstants kij and the classic PK parameters (CL, Vi , and Qi) are shown in Fig. 1.

The effect site compartment is considered to be too small and thus has no influence on the concentration in the central com-
partment. It is then added in the PK model as a fourth compartment with volume of distribution =V V /100004 1 (Shafer and Gregg,
1992). The microconstants driving central/effect compartments exchange can be defined as =k ke41 0 and =k k /10000e14 0 , where ke0 is
the effect site elimination rate constant. The concentration of the drug at the effect site is computed from the concentration in the
central compartment as described by Eq. (4):

=dC
dt

C C k( ) e
4

1 4 0 (4)

The most widely used PK models for propofol are the Schnider et al. (1998, 1999) and Marsh et al. (1991) ones. The principal

Fig. 1. Schematic representation of the 3-compartments PK model extended with a virtual compartment representing effect site, i.e. brain.
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difference between these two models lays in the way the population PK parameters (PARk, representing kth parameter out of CL, Vi ,
andQi) are computed based on patients’ demographic characteristics represented by weight, height, age and gender of an individual.
This difference leads to different sets of kij constants for these population PK models for patients with identical demographic char-
acteristics. In turn, this results in two different CT profiles for some predefined delivery rate. Recently one additional model was
developed by Eleveld et al. It provides not only a new way for population kij constants computation but also inter- and intra- patients
variabilities of these PK parameters. A more detailed comparison of Schnider and Eleveld models is presented in Section 3.3.

3.1. PK model state space representation

The state space representation of such three-compartment PK model with virtual compartment extension is as follows:

= +x Fx Bu (5)

= +y Cx Du (6)

=

+ + +

F

k k k k k k k
k k
k k
k k

( )
0 0

0 0
0 0

10 12 13 14 21 31 41

12 21

13 31

14 41 (7)

= = = =x
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x
x
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0
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, 0,

T
1
2
3
4

1

(8)

where x is a vector of the amounts of drug =x A1 1, =x A2 2, =x A3 3, and =x A4 4, respectively; F is a state transition matrix, marked as
A in classical state space model representation; B and C are the input and output matrices while u is the input vector, i.e. in our case
U[ , 0, 0, 0] with U being the delivery rate; vector y is the output vector that represents the set of observed value, i.e. the concentration
in the central compartment, such that =y x V[ / , 0, 0, 0]1 1 ; D is the feedthrough (or feedforward) matrix, which in cases when the
system model does not have a direct feedthrough is a zero matrix. It is easy to show that the system is controllable (i.e. it is possible to
find inputs that allow to steer the states from any initial value to any final value within some finite time window) and observable (i.e.
the internal states of a system can be inferred from its external outputs) by showing that B FB F B F B[ ]2 3 and C CF C F C F[ ]T2 3 are full
rank matrices.

3.2. Inter- and intra-patient variability

The inter-patient variability is the well-known CT profile difference among individuals having identical demographic char-
acteristics. The main reason of inter-patient variability is that physiological parameters taken into account in PK models only capture
a small part of the differences between patients. It is typically described assuming a log-normal distribution for a given PK parameter:

=PAR PAR exp* ( )k
p

k k
p (9)

where PARk
p is one (kth) PK parameter out of CL, Vi , and Qi, of the pth individual, PARk its average population value and k

p is the kth

individual component of the inter-patient random effect, an independent, normally distributed variable with 0 mean and k
2 variance.

The inter-individual variability is estimated as k. Unfortunately, establishing which parameters are responsible for the variability in
a general population strongly depends on the selected group of patients. This implies that published PK models of the same drug can
have not only discordant estimates of the inter-individual variability but can also have it associated to completely different para-
meters.

The intra-patient variability is due to measurement errors in data used during model elaboration, biological fluctuations over the
observation period, and inaccuracies inherent to models. For example, a basic assumption says that the compartments are homo-
geneous and well-mixed, and that the transport of the drug between compartments is linear. However, it is known that underlying
processes of drug disposition are not fully linear.

The intra-individual variability is more exhaustively described by a combined additive and proportional error model:

= + +Y C prop C add*( ) *n
p

n
p

n
p

n
p2 2 2 (10)

whereYn
p is the plasma concentration measured at time n for the pth individual,Cn

p is the corresponding predicted concentration, prop
and add are the proportional and additive error terms and n

p is the npth component of the random effect, an independent, normally
distributed variable with 0 mean and 1 variance. A simple additive error model is obtained with =prop 0, while simple proportional
error model with =add 0.

3.3. Schnider vs Eleveld model

The model of Schnider et al. (1998, 1999), implemented in the BasePrimea TCI pump (Orchestra Base Primea), is currently
recommended in many hospitals. This model was developed based on propofol concentrations collected in 24 healthy volunteers and a
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very low inter-individual variability was reported. Body weight, lean body weight, height and age were associated with propofol PK.
Recently, Eleveld et al. published a model for propofol developed over a broader population compared to Schnider׳s model, of 660
individuals, including children, adults, elderly, and obese patients as well as volunteers, retrieved from 21 studies (Eleveld et al.,
2014). Body weight, development, age, and gender had all an impact on propofol pharmacokinetics.

In Eleveld׳s model, distinct PK parameters were associated with patients and healthy volunteers, since clinical conditions might
alter propofol pharmacokinetics. An important inter-individual variability associated with all the PK parameters (range: 18% to 62%)
characterizes propofol CT profiles. Intra-individual variability was defined as a mixed proportional and additional error model, with
proportional component ranging from 33% to 55% according to each study with an additional inter-study variability of 21% and the
additional component set to a fixed value of x mg L1.5 10 /4 . Eleveld׳s and Schnider׳s models would give two single CT profiles (one for
each model) under some predefined drug dosage regimen for patients with same body weight, height and gender if inter-patient
variability is ignored. The profiles obtained with the two models under the same drug dosage regimen differ due to the dissimilarities
in their PK parameters.

Fig. 2 compares Schnider׳s and Eleveld׳s models, while showing the consequences of the important inter- individual variability
characterizing the later model. A virtual 36 year old male patient with a body weight of kg70 and a height of cm170 with changing
propofol target for brain concentration of 6, 4, and mg L5 / during a min15 surgical operation was chosen. The porpofol infusion rate
for the chosen patient to achieve such targets was retrieved from the Orchestra Base Primea TCI pump, which implements the open-
loop algorithm described in Section 4 based on Schnider׳s model without inter-individual variability. The pump was programmed
with the indicated patient׳s parameters and target change profile. According to the TCI pump, the target was well achieved within 1.5
to 2 minutes after a change of target value. The dashed line on the plot shows the TCI-predicted plasma concentration response that
corresponds to the population plasma concentration computed using Schnider׳s model. Of note, all patients with the same demo-
graphic characteristics as the index subject would have exactly the same PK profiles to achieve the previously defined targets under
the same drug delivery scheme using Schnider׳s model.

The index patient was then simulated 10,000 times under the obtained dosage regimen using Eleveld׳s model with inter-patient
variability. These virtual subjects with identical demographic characteristics would therefore differ in their PK parameters and,
consequently, in their CT profiles. Median CT with 90% prediction interval (PI90%), i.e. 5% of the generated virtual patients will have
CT profiles below this interval and other 5% above, are shown in the figure. The continuous line on the plot shows the average
population (median) plasma concentration response predicted by Eleveld׳s model to the provided delivery rate. The grey area re-
presents the variability among 90% of 10,000 virtual patients according to Eleveld׳s model (PI90%). As we can see from the plot, the
predicted plasma concentration of some individuals whose CT profile is close to the borders of the grey area can differ from the
average one by a factor 2. Due to the huge variability associated with propofol pharmacokinetics, open-loop TCI pumps might deliver
inadequate propofol dosages to patients with possible clinical consequences, which is the main motivation for developing the closed-
loop algorithm presented in this paper. Eleveld׳s model was judged more appropriate than Schnider׳s one to the purpose of the
present work. The population model was used as the initial condition model in the proposed closed-loop control algorithm, while
inter- and intra-individual variabilities were used for realistic measurement generation.

4. Controlled delivery

The open-loop algorithm to rapidly achieve and maintain stable drug concentrations at the effect site was presented by Shafer and

Fig. 2. Comparison of CT profiles based on Schnider׳s population PK model of and median CT profile with 90% prediction interval for individuals
with inter-patient variability following Eleveld׳s model.
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Gregg in 1992 (Shafer and Gregg, 1992). Modifications of this algorithm adapted to particular injection platform is widely used in TCI
pumps. Here we introduce the essential parts of the algorithm that underwent the modification as presented in Section 4.2.

This algorithm computes the infusion rate based on the extended PK model illustrated in Section 3. The amount of drug in four
compartments described with vector x at one unit step n is recursively computed as:

= + +x x Fx Bun n n n1 1 (11)

The algorithm computes the infusion rate by looking in the future from time n after injecting the drug with reference unit delivery
rate during sec10 and choses un such that the desired target amount at the effect site, A4, is achieved as rapidly as possible without
overshoot. Such computation is repeated every step, e.g. every second, of drug injection.

It is assumed that the pharmacokinetics of anesthetic drug propofol is linear. This way, the amount of drug in the effect site over
time, following any input represents the superposition of: (1) the amount of drug in the effect site over time, assuming that no input
had been administered, and (2) the amount of drug in the effect site over time for the input only, assuming that there had been no
drug in the body previously.

Algorithm 1. A4 with a unit rate during seconds10 .

During the first step (see Algorithm 1), it calculates the amount of drug in the effect site over time during and following a sec10
infusion at a rate of unit sec1 / , administered to the body in the absence of any previously administered drug, up to tpeak time (at which
the effect site concentration reaches the maximum). This calculation needs to be done only once, and can be done prior to actually
starting the infusion. Here, a is a vector of temporary state variables representing the amounts of drug in the four compartments.

During the second step (see Algorithm 2), the amount of drug at the effect site from time n to time +n tpeak is computed as if no
drug was given. Here, gi are the temporary state variables representing the amounts of drug in the four compartments created for the
purposes of this calculation.

Algorithm 2. +A n n t[ : ]peak4 with no drug injected.

According to superposition, the amount of drug in the effect site at time +n j following an infusion of rate u will be +G j E j u[ ] [ ]4 .
Defining jpeak as the value of j at peak value of +G E u() ()4 for a given u, u can be computed as:

=u
targetA G j

E j
[ ]

[ ]
peak

peak

4 4

(12)

Since jpeak is not known the equation is solved for jpeak and u simultaneously by means of a search algorithm (Shafer and Gregg,
1992).

4.1. Kalman Filter Implementation

Kalman filtering, also known as linear quadratic estimation (LQE), is a recursive filter that estimates the internal state of a linear
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dynamic system from a series of measurements containing statistical noise and other inaccuracies, to provide estimation of the system
state.

Algorithm 3. Classical Kalman filter implementation.

1 Predict:
2 = +X FX Bun n n n n| 1 1| 1 1 // a priori state est.
3 = +P FP F Qn n n n

T
| 1 1| 1 // a priori covariance est.

4 Update:
5 =d y HXn n n| 1

6 = +S HP H Rn n n
T

n| 1
7 =K P H Sn n n

T
n| 1

1

8 = +X X K dn n n n n n| | 1 // a posteriori state est.
9 =P I K H P( )n n n n n| | 1 // a posteriori covariance est.

The algorithm (see Algorithm 3) works in a two-step process. In the prediction step, the Kalman filter produces estimates of the
current state variables based on the state space model of the linear dynamic system and computes the estimate covariance P based on
the covariance of the process noise Q, the state transition model F and the previous estimate of the covariance P.

When applying Kalman filter to PK models with series of plasma concentration measurements, a personalised plasma con-
centration estimation can be computed based on the population PK model with the covariance of the process noise defined by the
inter-individual variability. In the second step, once a new measurement y is available, the measure residual d is computed. Each
measurement is considered to be corrupted with some amount of noise with covariance R. The residual covariance S and optimal
Kalman gain K are also updated before computing the a posteriori state estimate X and the a posteriori estimate covariance P. Once
the next plasma concentration (corrupted with some amount of error, including random noise) is observed, these estimates are
updated, with more weight being given to estimates with higher certainty, such as PK model prediction or the measurement. The two
steps algorithm implementing the Kalman filter is presented in Algorithm 3, where Xn n| 1 and Pn n| 1 stand for the a priory estimation
of the state and estimate covariance, respectively; Xn n| and Pn n| stand for their a posteriori estimates, and =H V[1/ , 0, 0, 0]T

1 is the
observation model, which maps the true state space into the observed space.

In the case of plasma concentration estimation, the covariance of the process noise Q is considered to be equal to the maximum
element of the variance vector of inter-patient variability (i.e. 0.318 according to the Eleveld model). The measurement error of the
sensor cannot be precisely defined yet due to the immaturity of the technologies. However, it can be adjusted since it depends on the
quality of the calibration. Currently we can assume the covariance of the process noise R is equal to the variance of the proportional
component of intra-patient variability, that is 0.22. Such value was obtained by running Eleveld׳s model on the original dataset
removing the inter-study variability, which represents an average value among all the studies included in Eleveld׳s analysis.

4.2. Closing the loop with Kalman filter

The modified version of the algorithm still relies on the basic assumption of superposition defined in Section 4. However, the
amount of drug at effect site in the classical algorithm is based on the population PK model only. In our modification of the algorithm
we use the concentrations of the four compartments estimated with the Kalman filter using the population PK model and mea-
surements of plasma drug concentration. The updated concentration values are then used to recompute the delivery rate using
Shafer׳s algorithm.

5. Robustness analysis

In this section we perform a robustness analysis of the closed-loop algorithm based on Shafer׳s algorithm and Kalman filter, as
presented in Section 4.2. To run experiments, we have chosen a set of 1000 36 year old, 170 cm tall, weighting 70 kg individual
female patients, with inter-patient variability defined by Eleveld et al. These virtual individuals with identical demographic char-
acteristics would therefore differ in their PK parameters and, consequently, in their CT profiles. The target effect site concentration is
set to mg L6 / . Let us first assumed that every second we receive a new measurement, estimate the plasma and effect site CT profiles,
and then use them to compute the delivery rate for the next step. We have computed the effect site CT profiles for all individuals if
they were administered the drug with the delivery rate computed based on population parametersUaverage and withUindividual computed
using our closed-loop algorithm.

On Fig. 3 we show an example of the algorithm performance for one individual in the chosen set. We simulate both the effect site
CT curves for a female with parameters calculated using Eleveld׳s model without inter-patient variability (that we further call an
average patient), and an identical female with randomly selected parameters distributed with the inter-patient variability defined in
Eleveld׳s model (an individual). Small crosses (Z1 with Uindividual) represent the set of measurements that were used to estimate the
individual plasma CT profile marked with the dashed noisy line that approximates the target effect site concentration (Xbrn with
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Uindividual). The solid line a bit below the target concentration is the CT profile of our simulated individual (Zbrn with Uindividual) if she
was administered the drug with the delivery rate Uindividual. While the solid line very much below the target is the CT profile of our
simulated individual (Zbrn with Uaverage) if she was administered the drug with the delivery rate Uaverage.

As we can see, the drug elimination rate of the selected individual is much higher than the average patient, resulting in an
important underdosing with probable awakening during the operation had she been administered the propofol with Uaverage. The
average absolute offset per second (Er) between the concentration Zbrn withUaverage and the target (µ Er( av)) is computed in percentage
after 2min of injection, when the estimated effect site and plasma concentrations reach the equilibrium, which is called the steady
state. It is equal to 32% for this particular case. A similar offset is computed for Zbrn if the chosen individual was administered with
individualized delivery rate Uindividual. This offset error is marked as µ Er( )ind and is equal 4.2%. We see that µ Er( ind) is noticeable,
however, when compared to µ Er( av), it is more than 7 times smaller. We can also notice a small bias of the actual effect site CT profile
(Zbrn with Uindividual) towards the average population model (Zbrn with Uaverage) used for prediction, which results in a slightly larger
offset from the target in the beginning that reduces towards to the end, when the population model also approaches the target. This is
due to the fact that the estimation with the Kalman filter are based on both the measurements and the population model.

The total amount of drug delivered to a patient, the dose (D), is computed by integrating the deliver rate. We can see that the total
dose for an individual (Dind) is g1.51 , which is 37% greater than the one computed for an average patient ( =D 1.1av ), consequence of
the fact that our individual eliminates the drug much faster. For patients with slower elimination rate the situation is the opposite, i.e.
Zbrn with Uaverage will be placed above the target, average offsets will be positive and Dind will be smaller than the Dav.

Both cases described above represent the situations when the CT profile of an individual is either always above or below the
average one, and in some sense follows the average shape but has an offset. However, it is possible that the CT profile is quite
different and may even cross the CT profile of an average patient as on Fig. 4. In these cases the Kalman filter becomes less stable
close to the moment when the CT of the individual crosses the average one and may result in a small overshoot. However, it regains
stability after a small period of time.

It should be noted that the measurement noise is very big, having the proportional and additive error terms of Eq. (10), and is
equal to 0.22 and 0.00015 respectively. Sometimes the measurements can provide negative values, which is unrealistic. However, we
keep these values to preserve the normal distribution of the simulated measurement noise.

Similar to the analysis performed in Section 3.3, we computed the 95% prediction interval (PI95%) for these 1000 virtual in-
dividuals being administered withUaverage (the larger area on Fig. 6) andUindividual (a more narrow area on Fig. 6). The PI95% shows the
every second variability among 95% effect site concentration values of these 1000 virtual patients, while 2.5% of concentration values
above and 2.5% below this interval are not included. The median CT profiles of these individual administered withUaverage andUindividual
are depicted with a solid and a dashed lines, respectively.

The mean absolute difference µ Er( )av among all the simulated individuals administered with propofol at Uaverage delivery rate was
found to be 17%, while the µ Er( )ind was 3%. The maximal values out of these offsets among all individuals were 92% and 58%,
respectively. This means that on average individualization of the delivery rate using our closed-loop algorithm will reduce the target
offset error almost by a factor 6, and in the worst-case, by almost a factor 2.

5.1. Period of measurement

The delivery rates presented above where computed assuming that the measurements were arriving every second, i.e. every time

Fig. 3. An individual with faster metabolic rate than average.
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the rate was recalculated. However, new measurements may arrive with a larger period, e.g. every seconds30 . Fig. 5 depicts an
example of algorithm performance in this case. As it is well expected, we see that the effect site CT profile Zbrn is more noisy than on
Figs. 3 and 4.

Figs. 6 to 9 depict the 95% prediction intervals (PI95%) and the median CT profiles for 1000 virtual individuals being administered
with Uaverage and Uindividual for measurement periods of 1, 5, 10 and sec30 , respectively.

We can see that the real effect site CT profiles of selected individuals administered with Uindividual computed using the measure-
ments obtained every second has a tendency to stay within a 10% accuracy area around the target, the lower and upper bounds of
which are computed as ±Target Target0.1*brn brn. With the increase of measurement period, the PI95% interval becomes larger. With

sec30 measurement period, CT profiles may already exit the 20% accuracy area, however, still remain within the 30% accuracy area.
The 30% accuracy area is not indicated on the graphs, however, it can be easily imagined as an area between 4.2 and mg L7.8 / .

According to the anaesthesiologist׳s opinion, we can consider the oscillations within the 10% area of accuracy as ideal, while
within the 30% area of accuracy as acceptable. Therefore, taking into account the large measurement noise chosen to stress our
algorithm, with sec30 measurement period the robustness of our algorithm is still acceptable.

Fig. 4. An individual with an alternative CT profile.

Fig. 5. Computation with measurement period of sec30 .
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5.2. Robustness with measurement period and delay

In the previous section, we assumed that there is no delay in the measurements, so that the time stamp of all measurements is
equal to the time when it is provided. In reality, the measurement cycle of a sensor quantifying propofol concentration would include:
(1) the time it takes to withdraw the sample of blood, (2) the measurement delay, e.g. due to electrochemical reaction, (3) the time it
take to communicate the measurement to the system running the rate adjustment algorithm, and (4) the time to clean the sensor.

We assume that communication time is in the range of milliseconds, taking into account the performance of modern computing
systems, and thus can be neglected, while the blood sample withdrawal can take about sec5 . Such sensors must be cleaned from the
blood cells that are sticking to the sensor surface causing biofouling, that may affect the accuracy of measurements and must be
performed after several measurements. According to recent developments in the domain of electrochemical sensing technologies for
propofol, the minimum time for sensor cleaning is sec10 , while the measurement delay depends on the chosen methodology to perform
the measurement. The shortest delay is expected to be 22 s (Stradolini et al., 2017). It means that once we receive a measurement, it
would be 22 (for electrochemical reaction) plus 5 (for blood sample withdrawal) seconds old. All this would increase the period of
possible measurements if we imagine that the measurements are performed by only one sensor.

However, the measurements period can be reduced by using an array of identical sensors performing propofol measurements in
parallel. The measurement period then depends on the number of sensors in the array. For example, let us imagine that one sensor has

Fig. 6. PI95% and median CT profiles, period of sec1 .

Fig. 7. PI95% and median CT profiles, period of sec5 .

A. Simalatsar et al. Smart Health 9–10 (2018) 101–114

110



a measurement delay of sec25 and every 4 measurements it requires an automatic cleaning procedure that takes another sec30 , while
blood sample withdrawal takes about sec5 . This way, to build an array of sensors able to provide one measurement every sec15 , we
would need at least 5 sensors. The delay of each measurement will remain unchanged, since the electrochemical reaction that is
needed to produce one measurement takes a certain amount of time.

It should be noted that the first informative measurement will arrive at the earliest at a moment greater than the measurement
delay. The measurement received at time equal to the measurement delay will correspond to the moment of sec0 , and must con-
sequently be equal to 0. However, taking into account that the propofol delivery rate during the first sec30 is usually set to its
maximum value and that the time during which the concentration at the effect site reaches its target is greater than min1 , it is less
critical to receive the first measurement with a greater latency (i.e. > sec30 ) than all the consequent ones.

An example of the algorithm performance for a realistic scenario with an array of sensors with a measurement delay of sec30 and
measurement period of sec15 is shown on Fig. 10. With such settings we start to see notable oscillations of the individual real effect
site CT profile. This is due to both a large period and the delay, since the dynamics of the system is very fast and by the time the
measurement is received, the system state to which we apply the estimated values has already changed. It should be noted, however,
that the average per second offset µ Er( )ind is still smaller than the µ Er( )av , while the real effect site CT profile has a tendency to stay
within the 10% accuracy area.

Fig. 11 depicts the 95% prediction intervals (PI95%) and the median CT profiles for the case presented above. It shows that the

Fig. 8. PI95% and median CT profiles, period of sec10 .

Fig. 9. PI95% and median CT profiles, period sec30 .
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prediction interval for individuals being administered with Uindividual is at the limit of the 20% accuracy area.
It is worth noting that the noise used in our simulations is extremely high. In reality, the measurement variability is expected to be

much lower, contributing to a better robustness of the algorithm. Therefore, we have repeated the experiments for a measurement
period of sec30 with no delay and a measurement period of sec15 with delay of sec30 with noise level divided by two, setting the
variance of the proportional terms (prop) of intra-patient variability to 0.055. We compare the algorithm performance for two ex-
periments with values of =prop {0.22, 0.055} on Figs. 12 and 13, respectively.

First of all, while looking at these figures, one can notice that the measurement delay has a smaller effect on algorithm robustness
than the period, and played a role only before the steady-state was reached. Second, as expected, the variability interval has de-
creased such that in both cases the effect site CT profiles for 95% of virtual individuals administered withUindividual stayed within the
20% accuracy area resulting in effect site CT profile variability being twice smaller than if they were administered with Uaverage.

6. Conclusion

Once sensors are available for regular measurement of circulating propofol concentrations, they will make it possible to set up
closed-loop systems for controlling TCI-based anesthesia. The results presented in Section 5 show the algorithm robustness for
different measurement periods and delays with the very high Eleveld׳s model predicted variability of plasma measurements. In

Fig. 10. Measurement period of sec15 , delay of sec30 , individual example.

Fig. 11. Measurement period of sec15 , delay of sec30 , prediction interval PI95%.
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reality, this variability is expected to be much lower, contributing to better robustness of the algorithm. Nevertheless, our work shows
that the use of the presented algorithm ensures both more precise and safer plasma and effect size exposures than currently achieved
with open-loop TCI pumps. The approach proposed here, based on the Kalman filter, represents a step towards the development of
this type of devices, which will undoubtedly become part of daily patient management in operating theaters of the future, leading
anesthesia one step closer to the ideal of Precision Medicine.
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