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ABSTRACT 

A thermodynamic model of a “heat wave” phase shifter operating with phase change material 

(PCM) has been developed and experimentally investigated. The work started by building a 

physical model and developing numerical algorithms constructed to simulate its thermal 

behavior. Parameter studies reveal its operation characteristics and demonstrate a remaining 

potential for further improvements. This new phase shifter is a short term PCM heat storage 

device which uses the daily variation of the outside air temperature to indirectly cool the 

interior of a building. Besides sensible heat storage and phase shifting an important influence 

of the latent heat of the PCM is observed that originates from the high latent heat thermal 

inertia of the PCM. This latent heat greatly increases the heat storage capacity and, as a con-

sequence, the phase shift of the “heat wave”, compared to a device working solely with a 

material showing only a sensible heat capacity. To maximize the phase shifters efficiency it 

is important to operate the PCM in its full range between the solid (cold) and the liquid (hot) 

phase. Finally, a 45 % increase of the phase shift compared to only sensible heat storage 

could be achieved. In this article the derivation of this and similar results are outlined in 

detail. 
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1  INTRODUCTION 

In ancient times, e.g. in the Roman empire, mainly the water/ice transition was used to cool 

and preserve food [1]. Then it was found that with additives, e.g. alcohol, glycol, etc., certain 

properties of water/ice may be positively influenced, e.g. its discontinuous first-order phase 

transition could be changed to a continuous phase change that instead of a point-wise transi-

tion now shows an enlarged melting temperature range [2]. Furthermore, the (mean) melting 

point could be shifted to a lower temperature. This then led to the discovery and development 

of further other phase change materials, that show the melting/freezing phenomenon also 

above the freezing point of water, which are roughly classified into organic materials (eutec-

tics, mixtures, paraffin’s, fatty acids, etc.) and inorganic materials (eutectics, mixtures, hy-

drated salts, etc.) [3]. The first category has the advantage of being non-corrosive and the 
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second one to usually be less flammable, which is an important feature demanded from 

PCM’s introduced into building elements [4].  

Today, phase change materials and their operation are studied by a broad commu-

nity of scientists. First, there are the material scientists, involving chemists who are develop-

ing such materials with the practical objective of increasing the melting enthalpy under the 

boundary conditions of also maximizing the thermal conductivity of the material’s solid and 

liquid phases [5]. Furthermore, sub cooling [6], which is a phenomenon that can occur, must 

be prevented. Then, cyclic stability [7] is demanded for practical engineering applications, 

when a safe operation during eventually thousands or even millions of cycles is imperative. 

In a daily storage application, there are approximately 300 times more cycles than in a yearly 

one, which, on the other hand, makes the first much more rentable.  

Secondly, the phase transitions lead to complex mathematical problems as one is 

confronted with moving interfaces between the two phases (see e.g. [8]). If one phase is at 

least an order of magnitude less dense than the other, as e.g. in an air/water transition these 

problems are called free boundary-value problems [9]. The problem is that one is confronted 

with an interface for which one has boundary conditions (ev. in differential form) that need 

to be solved, however without initially knowing the position of this boundary, which itself is 

a part of the full solution. Such mathematically sophisticated problems are primarily studied 

by applied mathematicians, physicists and engineers. Physicists and mathematicians applied 

with success e.g. the Lagrange- and Hamilton principle [10] to solve such problems, whereas 

engineers benefited much from a method called the enthalpy method [11] to tackle such 

complex problems (the model applied in this article is a modified enthalpy method).  

Thirdly, engineers and architects apply PCM’s in technical systems and building 

applications. From hundreds of PCM possibilities they usually take a choice out of a smaller 

group of materials that are sufficiently stable and have over the decades proven to be enough 

reliable for a practical application (e.g. calcium chloride hexahydrate, sodium carbonate, 

etc.). These engineers build laboratory set-ups and perform measurements (see for example 

[12]). Furthermore, they also model PCM systems to study their behavior and compare 

theoretical with experimental results. In this way, general knowledge can be extracted to 

optimize the systems, so that minimum charging and discharging times can be obtained that 

are finely tuned to their specific applications. The work presented in this article belongs into 

this category and has as its specialty a focus on the phase shifting effect of temperature 

profiles from day to night in heating and from night to day in cooling applications of 

buildings. 

      The article shows the in the following described structure. In Sect. 2 the develop-

ment of the thermodynamic model is described and it presents the complete mathematical 

formulation. In Sect. 3 numerical results are compared with analytical ones. In Sect. 4 the 

bench mark test is presented and described, and its characterizing parameters are listed. Sect. 

5 is devoted to the characteristics of the applied PCM. In Sect. 6 experiments with the phase 

shifter and its comparison with numerical results are outlined. Finally, in Sect. 7 the article 

is complemented by some conclusions and an outlook. 

 

2  THE THERMODYNAMIC MODEL 

In this section the model geometry, the equations and the solving method as well as the 

implementation method of the model are described in detail. Then, also a set of numerical 

solutions of the thermodynamic model is presented. Some calculations were intentionally 



kept simple to facilitate comparisons of the numerical solutions with well-known analytical 

results. After these tests the complexity was increased and more practical results were 

attempted. We also decided to provide short information on the convergence tests and expe-

riences, which are results that are valuable to other scientists confronted with nonlinear 

numerical diffusion modeling. The thermodynamic model basically consists of two main 

components: 1) the solid or/and liquid PCM domain and the channel domain filled by (mov-

ing) air. These two basic elements are separated by an impermeable wall, however, they are 

coupled by a heat flow through this material-impermeable wall. Thermodynamically, such a 

system is called a ‘closed system’. The coupling by heat transfer takes place at the air-PCM 

boundary of the channel where a convective heat exchange takes place. Here, the PCM con-

tainer wall is assumed to show a high diffusivity and small thickness, so that its thermal 

resistance may be neglected.  

The air flow in the channel is approximated as a standard incompressible 1-d ther-

mal flow whereas the PCM temperature is solved with a nonlinear heat diffusion model.  

2.1  Model geometry 

A Cartesian geometry is sufficient to simulate the thermodynamic behaviour of the phase 

shifter which is mounted together by rectangular plates containing the PCM and a single, also 

rectangular, air containing channel. The air channel is surrounded by the plate-like PCM mo-

dules on the top as shown in Fig. 1.  
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Figure 1. Model geometry. The horizontal air channel is located in the middle between two 

PCMs containing rectangular plates.  

 

         The usually time-dependent convective heat transport is modelled in the down-

stream direction (in x-direction) for bins of width Δx. The nonlinear diffusion process in the 

PCM is spatially modelled in two dimensions (x- and y–directions). However, this process is 

not taken into consideration in the z-direction, perpendicular to the x- and y-direction. In this 

direction we actually assume infinitely extended plates.  

2.2  Model equations 

For an extensive review of the modeling of PCM’s see e.g. Ref. [13]. Solidification and melt-

ing constitute mathematically a classical nonlinear moving boundary value problem. In the 

basic and ideal situation, two modeled domains constitute of a separate component each, 

which are a solid and a liquid phase, respectively, separated by an infinitely thin interface. If 

heat fluxes occur this interface moves and if the solid and the liquid show different densities, 



then internal liquid flows are initiated and the solution becomes more challenging, because 

the chosen melting model must also be incorporated to the coupled continuity and momentum 

equations (Navier-Stokes equations). Numerous studies have shown that for engineering ap-

plications a constant density (ideally being the average of the density of the solid and liquid 

phase) usually lead to sufficient reliable results (see e.g. Ref. [12]). Therefore, the boundary 

position as a function of time and space needs to be determined in the context of solving the 

entire problem. For a half-infinite plate there exist analytical solutions, whereas for comple-

xer geometries numerical calculations must be performed.   

Let us first briefly explain the analytical method and its limitation. A simple situa-

tion showing solidification and melting of pure phases is called the Stefan problem [14].  

Only the one-phase Stefan problem is even simpler. In this special case the liquid 

phase is precisely at its solidification temperature or the solid phase is exactly at its melting 

temperature. A jump to a constant temperature boundary condition is imposed on one side of 

the one-dimensional infinitely extended slab. The solution of the problem then consists of 

the entire spatial temperature distribution for all times and, additionally, of the location of 

the solidification, respectively, melting front as a function of time. In this example, both 

phases show the constant phase-change temperature.  

The solution of the two-phase Stefan problem is also called the Neumann solution 

of the Stefan problem [15]. In this case the temperatures of the two components may differ 

from the phase change temperature. The solution of the Neumann problem is rich as it con-

tains not only the time dependent temperature profiles of the solid and liquid phases, but also 

the location of the interface as a function of time. Usually a jump temperature boundary con-

dition is applied to the half-infinite slab. Not so much known is that there exists an analytical 

solution for the two-phase Stefan problem with a convection boundary condition [16]. The 

main limitations of the basic and modified Stefan problems with their analytical solutions 

are: 

 A semi-infinite slab geometry is used. Therefore, only a single boundary can be 

modelled.  No PCM of a certain thickness can be reasonably modelled by such a 

crude approximation.  

 The initial temperature profile is assumed to be uniform. We will experience that 

this is not the case in the problem dealt with in this article. 

For these reasons analytical solutions are not the method to pursue. Nevertheless, 

the Neumann solution can be used as an ideal test example for our numerical model that can 

solve more general cases. Naturally, that does not prove correctness in all cases, but it is 

surely a method to give improved confidence.  

      For the modeling of the nonlinear heat diffusion process in the PCM, we have 

chosen the Continuous-Properties Model (CPM) of Egolf and Manz [17]. In this solid model 

the evolution of the temperature profile Ts(t,y) of the PCM is governed by a generalized 

nonlinear heat diffusion equation with effective (temperature dependent) physical properties 

𝜕𝑇𝑠(𝑡, 𝑦)

𝜕𝑡
= 𝛼(𝑇𝑠)

𝜕2𝑇𝑠

𝜕𝑦2
+ 𝑏(𝑇𝑠) (

𝜕𝑇𝑠

𝜕𝑦
)

2

.                                                          (1) 

The first two terms with the coefficent  comprise the usual heat diffusion equation. How-

ever, here  is not constant; it is defined by 



𝛼(𝑇𝑠) =
𝑘𝑠(𝑇𝑠)

𝜌𝑠𝑐𝑠(𝑇𝑠)
 ,                                                                            (2) 

where ks is the thermal conductivity of the PCM, ρs is the density assumed to be constant, 

and cs is the specific heat capacity. In the nonlinear term the coefficient b is given by 

𝑏(𝑇𝑠) =
𝑑𝑘𝑠/𝑑𝑇𝑠  

𝜌𝑠𝑐𝑠(𝑇𝑠)
.                                                                         (3) 

The boundary condition on the outer edge of the PCM domain y = yb is 

𝜕𝑇𝑠

𝜕𝑦
=|

𝑦=𝑦𝑏

0.                                                                            (4) 

For the air channel the model of Hollmüller [18] is applied in Cartesian coordinates. The air 

temperature Ta(t,x) evolves as 

𝜕𝑇𝑎(𝑡, 𝑥)

𝜕𝑡
= −𝑣𝑎

𝜕𝑇𝑎

𝜕𝑥
+

𝐿𝑤ℎ𝑐

𝑐𝑎𝜌𝑎𝐴𝑐

(𝑇𝑠|𝑦=𝑦0
− 𝑇𝑎).                              (5) 

In Eq. (5) va is the air axial velocity, ca is the specific heat capacity, ρa the constant air density, 

and Ac the cross section of the air channel. The wetted perimeter is Lw = 2wa, where wa is the 

channel width. The convective heat transfer coefficient is given by the relation 

ℎ𝑐 =
𝑘𝑎𝑁𝑢

𝐷𝐻

,                                                                         (6) 

where ka is the thermal conductivity of the air, DH = 2waha/(wa+ha) is the hydraulic diameter 

of the rectangular channel of width wa and height ha and Nu is the abbreviation for the 

dimensionless Nusselt number for laminar flow. For an infinitely extended small slit rectan-

gular channel this number is: Nu=7. The standard expression for the laminar flow pressure 

gradient is used even though it is generally so small that the pressure drop can be neglected 

for air speed less than 1 m/s, which is typical for our numerical simulations and experiments. 

The boundary condition at the air inlet and at the left outer edge of the PCM is 

𝑇𝑎(𝑡, 𝑥 = 0) = 𝑇𝑖𝑛(𝑡)                                                            (7) 

Finally, Eq. (1) (PCM) and Eq. (5) (air) are coupled by convection at the air-PCM interface 

by 

𝑘𝑠

𝜕𝑇𝑠

𝜕𝑦
|

𝑡,𝑥,𝑦0

= ℎ𝑐(𝑇𝑠(𝑡, 𝑦𝑜) − 𝑇𝑎(𝑡, 𝑥)),      𝑦 = 𝑦𝑜.                                                 (8) 

The basic diffusion equation (1) is a nonlinear partial differential equation, even in the limit 

when the second nonlinear term is negligible. This is so, because α(Ts) is temperature depen-

dent. Because of the high mathematical complexity an iterative method is required to solve 

for the temperature distribution within the PCM domain. The usual Newton method with 

finite differences discretization was employed. The discretized problem was linearized and 

the corresponding Jacobian formed. Inverting the Jacobian delivers the solution for the 

linearized problem. With this, the full solution is constructed by introducing a perturbation 

to this initial solution, linearizing the boundary value problem in the perturbed temperature 

and then integrating. The process is repeated until the correction of the linearized solution to 

the full solution is negligibly small. The solver is written as a Matlab script and uses the fast 



Matlab sparse matrix formulation. The Jacobian inversion is performed by applying the 

Matlab symbol ‘\’. Backward discretization is applied for both, the spatial and time discreti-

zation. The backward time discretization has the advantage to rest stable independently of 

the chosen spatial and temporal step size. To calculate the temperature distribution in the air 

channel a backward finite difference scheme is used. Because the backward spatial discreti-

zation method is applied, and Eq.  (5) does not contain any nonlinear terms, this equation can 

be solved throughout the air channel. However, Eq. (5) is fully linear, because the air 

characteristic density and speed are assumed to be constant. As a consequence, the applica-

tion of the Newton iteration method is not required for the total air domain. Inverting the 

sparse finite differences coefficient matrix is sufficient to find the final solution. 

2.3  Quantification of the phase shift 

The phase-shift between the inlet air temperature and the outlet air temperature  is calculated 

as follows. The phase of a near to sinusoidal function f can be found as 

 𝜑 = 2𝜋 − 𝑡𝑎𝑛−1 (
𝐶𝑓

𝑆𝑓
) ,                                                 (9) 

where the functions Cf and Sf are  

 𝑐𝑓 = ∫ 𝑐𝑜𝑠(𝛼𝑓(𝛼)) 𝑑𝛼 
2𝜋

0
                                                       (10-a) 

 𝑠𝑓 = ∫ 𝑠𝑖𝑛(𝛼𝑓(𝛼)) 𝑑𝛼 
2𝜋

0
,                                        (10-b) 

and 𝑓 is the fluctuating component (zero mean value) of the original function f normalized 

so that ∫ |𝑓(𝛼)|𝑑𝛼 = 4.
2𝜋

0
 The phase shift  is then the difference between the phases of the 

inlet and outlet temperature signals 

  = 𝜑𝑜𝑢𝑡𝑙𝑒𝑡 − 𝜑𝑖𝑛𝑙𝑒𝑡                                             (11) 

The transmission  is the ratio of the integrals (10a,b), evaluated over a single period, of the 

absolute value of the fluctuating components of the outlet and inlet air temperatures. This 

serves as the main characteristic parameter of the evaluation method of the system.  

2.4  Material coefficients 

The material properties of the PCM, namely the specific enthalpy and the thermal conducti-

vity are modeled with two mainly antisymmetric exponential functions which are continuous 

at the phase change temperature Tm, as explained in detail in Ref. [18]. The S-shape transi-

tions of the physical properties, as e.g. the specific enthalpy, the thermal conductivity, etc. 

are modeled by a convex exponential function (with characteristic temperature constant 1) 

to the left-hand low-temperature side of the mean melting/freezing temperature Tm and by a 

concave exponential function (with characteristic temperature constant 2) to the right-hand 

high-temperature side. Thereby, the total width of the mushy region can be exactly defined 

by the formulae  =1+2. For further details, please consult Ref. [17]. 

 



3  COMPARISION OF NUMERICAL WITH ANALYTICAL SOLUTIONS  

In this section the solutions of the simulations of the numerical PCM model are compared to 

analytical solutions of the Neumann problem (see Sect. 2.2). In Fig. 2 the numerical and 

analytical solutions of the Neumann problem for solidification are shown. 

 

The PCM calcium chloride hexa hydrate (CaCl2∙6H2) is initially in its liquid phase at a tem-

perature of 32°C, which is clearly above the phase change temperature of 27°C. A disconti-

nues cooling jump, defined by a final temperature of 22°C, is imposed at t=0 on the left 

boundary located at x=0. The temperature profiles are shown for solidification for different 

values of  after 10 h. It can be observed that the numerical solution for = 1 K is very close 

to the analytical Neumann solution (see Fig. 2 on the left). Therefore, we can assume that 

with even smaller ’s it would fully converge toward the analytical result. As expected a 

higher deviation from Neumann’s solution occurs, if the mushy region is chosen to be five 

times larger, namely with = 5 K. An interesting finding is that the solidification front 

propagation speed does not depend considerably on   (see Fig. 2 on the right). 

In analogy to Fig. 2, in Fig. 3 the melting process is shown. Here the PCM is initially 

in its solid state at 22 °C, which is below the phase change temperature 27°C. In this case the 

discontinuous heating jump is performed at x = 0 and t = 0 s from 22 °C instantaneously to  

 

 

  
 

Figure 2. The two panels compare numerical with Neumann analytical solutions in a 

solidification process: (a) temperature profiles (b) position of the melting front as a function 

of time. The black line is the analytic Neumann solution, the blue line the model prediction 

with a mushy zone of width  = 1 K; the red dashed line shows the result with a mushy 

region width of  = 5 K. 

 

 

(a) (b) 



  
 

Figure 3. As Fig. 2, but here for the freezing process. 

32 °C. It is observed that the temperature profile as a function of  exhibits a similar behavior 

as that in the melting case. The front propagation speed is generally lower than in the solidi-

fication process. The explanation for this is the smaller diffusivity of the liquid phase as 

compared to that of the solid one. However, the melting front propagates somewhat faster 

with a larger mushy region width. This is easily understood as a physically consistent result, 

because the mushy region is a mixture of the liquid and solid phase. The case with = 5 K 

shows to the front more solid concentration in its mushy region and, therefore, has a higher 

diffusivity.  

 

4  THE TEST BENCH 

A bench mark test was constructed in order to weigh the model predictions. It is a sandwich 

geometry of three Alba®Balance plates and two air channels between the plates. The device 

length is 1 m and the width 0.5 m. The air channel height is 6 mm and the Alba balance plate 

thickness 25 mm. The device is surrounded by polystyrene plates of 5 cm thickness and 

packed into a wooden box, see Fig 4.  Panel (a) shows the white wooden box containing the 

PCM plates in the middle and the tapered air inlet on the right. Panel (b) shows the thermo-

couples attached to the PCM plate surface. A honeycomb sheet at the air inlet can also be 

seen on the left-hand side.  

      The temperature of the inlet air and the air speed can be controlled. Typically, the 

air speed was v = 0.4 m/s and the air inlet temperature between 20 °C and 31 °C so that the 

phase change temperature, Tm , was within the maximum possible inlet temperature diffe-

rence. The device is equipped with nine thermocouples, two positioned in the air stream and 

seven fixed on the PCM plate surfaces with downstream positions as listed in Table 1. 

Laterally, the thermocouples were mounted in the middle of the plates, namely at. wa /2 = 

0.25 m. 

 

 

(a) (b) 



  
 

Figure 4. Two photographs of the bench mark arrangement: (a)   general overview, (b)  

picture of the surface of a PCM plate. 

 

 

 

 

Table 1. Positions of the thermocouples in axial positions. The temperature values of the 

bold thermocouples are shown in the figures of Sect. 6. 

 Name Type Axial location [mm] 

Air inlet Ta1 K 0 

Air outlet Ta2 K 1000 

PCM surface Ts1 PT100 40 

PCM surface Ts2 PT100 180 

PCM surface Ts3 PT100 320 

PCM surface Ts4 PT100 460 

PCM surface Ts5 PT100 540 

PCM surface Ts6 PT100 750 

PCM surface Ts7 PT100 960 

 

5  THERMAL CHARACTERISTICS OF THE PCM 

The PCM Alba®Balance plates use Micronal® PCM produced by BASF (DS 5039 X). The 

Micronal® material was encapsulated into polymer microcapsules. The characteristics of the 

Alba®Balance plates are listed in Table 2.  

 

Table 2. Alba®Balance thermal characteristics. 

(http://ch.rigips.de/download/pdb_alba_balance_fr.pdf) 

 

Phase change 

temperature 
Tm 23 °C Specific heat cs 1.16 kJ kg-1 K-1 

Latent heat h12 13 kJ kg-1 Heat conductivity ks 0.27 W m-1 K-1 

Density ρs 900 kg m-3 Mushy region width  1.5 K - 4.5 K 

(a) (b) 

http://ch.rigips.de/download/pdb_alba_balance_fr.pdf


 

Data of a measurement of the mushy region width for DS 5039 X can be found in Ref. [19]. 

In Fig. 5 the measured values of the specific heat cp(T) are shown by quadratic pointers that 

are linearly fitted by the black curve. They show a large continuous mushy region below the 

mean melting temperature, which is characterized by the position of the peak of the specific 

heat, and a rather narrow one above. In comparison two calculated piecewise exponential 

curves, as explained in Sect. 2.3, are presented for mushy regions characterized by a total 

widths of  = 1.5 K (blue line) and  = 4.5 K (red line). To take the asymmetry of the measured 

mushy region into consideration, the following partitions were taken as best fits a) = 1 +2 

= 1.0 K + 0.5 K =1.5 K (blue case) and = 1 +2 = 4.0 K + 0.5 K =4.5 K (red case). By 

studying this figure, it is evident that the case with smaller width of the mushy region fits the 

measurements better in the peak region between 21 °C and 23 °C, whereas that with the larger 

width fits exceptionally well at low temperatures, e.g. when T < 21°C. Finally, we have 

chosen the case with the larger width. By this we also benefited by a higher numerical stabi-

lity and a lower calculation (CPU) time given by the possibility of choosing a spatially wider 

discretization scheme. 

 

Figure 5. Measured specific heat of DS 5039 X (black line with square symbols) [19], and 

theoretical determined specific heat composed with two piecewise exponential functions 

(see Section 2.3) with  (blue line) and with  (red line). 

 

6  COMPARISON WITH MEASUREMENTS 

The numerical model results have been compared with measurements made with the bench 

mark test as described in Sect. 5. We conjecture and accept the fact, that by symmetry each 

internal air channel surface is actually only related to a PCM body of half the thickness of a 

plate. Furthermore, the two side air channels, because of their lack of symmetry, experience 

here the influence to only one side of a single plate. This is corrected by an approximation 

given by the introduction of an effective plate thickness, 



ℎ𝑠,𝑒𝑓𝑓 =
1

2
(ℎ𝑠 +

ℎ𝑠

𝑁𝑎

) = (
1 + 𝑁𝑎

2𝑁𝑎

) ℎ𝑠,                                              (12) 

where Na denotes the total number of plates. Since the device at HEIG-VD has two air 

channels the effective PCM plate thickness is 

ℎ𝑠,𝑒𝑓𝑓 =
3

4
ℎ𝑠 = 18.75 𝑚𝑚 

          The numerical results of the air temperature in the channel are shown in Fig. 6. The air 

inlet temperature (see Table 1: Ta1) is presented by the black line and the three surface 

temperatures measured by the thermocouples fixed to the surface of the plates (see Table 1: 

Ts1, Ts4 and Ts7) are presented by blue, green and red colored lines. In Panel (a) is shown 

the comparison of theoretical results obtained with a mushy domain width of = 1.5 K and 

with measurements. Panel (b) shows the analogous results for = 4.5 K. In both figures the 

solid lines are measured values and the dashed lines are the model results. Both model results 

agree relatively well with the measured values. The case characterized by = 1.5 K seems to 

better predict the rise of the temperature at t < 15 h, especially close to the outlet (red line), 

whereas the second case, characterized by = 4.5 K, shows good agreement at all axial 

positions when the temperature decreases for t > 15 h. We conclude that (i) the simulation 

results are in a good agreement with the measured values, (ii) the model is not very sensitive 

to the chosen  value, and (iii) in order to better reproduce the experimental results a more 

detailed presentation of the material thermal characteristics of the model would be required, 

i.e., use of a piecewise fit with numerous (n > 2) functions rather than n = 2, as in the current 

model.  

          In Fig. 7 the surface temperature contours on the plate are presented. The horizontal 

axis is the time in hours and the vertical axis is the axial distance from the air inlet. In Panel 

(a) the measured temperatures are presented. One can clearly see how the temperature maxi-

mum is delayed by a time of 10 h at the inlet to about 15h at the outlet. The numerically 

calculated temperature values are presented in Panel (b). They have practically identical 

behavior and show a comparable phase shift of the temperature. Simulations results using 

standard Alba plates without PCM are shown in Panel (c); they show quite different evolution 

scenarios of the temperatures. 

      Figure 8(a) shows a typical model prediction of a case with a sinusoidal inlet air 

temperature with a mean temperature of 23°C and an amplitude of 8°C. The length of the 

period is 24 h. The air speed was va = 1m s-1. The length and width of the device was 3.0 m 

and 0.5 m, respectively. The channel and PCM geometry were as listed in Table 2. Two 

periods were calculated because the first period is an initialization period containing small 

transients. This can be seen, because during the second period the outlet temperature is 

different from the values of the first period. A third period leads to a practically identical 

profile as the second one. This is due to the initial conditions, namely the fact that at the 

beginning the radial PCM temperature profiles were equal at all axial positions.  

       With these parameters the model predicts a phase shift of φ = 7.6 hours and a 

transmission of = 45%. The calculation time for the 3 m long device was about 15 min on 

a 2.26 GHz Intel Xeon CPU.  

        Panel (b) presents the numerical simulation results of the device equipped with 

standard Alba panels containing no PCM. Thus, only the sensible heat creates a temperature 

phase shift. It is observed that the outlet air temperature has exactly the same sinusoidal shape 



as the inlet temperature. The typical ‘shoulders’, which visualize a stabilization of the tem-

perature in the mushy region, in the temperature evolution graphics in the environment of the 

phase change temperature, Tm = 23°C, are absent.  

       In the case with only sensible heat storage, the phase shift is φ = 4.2 hours and the trans-

mission is approximately =85 %. Thus, the PCM increases the phase shift by more than 

three hours, namely from 4.2 to 7.6 hours. 
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Figure 6. Comparison of measured (solid lines) and calculated (dashed lines) temperature 

evolutions of the air at the inlet and in the PCM plates of the bench mark test: (a) = 1.5 K 

(b) = 4.5 K. 
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Figure 7. Temperature contour plots of the measurements in Fig. 6. (a): Measured values 

with Alba®Balance. (b) Simulation values with Alba®Balance. (c) Simulation values with 

standard Alba plates without PCM. The contour lines correspond to the same temperature 

in each figure, the minimum temperature being 20.5°C and the maximum 31°C. The 

spacing between contour lines is 0.2°C. 

 

 

 

  
 

Figure 8. Simulations of air outlet temperature (red line) as a result of a sinusoidal inlet 

temperature signal (blue line): (a) with Alba®Balance PCM plates with a phase change  

temperature of 23°C; (b) with standard Alba plates without PCM.  

 

 

7  CONCLUSIONS AND OUTLOOK 

By the term ‘heat wave’ we mean a periodically excited temperature at a boundary that is 

also periodically diffusing into a sensible or/and latent heat material. Notice that the physical 

problem contains no wave equation, as it e.g. occurs in a superfluid with real entropy, 

respectively heat waves! In the first case there is no deformation, whereas in the second an 

influence by temperature stabilization slightly deforms the periodical signal. Thereby, a 

device was built, called ‘heat wave shifter’. It is a test device in our laboratory which delivers 

exact experimental data. These data were applied to evaluate a complex numerical model 

solving heat diffusion in a PCM, which is described by a parabolic nonlinear heat diffusion 

equation coupled to a convective fluid- and thermodynamic physical model. The entire solv-

ing process is described in this article; it is of iterative nature. Good agreement between ex-

perimental and numerical results could be obtained. Furthermore, it was shown that a phase 

shift of approximately eight hours can easily be realized, which is nearly the double time 

difference compared with a “heat wave” shifter working only with sensible heat transfer and 

storage. 

        In future work, we propose to more systematically investigate the wave shifter by 

designing new experiments. With the help of extensive numerical parameter variations 

design rules for building engineers and architects could be worked out and published for a 

support of new renewable, sustainable and energy efficient heating and cooling systems.   
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