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Summary 
Road traffic density estimation can be very helpful for the 
successful deployment of intelligent Transportation systems. In 
this paper, we introduce a deep convolutional neural network 
(DCNN) based method that learns traffic density from 
pre-labeled images in order to estimate the traffic flow density in 
highways. Our method classifies the traffic flow density into 
three different states: light, medium and heavy. A standard 
database of real videos from Seattle roads was used to develop 
our proposed approach. The cross-validation and the class 
activation mapping techniques were employed in this work, in 
order to evaluate the performance of our method. The results 
show that our model outperformed all the existing conventional 
methods by reaching the highest accuracy of 99,62%. 
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1. Introduction 

Video processing methods are nowadays considered one 
of the most active research areas for transportation 
systems in order to manage the traffic flow efficiently. 
Recently, the increased availability of visual data and the 
advances in storage devices over the last decade have 
made the research community focus on the computational 
capacities for image understanding. The use of cameras for 
traffic monitoring has enabled gathering useful 
information in real time including traffic speed, lane 
occupancy, traffic density, etc., from very large areas and 
has provided more flexible solutions compared to the 
traditional magnetic loop radars, microwave, infrared 
detectors which are limited on a single point, high 
installation cost, and are difficult to install and maintain [1, 
2]. In this context, it has been shown that DCNNs methods 
outperform traditional methods in pattern recognition [3, 
4], due to their powerful ability to adaptively learn 
complex features for object recognition. Therefore, 
DCNNs are considered as a powerful tool and showed 
better performance than other conventional methods in 
many domains, such as crowd behavior analysis [5], image 
classification and detection [6], video analysis [7], 

document recognition [8], and so on. For instance, in [9], 
authors proposed a multi-column deep neural networks 
from 25 nets that alternates convolutional traffic with 
max-pooling layers, and they reached 99,46 % of accuracy 
in traffic sign recognition, better than the human 
performance 98,84 % on this task. In recent years, several 
techniques have been used in the literature for traffic 
density estimation from traffic surveillance. We can 
distinguish generally three main types (i) detection based 
methods, (ii) holistic approaches and (iii) motion based 
methods. 
Holistic approaches perform the analysis on the whole of 
the image, by avoiding detecting each moving object 
separately [10]. Some properties such as crowd speed, 
density and localization can be extracted from crowd 
behavior analysis [11, 12]. Some related works that apply 
holistic approach for traffic can be found in [13, 14, 15]. 
These kind of approaches suffer from low accuracy when 
the camera has large perspective. 
Motion based methods, in this approach, several 
techniques [16, 17, 18] estimate the traffic density by 
vehicle tracking. This kind of approaches calculates 
vehicle trajectories across frames, by partitioning an image 
into regions. These methods tend to fail in high congestion 
because of the web-cam video’s low resolution, low frame 
rate and lack of motion information. 
Detection based methods aim at identifying and 
localizing vehicles in each frame. For example in [19], 
authors proposed a real-time traffic congestion estimation 
approach, based on image texture feature extraction and 
texture analysis. The experimental results showed a high 
accuracy for obtaining the vehicle density. Even if the 
detection-based model has shown a good results in many 
fields, it still perform poorly in low resolution and high 
occlusion videos. 
In this paper, we propose a robust traffic-density 
classification model based on a deep neural network 
architecture, which overcomes all the issues faced by 
existing techniques. A DCNN is used to estimate the road 
traffic density in order to classify the traffic flow into three 
main classes (light, medium, heavy) in different 
environmental conditions. The remaining of this paper is 
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organized as follows. Section II presents a background 
about CNNs. Section III provides a detailed description of 
our DCNN architecture. Section IV discusses the 
experimental results by presenting an evaluation of our 
method performance and a comparison with different 
approaches used on the same Database. Concluding 
remarks are given in section V. 

2. Proposed approach 

In this section, we present a background about CNNs and 
describe our DCNN in more details and highlight the 
techniques performed to learn the optimal architecture in 
order to increase the classification accuracy. 

2.1 Background 

CNNs are a special kind of neural network formed by a 
certain number of convolutional and subsampling layers 
stacked on top of each other, depending on the particular 
application or on the complexity of the data. The 
architecture of a typical CNN is composed of one or more 
pairs of convolution and pooling layers and finally 
followed by fully connected layers as seen in Fig. 1. A 
convolutional layer, which represents the core building 
block of a CNN, is composed of a certain number of 
convolutional filters that are applied to the whole input 
image in order to detect local features. The output of each 
convolution is called an activation map. 

 

 

Fig. 1  View of a general CNN architecture which classifies the traffic density as heavy traffic, medium traffic and light traffic. 

After each convolutional layer, there may be a pooling 
layer. The pooling layers are a form of down-sampling, i.e. 
reducing the resolution of the activation maps at a given 
point in the network. There are three main non-linear 
functions to produce pooling, sum pooling, mean pooling 
and max pooling. The conceptual difference between these 
approaches lies in the sort of invariance, which they are 
able to catch. For example, the max-pooling which is the 
most used, takes the maximum input from a region of the 
convolutional layer. The sum and mean pooling are set 
exactly the same as max-pooling but instead using a max 
function, we use the sum or the mean function. This 
technique is used to reduce the number of parameters 
within the model, in order to simplify the computational 
load first, and secondly to minimize the chance of 
over-fitting. Finally, after several convolutional and max 
pooling layers, the high-level features found in the images 
are processed via fully connected layers with the aim of 
activating only one output per class in the recognition task. 
In fact, it creates a stochastic likelihood representation of 
each class based on the activation maps generated by the 
concatenation of the previous layers. 

2.2 Model description 

Our model architecture is composed of first 5 repeatedly 
stacked blocks excluding the input layer. Each block 
contains a convolution module, followed by a max pooling 

module and a normalization module. To regularize our 
model, we introduced a dropout “layer” in order to prevent 
over-fitting. This technique randomly drops out weight 
connections, which are ignored during training. The last 
part in our CNN is constituted by two dense layers, which 
are called classifiers too. These layers are fully connected 
layers, which represent a matrix vector multiplication and 
need a feature vector as an input. Therefore, we used the 
flattening operation, in order to convert the output of the 
convolutional part of the CNN into 1D feature vector. In 
the following Fig. 2, we show our model architecture in 
details. For the input layer we introduced a crop images of 
[238*198*3] to avoid to process non relevant data by our 
algorithm, with three color channels RGB. The receptive 
field (or the filter size) is 3*3, then each neuron in the 
convolutional layer has weights to a [3*3*3] in the input 
volume, for a total of 3*3*3 = 27 weights (and +1 bias 
parameter). For example, the first convolutional layer has 
8 filters so we get (27+1) * 8 = 224 parameters. Similarly, 
we can calculate for 2nd convolutional layer where the 
number of filter from the previous layer become the 
number of channels for current layer’s input. In a 
fully-connected layer, all input units have a separate 
weight to each output unit. For n inputs and m outputs, the 
number of weights is (n+1) *m, which explain 163904 
parameters for the dense layer where n=2560 and m=64.  
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018 

 

71 

 

 

Fig. 2  Our CNN architecture 

We developed our architecture by varying one of three 
parameters: number and sizes of kernels, number of layers 
and pooling strategies. The variation of all these 
parameters impacts the network performance in different 
aspects over multiple runs. The increase of convolutional 
kernels enhanced the network’s capacity of detecting and 
extracting patterns and co-occurrence of patterns. The 
increase of convolution and max-pooling layers make the 
network ‘deeper’ to learn more sophisticated data 
representations. The insertion of pooling layers between 
successive convolutional layers periodically decreases the 
spatial size of representations and the amount of 
parameters and computation in the network. 
The second key ingredient is the loss function used in our 
model, which can be seen as a differentiable objective that 
measures the compatibility between a prediction and the 
ground truth label in the training data (also called a 
“scoring function”). Intuitively, we want the correct class 
to have a higher score than the other classes. When this is 
the case, the loss should be low and otherwise the loss 
should be high. There are many ways to quantify this 
intuition, but when using a DCNN to perform 
classification and prediction on more than two classes, it’s 
usually better to use the cross-entropy loss associated with 
the Softmax classifier. With this combination, the output 
prediction is always between zero and one, and is 
interpreted as a discrete probability distribution over the 
classes. the Softmax activation where the function 

mapping is  always unchanged of the 
ith output unit with W is the filter weights is defined as  
 

 =   (1) 
 
and the cross entropy error function for multi-class output 
is 
 

   (2) 

2.3 Visualizing features detectors 

Deep learning algorithms are known to be very 
complicated to interpret, that’s why they are usually 
treated as black boxes. However DCNN algorithms are 
actually different, and we can visualize various 
components. This will give us an in depth look into their 
internal workings and help us understand them better. We 
presented four main visualizations for each layer to help 
readers understand how our DCNN learns features in 
intermediate layers. We passed an input picture through 
our DCNN and record the intermediate activations as 
shown in Fig. 3. These visualizations served as supporting 
information to help us assess hypotheses about the cause 
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of certain types of errors and understand the relation 
between the different classes (i.e. heavy, medium, light). 

 

 

 

Fig. 3  The structure and intermediate processing layer results of our CNN model 

Each filter in the DCNN is associated with a feature 
detector or neuron that learns during training to be 
particularly active when presented with a specific 
sequence of input images. Therefore, the algorithm is able 
to perform image classification by looking for low level 
and easy interpretable features such as edges and curves, 
and then building up to more abstract concepts through a 
series of convolutional layers. It will be more interesting 
to visualize multiple feature maps from each convolutional 
layer. Fig. 4 shows a direct comparison between the 
results of each convolutional layer applied on the same 
original image used in Fig. 3. 
 

 

Fig. 4  Visualization of the features maps 

As we go deeper through the network, the feature maps 
look more like an abstract representation and less similar 
to the original image. As we can see in block3_conv3 
which contains 32 filters, the cars are somewhat visible, 
but after that it becomes unrecognizable. The reason is that 
deeper feature maps encode high level concepts like 
“headlights” or “Wheels” while lower level feature maps 
detect basic texture and borders. That’s why deeper feature 
maps contain less information about the image and more 
about the class of the image and they still encode useful 
features, but they are less visually interpretable by us. 

3. Experimental results and evaluation 

In this section, we present the results obtained by our 
approach. Firstly, the data set is described and then the 
classification results. 

3.1 Traffic video databases  

The traffic video database consists of 254 video sequences 
of highway traffic in Seattle, Washington, collected from a 
single stationary traffic camera over two days [14]. The 
database contains a variety of traffic patterns and weather 
conditions (e.g. raining, overcast and sunny). Each video 
has a resolution of 320*240 pixels and has 42 to 52 frames 
at 10 frames per second. The database was labeled by hand 
concerning the level of traffic congestion in each sequence. 
The database presents 165 sequences of light traffic, 45 of 
medium traffic and 44 of heavy traffic (very slow), in 
different environmental conditions as shown in Fig. 5. 
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Fig. 5  Example frames of the traffic video data set. These examples show various traffic congestion conditions. From the left to right, labeled as heavy 
traffic, medium (raining) and light (Dark) traffic. 

3.2 CNN activation maps 

Class activation mapping [24] is a technique used in order 
to show a visual explanation for our CNN-based model 
and make it more transparent by obtaining the relevant 
image regions used by our CNN to make the correct 
decision. Fig. 6 shows on top of the input image, the sum 

of filters at each layer of our CNN using a red-blue heat 
map visualization. The more red a pixel, the more relevant 
it is for the classification task. This helps us understand 
what our network is doing with a given input, and 
somehow allow us to be sure that the network is not using 
non relevant information from the images at hand. 

 

 

Fig. 6  The sum of activation maps generated to visualize each convolutional layer in a 2D grid of a trained CNN. 

Fig. 7 shows the Sum of Activation Maps for two sample 
input images at the last convolutional layer of our CNN. 
We can observe that our model is focusing on the cars for 
estimating high density traffic and on the space between 
cars (absence of cars) to assess a low density traffic. This 
shows that our model makes the right decision based on 
the correct information. Thus proving the robustness of 
our model and explaining the high accuracy that we get. 

3.3 Results and comparison  

Our traffic density estimation approach has been applied 
on the database described before. The results from the 
proposed system have been compared to many other 
techniques applied on the same database. Our proposed 
CNN-based method has reached the best accuracy in this 
field by reaching 99, 62% as seen in Table 2. 

In our approach, we split the database into two random 
samples (80% and 20 %) for training and testing, which  
represents 5678 and 1420 frames respectively. In this way, 
we are sure that our training and testing sets reflect the real 
properties of the original dataset. Table 1 provides a 
confusion matrix for the resulting classifier. We can 
observe that the miss-classifications occur between the 
medium and heavy classes, due to their close texture 
pattern. Therefore, we evaluated our model using 5-fold 
cross validation method. We partitioned our data into 5 
equal folds, four parts are used to train our CNN model 
and rest used to test. The process is repeated five times by 
exploring the remaining folds for training and testing. The 
final performance measure, computed as the accuracy 
across all five models, was around 99, 62%. The 
inconvenience of this method is that the training algorithm 
has to be repeated from scratch 5 times, which means it 
takes 5 times as much computation to make an evaluation. 
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Fig. 7  Sum of Activation Maps of a high traffic density image (right) and of a low density traffic image (left). 

Table 1: Confusion matrix 
Actual predicted Light  Medium Heavy 

Light 458 0 0 
Medium 0 493 2 
Heavy 0 3 464 

 
Table 2 presents the comparison of the proposed method 
and other classification techniques, which were evaluated 
on the same database. Our proposed system achieves the 
best accuracy comparatively to all the other methods. 

Table 2: Different traffic density estimation approaches 
Method Accuracy % 

Our proposed approach 99.62 % 
Symbolic features [23] (2013) 96.83 % 

Probabilistic Kernels [20] (2005) 96.00 % 
Spatiotemporal Orientation [21] (2011) 95,28 % 

Motion Vector Statistical Features [16] (2013) 95.28 % 
Holistic Approach [12] (2013) 94.50 % 

Dynamic Texture Method [14] (2005) 94.50 % 
 

The most important quantity to track while training a 
classifier is the validation/training accuracy which is used 
to measure the inconsistency between predicted value and 
actual label. To determine the accuracy of our model, we 
calculated the classification error after that the parameters 
of our algorithm are learned and fixed and no learning 
process is taking place. We fed our model by the test 
samples and we recorded the number of mistakes 
(zero-one loss) that the model makes after comparison to 
our true targets. Then the percentage of misclassification 
is calculated. We plot the model accuracy and the model 
loss over epochs in Fig. 8 and Fig. 9 respectively, from 
which we can understand that our train process took 5 – 6 
iterations to achieve a similar accuracy of 99.62%. 
 

 

Fig. 8  Accuracy over epochs 

 

Fig. 9 Loss over epochs 

4. Conclusion 

In this paper, we presented a DCNN traffic density 
estimation approach for traffic monitoring systems 
through video processing. Our method classifies the traffic 
flow density into three different states: light, medium and 
heavy. A standard database of real videos from Seattle 
roads was used to experiment our proposed approach. The 
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results showed that our model outperformed all the 
conventional existing methods by reaching 99, 62% of 
accuracy. For future work, the proposed approach has 
some possible interesting extensions. For instance, it 
would be interesting to explore other deep learning 
algorithms for traffic flow estimation and adapt and apply 
these algorithms on different data sets to evaluate their 
potential. It can be also a good issue to combine the CNN 
with the Ant colony algorithm. Specifically, CNN can 
extract the traffic features from the traffic network that can 
be involved into the Ant colony algorithm in order to 
manage the urban traffic. 
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