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Abstract

Aim: High sugar concentrations in musts cause a hyperosmotic stress response in Saccharomyces cerevisiae increasing the
risk of sluggish and stuck alcoholic fermentations and/or causing high acetic acid levels. Applying a fed-batch technique where
sugar levels are kept at a constant, low rate throughout fermentations reduces this stress but requires in-situ quantification of
sugars and process automation for practicability. The aim of this work was to develop and validate a near-infrared (NIR)
spectroscopy method allowing for the continuous in-sifu quantification of total fermentable sugars in fully turbid alcoholic
fermentations of grape musts. Calibration models for glucose, fructose and the fermentation product ethanol were also
established.

Methods and results: A research Fourier-transform NIR spectrophotometer equipped with a transflectance probe was used to
acquire spectra from 240 natural and semisynthetic standards from fermentations conducted using varying concentrations of
yeast and yeast nutrients. Using chemometric software, calibration models for total sugars, glucose, fructose and ethanol
demonstrated R? values > 0.93 and prediction error (RMSEP) values of 11.6 g I, 12.3 g 1, 10.2 g I, and 0.328 % v/v,
respectively. The method was integrated with modern process automation technology and was able to maintain sugar
concentrations within 5 g I'' of the 45 g I'' setpoint adjusted during alcoholic fermentations.

Conclusions: The NIR calibration models generated allow prediction of total sugar levels accurately enough to conduct fully
automated fed-batch grape must fermentations at constant substrate concentrations. Application of a transflectance probe
measuring a high proportion of back-scattered radiation proved useful and necessary considering the high degree of turbidity
during fermentations. Placement of the measurement probe in a recirculation loop decreased interference from biomass
sedimentation and adherence of CO, bubbles.

Significance and impact of the study: This study presents a fully automated system to carry out fed-batch fermentations
which allow circumventing the hyperosmotic stress response of S. cerevisiae during alcoholic fermentations. Calibrated for
other substrates, the system may be used in other food and non-food fermentations, too.
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Introduction

Microorganisms play a significant role in the
production of numerous foods and beverages
contributing to shelf-life, aroma, taste and nutritional
properties (Doyle and Beuchat, 2007). High medium
salt or sugar concentrations may lead to microbial
stress response and adaptation or cellular inhibition
and death (Grant, 2004). Such hyperosmotic
conditions may be deliberately chosen during the
food processing to enhance microbiological stability,
or be naturally present in raw materials and affect the
performance of production microorganisms.
Saccharomyces cerevisiae is an acidophilic and
ethanol tolerant production organism of preeminent
importance for the production of foods and
beverages, as well as modern biotechnological
products. In hyperosmotic media containing
significant sugar concentrations, such as grape must,
S. cerevisiae displays a stress response that may
result in the overproduction of several metabolites
including acetic acid (Pigeau and Inglis, 2005a;
Pigeau and Inglis, 2005b) and acetaldehyde (Li and
Mira de Ordufia, 2011). In winemaking, the
hyperosmotic stress response mediated metabolite
profile of S. cerevisiae can be detrimental to wine
quality and result in acetic acid levels exceeding legal
limits.

Recently, Frohman and Mira de Ordufa (2013)
suggested a modified vinification protocol allowing
to alleviate the yeast hyperosmotic response during
the fermentation of grape musts containing high
sugar concentrations (343 g I'! combined glucose and
fructose) that are encountered more frequently in hot
climates or late harvest winemaking (Mira de
Orduiia, 2010). Instead of adding a yeast starter to the
entire batch of grape must, the method consists of
adding the grape must slowly to the yeast starter
where the rate of must addition is adapted to the yeast
metabolic rate in order to ensure that sugar
concentration remains at a constant, low
concentration. Application of this method allowed
conducting fermentations of a high sugar containing
must with increased yeast viability and a significantly
reduced production of acetic acid (Frohman and Mira
de Orduiia, 2013). While providing proof-of-concept,
the methodology applied was onerous requiring
regular sample taking and sugar analysis, and manual
adjustment of the must feeding rate, and clearly
indicated the need for a continuous and automated in-
situ quantification method. However, among the
major challenges for an automated method are
turbidity levels exceeding 10,000 NTU caused by
yeast, nutrients and grape cell debris, effervescence
from metabolic CO, release, temperature changes
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and large concentration gradients
fermentations.

during

Vibrational spectroscopy is a non-destructive and
rapid measurement method with a flexible target
compound range, not requiring sample taking or
consumables nor being diffusion limited, and has
been widely used in food analysis (Ozaki et al.,
2007). Specifically, near-infrared spectroscopy
(NIRS) has been suggested for the analysis of
unfiltered high turbidity media in-situ (Burns and
Ciurczak, 2013). The purpose of the current work
was to develop and validate a Fourier transform (FT)-
NIRS method allowing for the continuous in-situ
quantification of total fermentable sugars (defined as
glucose + fructose) in fully turbid alcoholic
fermentations of grape musts. The method was
integrated with modern process automation
technology enabling fully automatic grape must
fermentations at constant substrate concentrations.
Calibration models for glucose, fructose and the
fermentation product ethanol were also established.

Materials and methods
1. Media, yeast and fermentations

Flash-pasteurized Chardonnay must from the
Languedoc region of France (Kamil Juices, Canada)
and unpasteurized Cabernet Franc must obtained
from directly pressed grapes (Cornell University
Vineyards, Geneva, NY) were utilized. High and low
sugar containing musts were prepared by
chaptalization with equal quantities of anhydrous D-
glucose and D-fructose and/or by diluting with
ASTM Class I water (Arium 611UV, Sartorius,
Germany) and then fermented to generate samples for
model generation validation. To further extend the
range of sugar and ethanol concentration ratios and
turbidity levels, additional samples were prepared by
sterile filtering (0.22 pm, nylon, Millipore, Ireland)
samples from such fermentations, followed by
spiking with water, glucose, fructose, absolute
ethanol, and yeast nutrients. Such samples were also
saturated with CO, to imitate fermentation
conditions. To prevent collinearity problems between
sugar and ethanol concentrations in the models
(Conzen, 2006), additional standards were created by
removing ethanol from fermentation samples by
rotary evaporation (Rotavapor R-200, Biichi,
Switzerland). The volume thus removed was replaced
with water. The dealcoholized wines thus obtained
were then spiked with varying quantities of glucose,
fructose and ethanol in order to create additional
semisynthetic high sugar/high alcohol standards, as
well as low sugar/low alcohol standards. In order to



generate robust chemometric models, the
concentration ranges of various fermentation
parameters were adjusted to cover large concentration
ranges : total sugars, 0-368 g I'; ethanol, 0-21 %
(v/v); yeast inoculum, 40-1200 g hl!'; turbidity, 173-
25,000 NTU.

Active dry S. cerevisiae strain EC1118 (Lallemand,
Canada) was used for all fermentations and prepared
according to manufacturer’s recommendations by
rehydrating for 15 minutes at 40 °C in ASTM Class I
water (Arium 611UV, Sartorius, Germany). The yeast
inoculation rate varied from 40 to 1200 g hl-!
depending on the start volume, which is small in fed-
batch fermentations (see below). For yeast nutrition, a
complex supplement (Fermaid K, Lallemand,
Canada) and (NH,4),HPO; were added to all musts at
0.25 gl

All batch fermentations were conducted isothermally
(20 °C) by adding the rehydrated yeast starter to the
entire amount of must in 2 1 glass bottles (Kimble
Chase, NJ) sealed with suitable air locks (Buon Vino
Manufacturing, Canada) to allow for fermentation
gas release and to prevent air ingress. These
fermentations were inoculated with yeast at 40 g hl!
with respect to the starting volume. Models generated
with these initial batch-fermentations were used to
carry out further training fermentations that were
conducted in automated fed-batch mode in 28 1
cylindroconical stainless steel tanks (Glacier Tanks,
Oregon) at 20 °C.

For these fed-batch fermentations, the rehydrated
yeast slurry was first added to the fermentation tank
(Figure 1). Immediately after the rehydration period,
must warmed up to 20 °C was manually added to
reach a suitable start sugar concentration.
Subsequently, the automation system was activated
and maintained the total sugars at setpoint
concentrations by adding must from the cooled must
tank (Figure 1) until all must was consumed. After
depletion of the must in the storage tank, the
fermentations entered a batch phase until all sugar
was consumed. Fermentations were conducted at
20 °C and were regarded as finished when the sugar
consumption was less than 0.5 g I'! in 24 hours.

2. FT-NIRS analysis, system automation and
logging

The NIR analyser system for spectral acquisition and
processing consisted of a FT-NIR spectrophotometer
(MPA, Bruker Optics, Germany) equipped with a
high-sensitivity InGaAs detector with a 12,500-4,000
cm’! detection range, a stainless steel (SS316) and
autoclavable process control transflectance probe

(IN271F, Bruker Optics, Germany) with a 2 mm
fixed optical path length (1 mm slit) and sapphire
window (Figure 1B), and a 5 m fiber optic quartz
cable with 7 fibers (IN226-05, Bruker Optics,
Germany). The system was controlled using the
acquisition, quantification and processing software
provided (OPUS, Bruker Optics, Germany). All
scans were acquired over the entire spectral range at
a resolution of 16 cm™!, and consisted of 1 minute of
consecutive scans (~ 700 scans), which were
subsequently averaged. Sample and preamp signal
gain settings were set to X1 and X30, respectively,
and the zerofilling factor was set to 8. Sample spectra
were referenced against an air background that was
collected immediately prior to the start of
fermentations. The generation of calibration models
and model validation is described in the results
section and was performed with the chemometric
model development platform of the FT-NIR
equipment software package (QUANT module,
OPUS v7, Bruker Optics, Germany). For batch
fermentations, the transflectance probe was manually
submerged into the fermenting liquid at regular
intervals to acquire absorbance spectra. For
automated fed-batch fermentations, the transflectance
probe (« NIR » in Figure 1A) was placed in an
external loop in which fermentation liquid was
continuously recirculated by means of a peristaltic
pump (704 U/R, Watson-Marlow, England) at a flow
rate of 1 I min™. Following spectral acquisition and
averaging, the total sugar values predicted by the
model in the FT-NIR software (OPUS, Bruker
Optics, Germany) were written to an OPC-server
(OPC Server, Advantech, CA) and transferred via
RS232 to a programmable logic controller (ADAM-
5000/485, Advantech, CA) equipped with a four-
channel analogue output module (ADAM-5024,
Advantech, CA) capable of generating a 4-20 mA
signal scaled to the total sugar concentration
measured. A PID-controller (2216e, Invensys
Eurotherm USA, VA) was used to compare the
process variable (total sugar measured) with the
setpoint value and to control the delivery rate of a
programmable peristaltic pump (Masterflex L/S,
Cole-Parmer, IL) feeding fresh grape must into the
external loop. The auto-tune function of the
controller was used to identify and apply the
appropriate control parameters. For accurate
temperature control, a temperature transmitter (3-
wire PT100-RTD, ProSense, Automation Direct,
GA) was installed in the external recirculation loop
(« TT » in Figure 1A) and connected to a second
PID-controller which controlled the positioning of a
modulating electrically actuated ball valve (BI-
TORQ, IL, USA) circulating cooling water (15 °C)
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Figure 1. The substratostat — an automated continuous fed-batch fermentation system

A. Automated continuous fed-batch fermentation system. Thick solid lines indicate liquid flow ; thin dashed lines
indicate data flow. TT, temperature transmitter ; TC, temperature controller ; NIR, NIR-transflectance probe;
FC, flow controller. B. Detail drawing of fixed optical path-length transflectance probe (IN271F).

through a stainless steel cylindroconical coil installed
inside the fermentation tank. To inhibit microbial
growth in the must prior to fermentation, the must
tank was maintained at -2 to 0 °C by circulating
water through a similarly designed coil. The
substratostat system thus engineered is detailed in
Figure 1.

3. Sampling and reference analyses

During all fermentations samples were taken under a
constant stream of nitrogen to prevent air ingress and
sample oxidation. After separation of the biomass by
centrifugation (5 minutes, 15,000 g) the samples
were immediately frozen at -18 °C for subsequent
HPLC analysis. A high pressure liquid
chromatography system (Shimadzu, Japan)
consisting of a binary LC-20AB pumping unit, a
DGU-20A3 degasser, a SIL-10AD VP autosampler, a
CTO-20AC column oven, a SPD-M20A diode array
detector, and a RID-10A refractive index detector
was used for isocratic separation and analysis of
sugars and ethanol. Data acquisition and analysis was
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performed with the instrument software provided
(LCSolution v.1.23). The mobile phase consisted of
ASTM Class I water with 1 % (w/v) HPLC grade
phosphoric acid and 5 % (v/v) HPLC grade
acetonitrile and was filtered prior to utilization (0.22
um, nylon, Millipore, Ireland). After sample injection
(5 pl), separation occurred at a flow rate of 0.35 ml
min? on a sulfonated polystyrene/divinyl benzene
stationary phase with 9 um particle size (250 x 4.6
mm, Supelcogel H, Sigma Aldrich, MO) with a
corresponding 50 x 4.6 mm guard column
(Supelguard C610H, Sigma Aldrich, MO), both of
which were held at 60 °C (Frohman and Mira de
Orduia, 2013). Sugars and ethanol were quantified
by refractive index. Both analytes were quantified
using external calibration standards. Eight standards
were utilized for each calibration curve. Glucose and
fructose standard concentrations ranged from 1 to
200 g I, and ethanol standard concentrations ranged
from 0.5 to 20 % (v/v).



Turbidity was quantified in must and fermenting
wines with a turbidimeter (Ratio XR, Hach, USA)
previously standardized with formazin standards
(StablCal, Hach, USA).

4. Replication and statistical analysis

All fermentations were conducted in duplicate. The
chemometric models were developed using the
software package of the FT-NIR equipment (OPUS
v7, Bruker Optics, Germany). Origin 9.0 Pro
(OriginLab, MA, USA) was used for graphical
representations.

Results

Separate partial least squares (PLS) models were
generated for the prediction of total sugars (glucose
and fructose), glucose, fructose and ethanol based on
the FT-NIR spectra of approximately 240 authentic
and semisynthetic samples generated by spiking

grape must samples, or taken during the course of
five training batch fermentations and three training
fed-batch fermentations. Figure 2A displays a
representative set of the absorbance spectra collected.

The sample spectra demonstrated a wide range of
baseline absorbances (-1 to 1.8, Figure 2A) that was
associated with sample turbidity caused primarily by
suspended yeast. Vector normalization (SNV) was
used as spectral pre-processing method (Figure 2B),
except for the fructose model, where the first
derivative was also used in combination with SNV in
order to enhance the calibrations model (Table 1).
Because of high inherent spectral noise, the
wavenumber regions below 5000 cm! and above
11,100 cm! were excluded for all models in addition
to the two predominant water absorption bands in the
NIR spectral region, which are located in the 6600-
7100 cm™ and 4800-5300 cm! regions (Figure 2C).
A summary of parameters for pre-processing and
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Figure 2. Spectral acquisition and processing
Sample spectra before pre-processing (A), following vector normalization (B) and after definition of spectral regions for
prediction of total sugars (C). Empty regions were excluded from the model.
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Table 1. FT-NIRS calibration model pre-processing technique and calibration regions

Model Pre-processing  Calibration Regions (cm™)
10229.4 — 9388.5
8709.7 — 8115.6
Glucose SNV
7683.6 —7120.5
6557.3 —5323.0
SNV 11031.7 - 7120.5
Fructose

1" Derivative

Total Sugars SNV

Ethanol SNV

6557.3 —5647.0
11031.7-10136.8
9442.5 - 7120.5
6557.3 —5323.0
9442.5 -7621.9
6557.3 - 5647.0

Table 2. Statistical parameters for final FT-NIRS calibration models

Model N Rank R2 RPD RMSECV RMSEP
Glucose (g 17 235 8 93.17 3.83 10.1 12.3
Fructose (g1") 236 7 9325 3.86 10.7 10.2
Total Sugars (g 1) 242 8 97.23  6.01 13 11.6
Ethanol (% v/v) 236 4 98.80 9.14 0.534 0.328

(RMSECYV, root mean square error of cross validation; RMSEP, root mean square error of

prediction)

spectral regions for the different calibration models is
detailed in Table 1.

After definition of these limitations, a PCA
factorization algorithm was used to identify and
exclude redundant spectra, and to adjust the
wavenumber intervals, number of factors (rank), and
pre-treatment method so as to minimize the root
mean square error of cross validation (RMSECV).
The model rank was then manually readjusted to
reduce noise, and model outliers were identified
using a graphical representation of Mahalanobis
distance versus spectral residue and removed from
the calibration. The models thus adjusted were then
tested against an external validation set consisting of
approximately 30 randomly selected samples
(excluded from calibrations), and the best performing
model (lowest root mean square error of prediction or
RMSEP) for each analyte was retained. As spectra
from samples of additional training fermentations
were obtained, all calibration models were
progressively expanded and revalidated. Figure 3
shows the progression of the RMSEP of total sugars
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with increasing calibration size. The initial total sugar
model which consisted of only 33 spectra performed
poorly, yielding an RMSEP > 25 g I''. Doubling the
number of standards drastically improved the
RMSEP, decreasing it to 18 g I''. The addition of
standards from subsequent training fermentations
resulted in a final RMSEP of 11.6 g I'! (Figure 3).

Graphical representations of the results of the final
model calibrations and external validations for the
prediction of total sugars, glucose, fructose and
ethanol are provided with the Supplementary
Information (Figure S1). Cross- and external
validation statistics for the models are also
summarized in Table 2. The model for the prediction
of ethanol utilized a much lower rank (4), and yet
exhibited the highest R? and RPD values (Table 2).

The three sugar models exhibited RMSECV and
RMSEP values of approximately 10 g I'!. A detailed
analysis of the prediction errors of the final total
sugar model according to the concentration range

(Figure 4) showed that the error was greatest towards
the lower (0-30 g I'Y) and higher (181-230 g I'") ends
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Figure 3. The effect of the number of training
standards (N) on RMSEP
(root mean square error of prediction) for the total
sugar model (tested with external validation sets)

of the measurement range and smallest in the middle
(121-150 g I').

The performance of the initial (N = 33) and the final
(N = 242) total sugar model (Table 2) was compared
by conducting automated fed-batch validation
fermentations with a setpoint of 45 g I'! total sugars.
This setpoint was chosen to test the system at average
prediction errors (Figure 4) and because previous
research had shown that sugar concentrations < 50 g
I'! led to efficient reduction of yeast hyperosmotic
stress response (Frohman and Mira de Ordufia, 2013).
Figure 5 shows the course of the fermentations for
the initial model. After the initial increase of the
sugar concentration by manually adding must, the
fermentation entered the automated fed-batch phase
which lasted until t = 250 heures At this time point,
must in the storage tank was depleted and the
fermentation entered a batch phase until all sugars
were consumed resulting in a dry wine. However, due
to the low number of utilized training standards (N
= 33) and the high model RMSEP (25.7 g I'"), the

control of total sugar concentrations during the fed-
batch phase was poor. Partially, sugar levels
exceeded the target setpoint of 45 g I'! by 25 g I'.
The model also revealed a significant negative bias
with an average actual total sugar concentration of
65 gl

In contrast, the control performance of the final
calibration model (Table 2) was visibly improved
(Figure 6). Total sugar levels were maintained within
5 g I'! of the target value of 45 g 17 during the fed-
batch phase and the average error of prediction was -
0.45 g I'! resulting in a smooth control of target total
sugar concentrations. From an initial fructose:
glucose ratio of 1:1, concentrations of these hexoses
diverged within the first 50 h of incubations and then
levelled off at 30 and 15 g I'! for fructose and
glucose, respectively, resulting in a 2:1 ratio.

Discussion

The application of a novel fed-batch technique was
shown to improve viability of S. cerevisiae during
alcoholic fermentation of a white grape must, and to
greatly reduce the formation of the osmotic stress
related by-product acetic acid (Frohman and Mira de
Ordufia, 2013). Sugar concentrations were held
constant during these fermentations by continuously
feeding grape must at variable rates. Practical
implementation of this method thus requires process
automation involving a relatively high measurement
frequency and continuous feeding rate adjustment.
The current work details the creation and validation
of a FT-NIR spectroscopy-based calibration model
for total sugars and its integration with a process
control system to automate the realization of constant
substrate-level fed-batch fermentations. In addition,
calibration models for fructose, glucose and the main
fermentation product ethanol were also established to
promote process monitoring.
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Figure 4. Average absolute total sugar prediction errors at various total sugar concentration ranges (final model)
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Figure 5. Time course of total sugar (-), ethanol («),
glucose (8) and fructose (C) concentrations quantified
by HPLC for the fed-batch validation fermentation
automatically controlled using the initial total sugar
model (N = 33). Target total sugar setpoint, 45 gI'';
inoculation rate, 40 g hl-'.

NIR spectroscopy-based calibrations with suitable
prediction errors have previously been developed for
the quantification of various grape and wine
constituents, including sugars (Manley et al., 2001
Urbano-Cuadrado et al., 2004; Niu et al., 2008 ; Di
Egidio et al., 2010). However, these models were
developed using filtered, centrifuged, or chemically
clarified samples and consequently exhibited low
turbidity levels. The creation of accurate calibration
models is feasible under such conditions. A pre-
experiment by the authors found that it was possible
to create NIRS-based models for the quantification of
total sugars, glucose, fructose and ethanol in
fermenting wines with R? values > 0.999, RMSECV
values < 1 (<0.15 for ethanol), and RPD values > 40
when 50 sterile-filtered fermentation samples were
utilized (data not shown). Unfortunately, such models
can only be used for offline analysis.

In contrast, the high turbidity of active fermentations
renders acquisition of high quality spectra and
generation of accurate and robust models
challenging. In the current work, 33- and 55-fold
differences in yeast nutrient and active dry yeast
concentrations, respectively, were used among the
training challenges to build differences in sample
turbidity into the developed models. Simultaneously,
the probe used for spectral acquisition as well as the
acquisition settings were optimized. The
transflectance-type NIR spectroscopy probe used
simultaneously measures transmitted and back-
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Figure 6. Time course of total sugar (-), ethanol («),
glucose (8) and fructose (C) concentrations quantified
by HPLC for the fed-batch validation fermentation
automatically controlled using the final total sugar
model (N = 242). Target total sugar setpoint,

45 g I'; inoculation rate, 40 g hl-'.

scattered radiation (Osborne and Fearn, 1986 ;
VonBargen, 1996; Ozaki et al., 2007). Compared to
test spectra recorded using a transmission probe, the
transflectance probe spectra demonstrated a 1-log
decrease in baseline absorbance levels and a
significant reduction in background noise. To further
improve the signal to noise ratio, sample scan time
and spectral resolution were also optimized. Sample
signal and pre-amplification gains were maximized
while preventing detector saturation (Cervera et al.,
2009).

The fermentation vessel design and measurement
arrangement were also improved for spectral
collection. Since biomass sedimentation and adhesion
of CO, bubbles on the transflectance probe head
resulted in unrepresentative spectra, a recirculation
loop was thus added in the final design of the system
reported, and the transflectance probe installed
directly into the flow path. The fast-moving
fermentation liquid thus continuously flushed the
probe head and prevented build-up. The inclusion of
a recirculation loop also ensured rapid and thorough
mixing, prevented temperature gradients and
minimized the delay between feed addition and
reaching fermentation homogeneity.

The initially generated total sugar model was not
sufficiently robust to describe matrix variation during
fed-batch fermentations. In contrast, the final models



consisting of approximately 240 standards and
including spectra from several automated and
continuous fed-batch fermentations provided
acceptable models for all four parameters. Calibration
model RPD values ranged from 3.83 (glucose) to
9.14 (ethanol). The final total sugar model had an
intermediate RPD value of 6.01. All of these values
are above the accepted screening limit (3), with 6.01
(total sugars) being above the limit for quality control
and 9.14 (ethanol) being beyond the cut-off for all
analytical tasks (Williams, 2004 ; Conzen, 2006).
While the number of variables utilized for the three
sugar models is comparatively high, it is low in
comparison to other developed sugar NIRS models
(Chung et al., 1996; Arnold et al., 2003 ; Urbano-
Cuadrado ef al., 2004 ; Petersen et al., 2010) which
may exhibit an increased risk of over-fitting due to
the inclusion of noise features in the model. With 242
training standards utilized in the final total sugar
model, the RMSEP had not asymptotically
approached a lower limit (Figure 3), thereby
suggesting the potential for further improvement via
the inclusion of additional standards. However, the
final model reported here already sufficed the
requirements for maintaining total sugar
concentrations constant during fed-batch
fermentation under practical high turbidity
conditions. The accuracy of the calibration model
was further demonstrated by carrying out the
validation fed-batch fermentation with a
thermovinified and not previously filtered red grape
must, whereas the calibration models had been
developed using white wine samples.

By integrating in-line sugar analysis with process
control, the system presented herein enables the
automation of constant substrate-level fed-batch
vinifications. While NIRS is widely used as an
analytical tool in various bioprocesses, its use in
combination with automation modules to control and
direct fermentations is still limited (Macaloney et al.,
1996 ; Gonzalez-Vara et al., 2000 ; Berraud, 2000;
Tosi et al., 2003 ; Navratil et al., 2005). To the best of
the authors’ knowledge, this is the first time NIRS
has been used to automatically control a fermentation
process in oenology.

A chemostat is a continuous microbiological
cultivation method at a constant-volume where the
rate of inflowing (and hence outflowing) growth
medium is adjusted (Bull, 2010). In analogy,
substratostat is proposed as designation for the
current type of cultivation since the concentration of
the main substrate, the carbon and energy source, is
held adjusted during fermentations. In a chemostat,
the manually adjusted experimental variable « flow

rate » allows to indirectly define the microbial
growth rate p within certain limits (Bull, 2010). In
the current substratostat, the flow rate is
automatically adjusted based on the metabolic
activity of the production organism. It is thus a fed-
batch with direct and automatic feedback control
according to the classification of Yamané and
Shimizu (1984).

Conclusions

FT-NIRS calibration models for the continuous in-
line determination of total sugars, glucose, fructose
and ethanol in fully turbid and actively fermenting
grape musts were established. NIRS quantification of
total sugars was integrated with process automation
technology to create a fully automated system for
conducting variable-feed fed-batch vinifications at
constant substrate (sugar) concentrations. By
maintaining low sugar concentrations (<100 g I'!)
during the fermentation of musts this innovative
substratostatic system allows for the prevention of
the hyperosmotic stress response in S. cerevisiae.
With suitable prediction models, this system may
also find application in other bioprocesses benefitting
from improved control of substrate concentrations.
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