
IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

69

Manuscript received July 5, 2018
Manuscript revised July 20, 2018

Deep convolutional neural network architecture for urban traffic
flow estimation

Sabbani imad†, Perez-uribe Andres††, Bouattane Omar††, El Moudni Abdellah†††

†School of engineering and management Vaud, Yverdon-les-bains, Switzerland
††Faculty of sciences and techniques, Hassan II University, Mohammedia, Morocco
†††Faculty of sciences and techniques, Franche-Comté University, Besançon, France

Summary
Road traffic density estimation can be very helpful for the
successful deployment of intelligent Transportation systems. In
this paper, we introduce a deep convolutional neural network
(DCNN) based method that learns traffic density from
pre-labeled images in order to estimate the traffic flow density in
highways. Our method classifies the traffic flow density into
three different states: light, medium and heavy. A standard
database of real videos from Seattle roads was used to develop
our proposed approach. The cross-validation and the class
activation mapping techniques were employed in this work, in
order to evaluate the performance of our method. The results
show that our model outperformed all the existing conventional
methods by reaching the highest accuracy of 99,62%.
Key words:
Pattern recognition, Video processing, Road traffic density,
Deep convolutional neural network

1. Introduction

Video processing methods are nowadays considered one
of the most active research areas for transportation
systems in order to manage the traffic flow efficiently.
Recently, the increased availability of visual data and the
advances in storage devices over the last decade have
made the research community focus on the computational
capacities for image understanding. The use of cameras for
traffic monitoring has enabled gathering useful
information in real time including traffic speed, lane
occupancy, traffic density, etc., from very large areas and
has provided more flexible solutions compared to the
traditional magnetic loop radars, microwave, infrared
detectors which are limited on a single point, high
installation cost, and are difficult to install and maintain [1,
2]. In this context, it has been shown that DCNNs methods
outperform traditional methods in pattern recognition [3,
4], due to their powerful ability to adaptively learn
complex features for object recognition. Therefore,
DCNNs are considered as a powerful tool and showed
better performance than other conventional methods in
many domains, such as crowd behavior analysis [5], image
classification and detection [6], video analysis [7],

document recognition [8], and so on. For instance, in [9],
authors proposed a multi-column deep neural networks
from 25 nets that alternates convolutional traffic with
max-pooling layers, and they reached 99,46 % of accuracy
in traffic sign recognition, better than the human
performance 98,84 % on this task. In recent years, several
techniques have been used in the literature for traffic
density estimation from traffic surveillance. We can
distinguish generally three main types (i) detection based
methods, (ii) holistic approaches and (iii) motion based
methods.
Holistic approaches perform the analysis on the whole of
the image, by avoiding detecting each moving object
separately [10]. Some properties such as crowd speed,
density and localization can be extracted from crowd
behavior analysis [11, 12]. Some related works that apply
holistic approach for traffic can be found in [13, 14, 15].
These kind of approaches suffer from low accuracy when
the camera has large perspective.
Motion based methods, in this approach, several
techniques [16, 17, 18] estimate the traffic density by
vehicle tracking. This kind of approaches calculates
vehicle trajectories across frames, by partitioning an image
into regions. These methods tend to fail in high congestion
because of the web-cam video’s low resolution, low frame
rate and lack of motion information.
Detection based methods aim at identifying and
localizing vehicles in each frame. For example in [19],
authors proposed a real-time traffic congestion estimation
approach, based on image texture feature extraction and
texture analysis. The experimental results showed a high
accuracy for obtaining the vehicle density. Even if the
detection-based model has shown a good results in many
fields, it still perform poorly in low resolution and high
occlusion videos.
In this paper, we propose a robust traffic-density
classification model based on a deep neural network
architecture, which overcomes all the issues faced by
existing techniques. A DCNN is used to estimate the road
traffic density in order to classify the traffic flow into three
main classes (light, medium, heavy) in different
environmental conditions. The remaining of this paper is

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

70

organized as follows. Section II presents a background
about CNNs. Section III provides a detailed description of
our DCNN architecture. Section IV discusses the
experimental results by presenting an evaluation of our
method performance and a comparison with different
approaches used on the same Database. Concluding
remarks are given in section V.

2. Proposed approach

In this section, we present a background about CNNs and
describe our DCNN in more details and highlight the
techniques performed to learn the optimal architecture in
order to increase the classification accuracy.

2.1 Background

CNNs are a special kind of neural network formed by a
certain number of convolutional and subsampling layers
stacked on top of each other, depending on the particular
application or on the complexity of the data. The
architecture of a typical CNN is composed of one or more
pairs of convolution and pooling layers and finally
followed by fully connected layers as seen in Fig. 1. A
convolutional layer, which represents the core building
block of a CNN, is composed of a certain number of
convolutional filters that are applied to the whole input
image in order to detect local features. The output of each
convolution is called an activation map.

Fig. 1 View of a general CNN architecture which classifies the traffic density as heavy traffic, medium traffic and light traffic.

After each convolutional layer, there may be a pooling
layer. The pooling layers are a form of down-sampling, i.e.
reducing the resolution of the activation maps at a given
point in the network. There are three main non-linear
functions to produce pooling, sum pooling, mean pooling
and max pooling. The conceptual difference between these
approaches lies in the sort of invariance, which they are
able to catch. For example, the max-pooling which is the
most used, takes the maximum input from a region of the
convolutional layer. The sum and mean pooling are set
exactly the same as max-pooling but instead using a max
function, we use the sum or the mean function. This
technique is used to reduce the number of parameters
within the model, in order to simplify the computational
load first, and secondly to minimize the chance of
over-fitting. Finally, after several convolutional and max
pooling layers, the high-level features found in the images
are processed via fully connected layers with the aim of
activating only one output per class in the recognition task.
In fact, it creates a stochastic likelihood representation of
each class based on the activation maps generated by the
concatenation of the previous layers.

2.2 Model description

Our model architecture is composed of first 5 repeatedly
stacked blocks excluding the input layer. Each block
contains a convolution module, followed by a max pooling

module and a normalization module. To regularize our
model, we introduced a dropout “layer” in order to prevent
over-fitting. This technique randomly drops out weight
connections, which are ignored during training. The last
part in our CNN is constituted by two dense layers, which
are called classifiers too. These layers are fully connected
layers, which represent a matrix vector multiplication and
need a feature vector as an input. Therefore, we used the
flattening operation, in order to convert the output of the
convolutional part of the CNN into 1D feature vector. In
the following Fig. 2, we show our model architecture in
details. For the input layer we introduced a crop images of
[238*198*3] to avoid to process non relevant data by our
algorithm, with three color channels RGB. The receptive
field (or the filter size) is 3*3, then each neuron in the
convolutional layer has weights to a [3*3*3] in the input
volume, for a total of 3*3*3 = 27 weights (and +1 bias
parameter). For example, the first convolutional layer has
8 filters so we get (27+1) * 8 = 224 parameters. Similarly,
we can calculate for 2nd convolutional layer where the
number of filter from the previous layer become the
number of channels for current layer’s input. In a
fully-connected layer, all input units have a separate
weight to each output unit. For n inputs and m outputs, the
number of weights is (n+1) *m, which explain 163904
parameters for the dense layer where n=2560 and m=64.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

71

Fig. 2 Our CNN architecture

We developed our architecture by varying one of three
parameters: number and sizes of kernels, number of layers
and pooling strategies. The variation of all these
parameters impacts the network performance in different
aspects over multiple runs. The increase of convolutional
kernels enhanced the network’s capacity of detecting and
extracting patterns and co-occurrence of patterns. The
increase of convolution and max-pooling layers make the
network ‘deeper’ to learn more sophisticated data
representations. The insertion of pooling layers between
successive convolutional layers periodically decreases the
spatial size of representations and the amount of
parameters and computation in the network.
The second key ingredient is the loss function used in our
model, which can be seen as a differentiable objective that
measures the compatibility between a prediction and the
ground truth label in the training data (also called a
“scoring function”). Intuitively, we want the correct class
to have a higher score than the other classes. When this is
the case, the loss should be low and otherwise the loss
should be high. There are many ways to quantify this
intuition, but when using a DCNN to perform
classification and prediction on more than two classes, it’s
usually better to use the cross-entropy loss associated with
the Softmax classifier. With this combination, the output
prediction is always between zero and one, and is
interpreted as a discrete probability distribution over the
classes. the Softmax activation where the function

mapping is always unchanged of the
ith output unit with W is the filter weights is defined as

 = (1)

and the cross entropy error function for multi-class output
is

 (2)

2.3 Visualizing features detectors

Deep learning algorithms are known to be very
complicated to interpret, that’s why they are usually
treated as black boxes. However DCNN algorithms are
actually different, and we can visualize various
components. This will give us an in depth look into their
internal workings and help us understand them better. We
presented four main visualizations for each layer to help
readers understand how our DCNN learns features in
intermediate layers. We passed an input picture through
our DCNN and record the intermediate activations as
shown in Fig. 3. These visualizations served as supporting
information to help us assess hypotheses about the cause

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

72

of certain types of errors and understand the relation
between the different classes (i.e. heavy, medium, light).

Fig. 3 The structure and intermediate processing layer results of our CNN model

Each filter in the DCNN is associated with a feature
detector or neuron that learns during training to be
particularly active when presented with a specific
sequence of input images. Therefore, the algorithm is able
to perform image classification by looking for low level
and easy interpretable features such as edges and curves,
and then building up to more abstract concepts through a
series of convolutional layers. It will be more interesting
to visualize multiple feature maps from each convolutional
layer. Fig. 4 shows a direct comparison between the
results of each convolutional layer applied on the same
original image used in Fig. 3.

Fig. 4 Visualization of the features maps

As we go deeper through the network, the feature maps
look more like an abstract representation and less similar
to the original image. As we can see in block3_conv3
which contains 32 filters, the cars are somewhat visible,
but after that it becomes unrecognizable. The reason is that
deeper feature maps encode high level concepts like
“headlights” or “Wheels” while lower level feature maps
detect basic texture and borders. That’s why deeper feature
maps contain less information about the image and more
about the class of the image and they still encode useful
features, but they are less visually interpretable by us.

3. Experimental results and evaluation

In this section, we present the results obtained by our
approach. Firstly, the data set is described and then the
classification results.

3.1 Traffic video databases

The traffic video database consists of 254 video sequences
of highway traffic in Seattle, Washington, collected from a
single stationary traffic camera over two days [14]. The
database contains a variety of traffic patterns and weather
conditions (e.g. raining, overcast and sunny). Each video
has a resolution of 320*240 pixels and has 42 to 52 frames
at 10 frames per second. The database was labeled by hand
concerning the level of traffic congestion in each sequence.
The database presents 165 sequences of light traffic, 45 of
medium traffic and 44 of heavy traffic (very slow), in
different environmental conditions as shown in Fig. 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

73

Fig. 5 Example frames of the traffic video data set. These examples show various traffic congestion conditions. From the left to right, labeled as heavy
traffic, medium (raining) and light (Dark) traffic.

3.2 CNN activation maps

Class activation mapping [24] is a technique used in order
to show a visual explanation for our CNN-based model
and make it more transparent by obtaining the relevant
image regions used by our CNN to make the correct
decision. Fig. 6 shows on top of the input image, the sum

of filters at each layer of our CNN using a red-blue heat
map visualization. The more red a pixel, the more relevant
it is for the classification task. This helps us understand
what our network is doing with a given input, and
somehow allow us to be sure that the network is not using
non relevant information from the images at hand.

Fig. 6 The sum of activation maps generated to visualize each convolutional layer in a 2D grid of a trained CNN.

Fig. 7 shows the Sum of Activation Maps for two sample
input images at the last convolutional layer of our CNN.
We can observe that our model is focusing on the cars for
estimating high density traffic and on the space between
cars (absence of cars) to assess a low density traffic. This
shows that our model makes the right decision based on
the correct information. Thus proving the robustness of
our model and explaining the high accuracy that we get.

3.3 Results and comparison

Our traffic density estimation approach has been applied
on the database described before. The results from the
proposed system have been compared to many other
techniques applied on the same database. Our proposed
CNN-based method has reached the best accuracy in this
field by reaching 99, 62% as seen in Table 2.

In our approach, we split the database into two random
samples (80% and 20 %) for training and testing, which
represents 5678 and 1420 frames respectively. In this way,
we are sure that our training and testing sets reflect the real
properties of the original dataset. Table 1 provides a
confusion matrix for the resulting classifier. We can
observe that the miss-classifications occur between the
medium and heavy classes, due to their close texture
pattern. Therefore, we evaluated our model using 5-fold
cross validation method. We partitioned our data into 5
equal folds, four parts are used to train our CNN model
and rest used to test. The process is repeated five times by
exploring the remaining folds for training and testing. The
final performance measure, computed as the accuracy
across all five models, was around 99, 62%. The
inconvenience of this method is that the training algorithm
has to be repeated from scratch 5 times, which means it
takes 5 times as much computation to make an evaluation.

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

74

Fig. 7 Sum of Activation Maps of a high traffic density image (right) and of a low density traffic image (left).

Table 1: Confusion matrix
Actual predicted Light Medium Heavy

Light 458 0 0
Medium 0 493 2
Heavy 0 3 464

Table 2 presents the comparison of the proposed method
and other classification techniques, which were evaluated
on the same database. Our proposed system achieves the
best accuracy comparatively to all the other methods.

Table 2: Different traffic density estimation approaches
Method Accuracy %

Our proposed approach 99.62 %
Symbolic features [23] (2013) 96.83 %

Probabilistic Kernels [20] (2005) 96.00 %
Spatiotemporal Orientation [21] (2011) 95,28 %

Motion Vector Statistical Features [16] (2013) 95.28 %
Holistic Approach [12] (2013) 94.50 %

Dynamic Texture Method [14] (2005) 94.50 %

The most important quantity to track while training a
classifier is the validation/training accuracy which is used
to measure the inconsistency between predicted value and
actual label. To determine the accuracy of our model, we
calculated the classification error after that the parameters
of our algorithm are learned and fixed and no learning
process is taking place. We fed our model by the test
samples and we recorded the number of mistakes
(zero-one loss) that the model makes after comparison to
our true targets. Then the percentage of misclassification
is calculated. We plot the model accuracy and the model
loss over epochs in Fig. 8 and Fig. 9 respectively, from
which we can understand that our train process took 5 – 6
iterations to achieve a similar accuracy of 99.62%.

Fig. 8 Accuracy over epochs

Fig. 9 Loss over epochs

4. Conclusion

In this paper, we presented a DCNN traffic density
estimation approach for traffic monitoring systems
through video processing. Our method classifies the traffic
flow density into three different states: light, medium and
heavy. A standard database of real videos from Seattle
roads was used to experiment our proposed approach. The

IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.7, July 2018

75

results showed that our model outperformed all the
conventional existing methods by reaching 99, 62% of
accuracy. For future work, the proposed approach has
some possible interesting extensions. For instance, it
would be interesting to explore other deep learning
algorithms for traffic flow estimation and adapt and apply
these algorithms on different data sets to evaluate their
potential. It can be also a good issue to combine the CNN
with the Ant colony algorithm. Specifically, CNN can
extract the traffic features from the traffic network that can
be involved into the Ant colony algorithm in order to
manage the urban traffic.

Acknowledgment

The authors would like to thank Jérémie Despraz for his
technical support and assistance with this project. This
research was supported by The School of Business and
Engineering Vaud (HEIG-VD), Switzerland.

References
[1] Cucchiara, R., Piccardi, M., & Mello, P. (2000). Image

analysis and rule-based reasoning for a traffic monitoring
system. IEEE Transactions on Intelligent Transportation
Systems, 1(2), 119-130.

[2] Kastrinaki, V., Zervakis, M., & Kalaitzakis, K. (2003). A
survey of video processing techniques for traffic
applications. Image and vision computing, 21(4), 359-381.

[3] Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face
representation from predicting 10,000 classes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1891-1898).

[4] Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., &
Schmidhuber, J. (2011, June). Flexible, high performance
convolutional neural networks for image classification. In
Twenty-Second International Joint Conference on Artificial
Intelligence.

[5] S. Jing, K. Kai, L. Chen, Chang, and W. Xiaogang. Deeply
learned attributes for crowd scene understanding. In
CVPR,2015.S. Jing, K. Kai, L. Chen, Chang, and W.
Xiaogang. Deeply learned attributes for crowd scene
understanding. In CVPR,2015.

[6] Ciregan, D., Meier, U., & Schmidhuber, J. (2012, June).
Multi-column deep neural networks for image classification.
In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on (pp. 3642-3649). IEEE.

[7] Zou, W. Y., Ng, A. Y., Zhu, S., & Yu, K. (2012, December).
Deep Learning of Invariant Features via Simulated
Fixations in Video. In NIPS (Vol. 3, p. 6).

[8] Cireşan, D. C., Meier, U., Gambardella, L. M., &
Schmidhuber, J. (2010). Deep, big, simple neural nets for
handwritten digit recognition. Neural computation, 22(12),
3207-3220.

[9] Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., &
Schmidhuber, J. (2011, June). Flexible, high performance
convolutional neural networks for image classification. In
Twenty-Second International Joint Conference on Artificial
Intelligence.

[10] J. Jacques Junior, S. Musse, and C. Jung. Crowd analysis
using computer vision techniques. IEEE Signal Processing
Magazine, 27(5):66–77, sept. 2010.

[11] B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin,
and L.-Q. Xu. Crowd analysis: a survey. Machine Vision
Applications, 19(5-6):345–357, 2008.

[12] Andrews Sobral, L. O., Schnitman, L., & De Souza, F.
(2013). Highway traffic congestion classification using
holistic properties. In 10th IASTED International
Conference on Signal Processing, Pattern Recognition and
Applications.

[13] J. Lee and A. Bovik. Estimation and analysis of urban
traffic flow. In 16th IEEE International Conference on
Image Processing, pages 1157 –1160, nov 2009.

[14] A. Chan and N. Vasconcelos. Classification and retrieval of
traffic video using auto-regressive stochastic processes. In
IEEE Intelligent Vehicles Symposium (IVS), pages
771–776, june 2005.

[15] F. Porikli and X. Li. Traffic congestion estimation using
hmm models without vehicle tracking. In IEEE Intelligent
Vehicles Symposium (IVS), pages 188–193, june 2004.

[16] A. Riaz and S. A. Khan. Traffic congestion classification
using motion vector statistical features. In Sixth
International Conference on Machine Vision (ICMV 13),
pages 90671A-7. International Society for Optics and
Photonics,2013.

[17] Keck, M., Galup, L., & Stauffer, C. (2013, January).
Real-time tracking of low-resolution vehicles for wide-area
persistent surveillance. In Applications of Computer Vision
(WACV), 2013 IEEE Workshop on (pp. 441-448). IEEE.

[18] Hadi, R. A., Sulong, G., & George, L. E. (2014). Vehicle
detection and tracking techniques: a concise review. arXiv
preprint arXiv:1410.5894.

[19] Wei, L., & Hong-ying, D. (2016). Real-time road
congestion detection based on image texture analysis.
Procedia Engineering, 137, 196-201.

[20] Chan, A. B., & Vasconcelos, N. (2005, June). Probabilistic
kernels for the classification of auto-regressive visual
processes. In Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on
(Vol. 1, pp. 846-851). IEEE.

[21] Derpanis, K. G., & Wildes, R. P. (2011, January).
Classification of traffic video based on a spatiotemporal
orientation analysis. In Applications of Computer Vision
(WACV), 2011 IEEE Workshop on (pp. 606-613). IEEE.

[22] Dinani, M. A., Ahmadi, P., & Gholampour, I. (2015,
November). Efficient feature extraction for highway traffic
density classification. In Machine Vision and Image
Processing (MVIP), 2015 9th Iranian Conference on (pp.
14-19). IEEE

[23] E. Dallalzadeh, D. S. Guru, and B. S. Harish. Symbolic
Classification of Traffic Video Shots. In Advances in
Computational Science, Engineering and Information
Technology,pages 11–22. Springer, 2013

[24] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A.
Torralba. Learning Deep Features for Discriminative
Localization. CVPR'16 (arXiv:1512.04150, 2015).

