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It has been demonstrated by several authors that the optical turbulence parameters associated with a given adap-
tive optics (AO) run—the seeing angle and outer scale—can be determined from a statistical analysis of the com-
mands of the system’s deformable mirror (DM). The higher the accuracy on these parameters, the more we can
make use of them, allowing for instance a better estimation of the seeing statistics at the telescope location or a
more accurate assessment of the performance of the AO system. In the context of a point spread function
reconstruction project (PSF-R) for the W. M. Keck observatory AO system, we decided to identify, in the most
exhaustive way, all the sources of systematic and random errors affecting the determination of the seeing angle and
outer scale from the DM telemetry, and find ways to compensate/mitigate these errors to keep them under 10%.
The seeing estimated using our improved DM-seeing method was compared with more than 70 nearly simulta-
neous seeing measurements from open-loop PSFs on the same optical axis, and with independent seeing-monitor
measurements acquired at the same time but far from the telescope (DIMM/MASS): the correlation with the
open-loop PSF is very good (the error is about 10%), validating the DM-seeing method for accurate seeing de-
termination, while it is weak and sometimes completely uncorrelated with the DIMM/MASS seeing monitor data.
We concluded that DM-based seeing can be very accurate if all the error terms are considered in the DM data
processing, but that seeing taken from non-collocated seeing monitors is of no use even when moderate accuracy is
required. © 2018 Optical Society of America

OCIS codes: (010.1290) Atmospheric optics; (010.1330) Atmospheric turbulence; (110.1080) Active or adaptive optics; (110.6770)
Telescopes; (350.1260) Astronomical optics.
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1. INTRODUCTION

We revisit in this paper the method to retrieve, from the com-
mands of the deformable mirror (DM) of an adaptive optics
(AO) system, two of the most important parameters of optical
turbulence (OT): (1) the seeing angle, defined as the angular
full-width-at-half-maximum (FWHM) of the seeing-limited
long-exposure PSF and noted wj here, or equivalently the Fried
parameter 7o; and (2) the optical outer scale, noted Z;. The
method was introduced by Rigaut ez 4/. [1], and has since been
implemented by many other groups (see references), and we are
using it in the context of a point spread function reconstruction
(PSF-R) project for the W. M. Keck observatory AO system
(a technique pioneered by Véran ez al. [2]). The importance of
a highly accurate seeing determination for PSE-R motivated the
research described in this paper.
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In the literature, the DM-based seeing monitor is men-
tioned as a particularly simple and efficient method for analysis
such as AO system performance evaluation, assessment of the
current seeing conditions, and PSF-R. Indeed, by using the AO
data itself; it is possible to get an estimate of the seeing obtained
ar the telescope and during the observation—something not
provided by seeing monitors because they are generally ot
collocated with the telescope, nor by measuring the seeing
beforelafter the AO run, as the seeing changes too rapidly.

In the specific case of PSF-R, the seeing angle is critically
needed to reconstruct the component of the PSF associated
with the high spatial frequencies of the turbulent aberration
(the DM fitting error in the AO jargon) located beyond the
cutoff spatial frequency of the AO system, 1/(2 DM pitch).
This error indeed dominates the residual wavefront in the case
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of good sceing conditions, and is always significant in
other cases.

Let us consider the case of the W. M. Keck 10 m telescope
AO system (DM pitch 0.5625 m in the pupil), observing at
A =12 pm with a seeing of 0.8"”. We find (not showing
the details) that with a relative error of 10% on the seeing de-
termination, the error on the Strehl is 10% as well. For a larger
seeing angle, the error would be proportionally higher. For AO
data processing (photometry, astrometry, deconvolution, etc.),
this might be unacceptably large, knowing that the other PSF
metrics errors, i.e., width or integrated energy, would be in the
same proportions (see for instance Lu er 2l [3]).

An accurate and simultaneous determination of the outer
scale L, is also very important: because L, decreases the ampli-
tude of the turbulent wavefront, it makes the angular size of a
point-like object imaged through OT smaller than whar it
would be with a fully developed Kolmogorov turbulent flow.
A small L, therefore has the same overall effect as a small seeing
angle. Over- or underestimating the effect of the outer scale
would produce an incorrect seeing angle estimation, with
the consequences we have just seen. Note that there is no cor-
relation between wy and L. Indeed, the widely used von
Karman model is only an empirical method of correcting the
infinite scales Kolmogorov model to account for the fact that
there is necessarily an external limit to the size of the turbulent
flow, with the consequence that the effect of the OT is always
less severe than what is predicted by the Kolmogorov theory.
For this reason in particular, the FWHM of an experimental
long-exposure seeing-limited PSF will always be smaller than
the wy predicted for a fully developed Kolmogorov flow.

Therefore, for the PSF-R project, we needed to identify as
much as possible all sources of systematic and random errors
on the seeing and the outer scale determination, known or un-
known from the literature, and find ways to mitigate or suppress
them. In this paper, we describe these errors and the way they
are considered in our DM-seeing monitor algorithm, as well as
the results of 841 AO testing runs from 2011 to 2017 in natural
and laser guide star (NGS/LGS) modes. Our model considers in
detail the following components of the problem in order of
importance (Keck-II AO is a Shack—-Hartmann wavefront
sensor based system):

1. Choice of the pupil area to avoid the edges effect,

2. Impact of the central obscuration,

3. Zernike polynomial projection error and its mitigation
by an adaptation of the polynomials to the DM influence
function basis,

Zernike polynomial undersampling,

Deformable mirror influence function model,

Bad and good Zernike modes,

Contribution of the outer scale,

Wavefront sensor noise,

Shack—Hartmann wavefront sensor spatial aliasing,
Guide star mode, natural or laser.
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Our seeing estimation method has been validated with a
comparison of almost simultaneous seeing measurements
from open-loop PSF. This is presented in the second part of
this paper, where we also compare the DM-seeing results
with simultaneous measurements from seeing monitors not
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collocated with the telescope, and show that the correlation
is weak at best.

A. Previous Research

Our study complements a previous study by Schéck er al. [4],
who used the same kind of method on the same telescope and
AO system, but on open-loop wavefront sensor (WES) data.
Here, we use closed-loop DM data: this has the significant ad-
vantage that there is no need to open the loop to acquire the
seeing data; therefore, the seeing estimation is absolutely simul-
taneous with the AO run, something mandatory for PSE-R.

Many authors have already used the DM-seeing method on
several AO systems, essentially for AO system performance
diagnostics during commissioning. Rigaut ez al. [1] were prob-
ably the first to use the method for AO performance check, on
the system COME-ON; Véran ez al. [2] used the method in the
context of the development of the first PSF-R algorithm, on the
curvature-sensing-based AO system PUEO on the CFHT;
Fusco et al. [5] have used the method on NAOS, the VLT first
AO system, and did a first analysis of the error terms very sim-
ilar to ours; the latter analysis was complemented by an analysis
of the WES aliasing effect by Kolb ez al. [6].

Our own work considers the same terms as the previous
authors, as well as additional terms which were not considered
before. We have put a particular effort into the construction of a
modal basis adapted to the telescope pupil, using a very accurate
influence function empirical model, and to the selection of the
modes actually used for the OT parameter estimation. Our
outer-scale damping model has a larger domain of validity than
previous models and is adapted to the scale of a 10 m telescope.
In short, what makes this paper original is the emphasis put on
details not considered before and the use of highly accurate mod-
els to account for complex effects. The large amount of sky data
and the comparison with open-loop and seeing-monitor data
allows us to clearly demonstrate the validity of the procedure
and provide an estimation of the seeing determination accuracy.

2. DEFINITIONS

Let us recall the definitions of the OT quantities of interest in
this study. For an introduction to OT theory, see Tatarski [7]
and Roddier [8].

A. Seeing Angle

The seeing angle, noted as wy, is defined as the FWHM of
the long-exposure image of a point source seen through OT
(ignoring diffraction from the telescope) when the turbulent
flow is fully developed, i.c., the turbulent flow structure follows
a Kolmogorov law, with infinite outer scale and null inner scale.

B. Fried Parameter

wy is related to the Fried parameter 7 (Fried [9]), defined as the
diameter of a telescope having the same optical resolution
(integral of the OTF) as the long exposure optical resolution
when looking through the aberrated optical system formed by
OT. ry depends on the turbulence strength and the imaging
wavelength 4, according to

A\ 0/5 o -3/5
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where C%(h) is the vertical profile of the turbulent flow refrac-
tive index structure constant, a statistical second-order quantity
similar to the refractive index variance. The seeing angle w; and
the Fried parameter 7, are directly related (Coulman [10]) to

wy = 0.984/r [rad]. (2)
Measurements of the seeing angle and the Fried parameter are
therefore equivalent.

C. Optical Outer Scale

OT is a consequence of the turbulent mixing, due to the wind,
of air masses at different temperature and hence different re-
fractive index. Let us consider the typical difference An =
n(r + Ar) - n(r) of the refractive index between two points
in the turbulent flow. Because of the turbulent mixing, the
larger the separation, the higher the probability of experiencing
large refractive index differences between the two points. If
there is no upper limit to the extension of the turbulent flow,
An will simply increase with Ar, and it is shown in Tatarski [7]
that on average (An?) ~ Ar?/3.

Now, as there is necessarily an upper limit to the size of the
largest eddies, the occurrence of large A is less probable when
Ar increases beyond a certain limit, and (A#?) saturates to a
constant for large separations. The saturation distance is char-
acterized by the so-called outer scale of optical turbulence Z;,
related to the size of the largest eddies in the flow. Measure-
ments in turbulent flow by many authors have clearly demon-
strated the existence of this optical outer scale (see for instance
Conan et 4l [11] and Ziad et 4l [12]).

As a consequence, the larger the telescope diameter with re-
spect to L, the lower the wavefront RMS with respect to what
we would expect for an infinite flow. Now, because 7y is defined
for an infinite flow, it is therefore mandatory, when using the
DM-seeing method, to evaluate simultaneously the outer scale
with the seeing angle in order to make an independent deter-
mination of the latter. Because a finite outer scale improves the
image quality with respect to the infinite case, not taking into
account L, would lead to overestimation of the Fried param-
eter, and underestimation of the seeing. The empirical outer-
scale attenuation model we have developed for this purpose is
described later in the text.

3. SUMMARY OF THE DM-SEEING METHOD

The AO system compensates the OT wavefront error by using
the DM. As a consequence, at each instant, the DM surface
(times 2, and introducing a cosine factor to take into account
possible non-normal incidence) is naturally a good representa-
tion of the turbulent wavefront seen by the AO system up to
its cutoff spatial frequency, with some perturbations due to the
classical low-order AO errors, i.e., the servo-lag, WES noise, and
WES aliasing. Therefore, from the DM command statistics, it
must be possible to get an estimate of the average seeing asso-
ciated with the AO observation. This idea has been validated in
the context of PSF-R by Véran et al. [2], on the curvature
wavefront-based AO system PUEO (Canada-France-Hawaii
Telescope).

The Zernike polynomials basis is generally used for this pur-
pose, and is also our choice here. A Karhunen Loeve basis could
be considered too, but we would lose the benefit of having an
analytical expression for both the polynomials and the optical

turbulence statistics (Noll distribution). It is a modal represen-
tation, as opposed to the DM influence function representa-
tion, which is zonal. The expression for the covariance of
the Zernike coefficients z; and z; in the case of a pure
Kolmogorov turbulent flow is given by Noll [13]. Winker
[14] has supplemented Noll’s model with the damping effect
of the outer scale, and we have

(z421) = (D[ 1)> PN, W, ) (D] Ly), (3)

where NV, ; is Noll's model and W, is the L, damping factor
from Winker. The OT parameters 7y and L, can therefore be
estimated by a best-fit adjustment of the preceding model to
the measured covariances of the Zernike coefficients (this pro-
cedure is described in Section 7.A).

In AO systems, the DM commands are generally not ex-
pressed in the Zernike basis, but rather in a basis appropriate
to the system’s modes or in the DM influence function basis. In
both cases, the Zernike covariance matrix is obtained from

(z-2') = M. (a-a") My, 4)

where ¢ indicates transposition, M, is the transformation ma-
trix from the DM basis to the Zernike basis, and (aa’) is the
DM command covariance matrix. In this notation, we assume
that a and z are column vectors. The OT parameters are in
principle estimated by adjusting Eq. (3) to the measured covari-
ance matrix computed from Eq. (4).

As given, however, this model cannot be used because many
effects (listed in the introduction) generating systematic and
random errors affecting the DM commands and the Zernike
basis construction have not been considered. The objective
of this paper is specifically to address all these errors terms,
and show how they can be compensated.

4. CONSTRUCTION OF A MODAL BASIS,
CONSIDERING THE PUPIL EDGES AND THE DM
ZONAL MODES

In this section, we show how the classical Zernike modal basis,
as defined by Noll [13], and the coefficients covariance model
N, are modified to suppress or minimize the impact of the
following effects: the pupil edge, the central obscuration, the
Zernike projection error and Zernike under-sampling, the DM
influence functions model, and the bad modes.

A. Pupil Edge Effects
In an AO system, actuators whose influence functions are par-
tially outside of the external pupil edge have to be given a larger
command than the ones that are fully illuminated. Indeed, those
actuators, if given a command amplitude identical to the
illuminated ones, generate a DM surface that is too low in am-
plitude because at this location there are less actuators whose
influence functions can overlap. Indeed, the total surface ampli-
tude of a set of (for instance) 3-by-3 neighbor actuators is higher
than a single actuator receiving the same command, because the
wings of the 3-by-3 influence functions add together and lift the
DM surface to a higher amplitude. To compensate for the lack of
amplitude inside the pupil, on the edge, the AO control simply
gives a higher command to the corresponding actuators.
Other issues affect the actuator commands, on the pupil
external edge as well as inside the central obscuration: at this
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Fig. 1. Keck telescope segmented pupil, with a superposition of the
DM actuator and SH-WES lenslet layout. The blue disc is 2.65 m in
diameter and shows the central obscuration. The dashed circle shows
the 9 m diameter of the pupil area within which the lenslets are always
fully illuminated, independently of the pupil/DM angle. Note
that this overlay shows only one possible orientation of the telescope

pupil relative to the AO system. Courtesy W. M. Keck Observatory.

location, at least in the case of a SH-WES, the lenslets are
vignetted, generating a systematic error as well as a random er-
ror on the wavefront measurement due to the lower signal-
to-noise ratio. On top of this, in the specific case of the Keck
hexagonal pupil, because the latter rotates with respect to the
lenslet array, the vignetting changes during the exposure, as we
understand from Fig. 1.

All these effects make the DM surface statistics not station-
ary along the pupil external/internal edges. Figure 2 shows the
standard deviation of the DM surface of the Keck-II AO system
for one of our on-sky PSF-R experiments. It is constructed as
the RMS value of the DM surface at each DM points for
35,912 loop sequences at a frame rate of 1 kHz. We can see
that the surface deviation is 2—4 time larger, on the external
edges of the DM as well as inside the central obscuration, than
inside the fully illuminated pupil.

Now, with the DM seeing monitor technique we are using,
it is assumed that the turbulent wavefront 7s stationary, within a
circular pupil. So, to avoid overestimating the turbulent wave-
front RMS and the seeing angle, and to have a circular pupil
(in the specific case of Keck), we must limit the seeing estima-
tion within a smaller annular section on the telescope pupil
where the DM commands can be considered stationary.

Figure 1, for Keck, shows the circular area on the 36-seg-
ment pupil which is always illuminated regardless of the pupil
orientation with respect to the WES lenslet array. It is therefore
clear that this limit (9 m in diameter) is a good choice to define
the pupil for the seeing computation (the telescope central
obscuration is 2.65 m). Figure 2 clearly shows that the DM
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Fig. 2. RMS map of the DM wavefront for a typical AO run, over
35,912 loop sequences at 1 kHz. The spatial resolution is 7 pixels per
DM pitch length. The white circles show the limits of the 2.65 m and
9 m diameter annular pupil.

surface is stationary within this 9/2.65 m pupil (white circles),
at least relative to the edges.

In practice, to decide on the pupil diameter for the seeing
estimation, we can compute how stationary the DM surface
RMS is when averaged over an annulus of increased external
radius, from the central obscuration to the telescope pupil ra-
dius. We did this with the Keck pupil for a radius from a little
more than the central obscuration radius up to the maximum
telescope hexagonal pupil radius, 6.2 m. The result, for 79 AO
runs, is shown in Fig. 3.

As we can see, there is some level of non-stationarity in the
fully illuminated area (otherwise the RMS of the DM wave-
front RMS would be 0), but this is in general relatively stable
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Fig. 3. Stationarity of the DM wavefront as a function of the pupil

radius. The dotted curves show each of the 79 cases for the night of
August 1, 2013. The red curve shows the average of all cases.

until the average hexagonal pupil radius is reached near 5 m.
Beyond, the non-stationarity increases very strongly. It therefore
seems very reasonable to consider the pupil 9/2.56 meters for
the seeing estimation.

Note that the secondary support structure arms are very thin
(2.54 cm) in the case of the Keck telescopes, and therefore we
do not take this structure into account in the pupil model.
Only the very high-order Zernike polynomials (radial order
600) would be affected at this spatial scale.

B. Modified Zernike Basis

The DM commands are applied to the actuators, so the actual
DM surface shape belongs to the space defined by the actuators’
influence function basis. Noll’s model, on the other hand, is
given in the Zernike basis, so a change of basis is required which
is very simple to do, numerically, using an orthogonal projec-
tion of the Zernike basis into the influence functions basis.
However, this procedure introduces systematic errors.

First, the Zernike polynomials are 7ot well represented by
the influence function basis. The difference between a Zernike
polynomial and its projection on the DM basis can be signifi-
cant, more than a few percent, and varies in a complicated way
with the Zernike index j and azimuthal order m, as Fig. 4
shows. This would generate a systematic error in the estimation
of the variances of the DM commands expressed in the Zernike
basis simply because the transformation matrix does not gen-
erate the true Zernike coefficients.

The second difficulty comes from the limited numerical
sampling of the influence functions and Zernike polynomials
while computing the DM to Zernike transformation matrices.
This error term is shown by the black curves in Fig. 4. Thus,
even without the projection error, the limited numerical sam-
pling already induces a systematic error of a few percent,
strongly depending on the Zernike index.

0.02r
0.00
n I
€ _o.02f
O -
C
L True Zernike
—0.04r App. Zernike
Resolution 5 to 39
0060

j—index

Fig. 4. Effect of the projection and numerical sampling errors on
the Zernike polynomial norm (here -1), up to j = 100. The black
lines show the difference between the norm computed numerically
on the true Zernike polynomials and the theoretical value (which is
1). The different lines are for increased numerical resolution, defined
as the number of pixels per actuator pitch. The higher the resolution,
the smaller the error, in principle. There are 16 actuator pitches across
the pupil in this example. The red lines show the same, but for the
Zernike polynomial projection in the DM influence function basis.
There is no central obscuration in this example.

The third source of error comes from neglecting the central
obscuration. When it is relatively large (say, more than 10% of
the pupil diameter), the central hole significantly changes the
norm of some Zernike polynomials and generates, if not taken
into account, a systematic error in the coefficient variances, as
illustrated in Fig. 5.

The solution to these systematic errors is simple: orthogo-
nality of the modes that we use to express the OT wavefront
error is not required—independence of the modes is indeed
sufficient—so we can simply consider, as a modal basis, the
projection of the Zernike polynomials on the influence func-
tions basis, including the central obscuration. The sampling
error can be minimized by using the highest sampling resolu-
tion compatible with a reasonable computation time. We shall
call these polynomials the modified Zernike polynomials, noted
Z;. They differ from the true Zernike by a term ¢;

~ Nﬂ
Zi=Zi+eg=) audi+e (5)

=1
where A; are the actuator’s influence functions and ;; the co-
efficients of each modified Zernike in the actuator’s basis. With
this new basis, if we have enough modes Z > any DM shape
@pm can be represented without numerical error and the equal-

ity below becomes exact:

=

z

$Yom = 2'12 Ie (6)
1

-~
Il

The concatenated column vectors a, made from the coeffi-

cients 2;; in Eq. (5), generate the matrix M,,, to compute the
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Fig. 5. Zernike coefficient variances when including a central
obscuration of 34% in the pupil. The example is voluntarily extreme
to show the effect on the polynomials for which 7 = 0 and m = 1.
There is no DM projection error here. See also Fig. 1 of Véran ez al.
[2], showing the strong effect of the large central obscuration of the
CFH telescope.

modified Zernike from the influence functions. Its dimension
is N, lines and IV, columns. They are calculated numerically
with the classical orthogonal projection of the true Zernike into
the DM actuator basis,

for each Zj a = F'lbj, (7)

bjyi = /Z)Zindzr
Fk,l = ﬂAkA[dzr
P

and the integration is computed inside the annular pupil 2.

@

where

1. Realistic Empirical Model for the DM Influence Function
In order not to add another source of systematic error to the
seeing estimation, it is clear that the influence function model
to use in the preceding basis transformation has to be as realistic
as possible; otherwise it would make no sense to consider the
projection error, as it depends on the influence function shape.
For the Keck AO DM, Gaussian, double-Gaussian, or/and
Moffat profiles are not accurate enough because they do not
capture the variation of the influence function section shape,
from square (bottom) to circular (top).

We had access to accurate interferometric measurements of
the influence functions of the Gemini North AO system DM
(Altair), made from the same technology and produced by the
same manufacturer as Keck’s DM (Xinetics, Inc.) From these
measurements, we have built a high-fidelity empirical model,
reproducing the influence function section shape at all heights.

Our model, Z(x, ), is given below and is represented in
Fig. 6. The unit of the coordinate (x,y) is pitch length. It
is essentially a negative exponential model, with an adjustment
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Fig. 6. Empirical model of the Xinetics Inc. deformable mirror
influence function.

to account for the negative drop at the foot of the influence
function, in which the section of the influence function varies
gradually from a circle at its top to a square with round edges on
its bottom (modeled with the functions p and €). There is an
overall mask function M to strongly but smoothly cut the edge
of the influence function to limit its extension over the DM:

L(x,y) = exp(=p4p) (1 + psp) M,
p = pe(Ix| + b)),
€= (po +pi7* +por* + prOM,
M = exp(-p,7®), 9)
where 7> = x* + y?, and the eight parameters p, are given as

2.24506
2.042278 x 10!
-1.921478 x 1072
1.070762 x 1073
7.693368 x 10!
-3.979560 x 10!
1.802674 x 107!
| 1.672743 x 107

Po.7 =

Our model follows the measured influence function with an
error of less than 1% over the full influence function footprint.
Therefore, it will not be a significant source of error.

C. Constructing the Modified Zernike Basis
Coefficient Variance Model for Kolimogorov
Turbulence

Of course, with the Zernike basis modification, we cannot use
Noll’s covariance model anymore, and it has to be recomputed.
This is easily done with a Monte Carlo simulation of a large
number of independent turbulent phase screens (10,000
screens allows for 1% convergence) with D/ry =1 and
Ly = o0, projected orthogonally on the modified Zernike basis.
From the resulting series of modified Zernike coefficients, the
covariances are directly computed. Note that we assume that
Winker’s correction factor is only marginally affected by the
systematic errors indicated previously, so only the term A is
modified. Indeed, an exact calculation of the correction factors
would require us to use the modified Zernike polynomials, but
this would only change the Zernike variances from Winker’s
model by the same amount that we have seen above for Noll’s
variance, i.e., a few percent. In other words, we would change
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the correction factor by a few percent, and the effect would
therefore be minimal. Therefore, we have decided not to
recompute Winker’s model.

D. How Many Modes Should Be Considered and
Which Ones Should Be Avoided?

The higher the Zernike polynomial index, the higher the spatial
frequencies within the polynomial. Now, beyond some j-index,
the oscillation period in the radial and azimuthal components
of the polynomial will be much shorter than the influence func-
tion spatial extension, and the projection coefficient &;; in
Eq. (8) will gradually drops to zero.

For the Keck system, using our influence function model,
we have found that above j = 2000, the projection coefficient
b;; becomes negligible and the DM is no longer sensitive to
these polynomials. But in the Keck case, as we will see, the
Zernike polynomial sampling error just introduced affects the
variance model for j-indexes much lower than j = 2000.

Besides, there is no need to use such a large number of
modes; indeed, a few hundred is enough to get an excellent
adjustment of the modified Noll-Winker variance model. And
finally, it is intuitive that for the high-order modes, the impact
of the wavefront sensing noise can only increase. In the end,
only a careful examination of the signal-to-noise ratio of the
AQO system considered and the effect of the numerical under-
sampling can tell what must be the maximum number of
modes to use.

Finally, the modes susceptible of being affected by non-
turbulent sources of aberrations—the bad modes—must be
excluded from the seeing computation because their coeffi-
cients will carry an excess of variance relative to the turbulent
variance. Sources of dynamic non-turbulent errors are generally
the wind-induced telescope jitter, telescope tracking errors,
and mirror wrapping in the case of large or segmented primary
mirrors generating astigmatism, defocus, and possibly some
coma. These instrumental aberrations are low order, and are
practically null at orders higher than, generally, spherical aber-
ration (fourth radial order). This excess of low-order variance
would be interpreted as a larger outer scale than the actual
value, and as we are correcting the Zernike variances for the
damping effect of the outer scale in order to get an estimation
of the Fried parameter, sub-correcting would lead to an under-
estimation of wy. Of course, only a quantitative estimation of
the instrumental variance for each mode can tell which are the
modes to avoid, but clearly at least tip-tilt must be excluded.

E. Modified Zernike Coefficients Variance in
Practice: The Case of Keck AO

We have applied the Monte Carlo method just described to the
Keck AO system influence function basis and pupil. Figure 7
shows the variance of the modified Zernike coefficients for a
turbulence D/, = 1, an infinite outer scale, a central obscu-
ration € = 2.65/9 = 0.294, and a resolution of 29 pixels per
actuator pitch.

As said previously, we exclude tip-tilt from the basis, but also
the defocus and the two astigmatisms: indeed, even if we are
not certain that the Keck telescope optical system generates
these second-order aberrations, these are very often seen in
other systems, so we prudently prefer to discard them. To give
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Fig. 7. Modified Zernike mode coefficient variances for the 9/2.65 m
Keck annular pupil, fora D/ry = 1 and an infinite outer scale. The red
line shows the true and unobstructed Zernike mode variances computed

from Noll [13].

an order of magnitude of the impact of an excess of defocus and
astigmatism, we ran our seeing and outer-scale estimation
method on a simulated distribution of Zernike variances for a
seeing of 1" and an outer scale of 13 m (close to the average
value we found for the telescope). If each of the Z, Z5, and Z¢
have an extra instrumental error of 100 nm RMS, the seeing
angle is overestimated by 2%. If we double the instrumentation
error, the seeing angle overestimation is 4%. The effect is not
enormous, but it can be easily avoided by unselecting these po-
tentially instrumental-error-sensitive aberrations.

The first modified Zernike modes we are therefore consid-
ering in the model are the two comas Z and Zg, and the last
are the ones associated with the radial order » = 17, corre-
sponding to Z 7. The effect of the central obscuration is well
apparent: for the azimuthal orders 72 = 0 and 7 = 1, the mo-
dal variance is several orders of magnitude higher than Noll’s
model, showing a posteriori the importance of considering this
parameter. For most modes, though, the variance is close to
Noll’s model.

In the same figure, we can also see that beyond the index
j = 153, corresponding to the last polynomial of radial order
n = 16, the departure with Noll’s variance becomes erratic.
Because this is not the case for the previous modes, we think
this is a consequence of the numerical undersampling error. We
decided therefore to limit the Zernike index range from 7 to

153 (radial orders 3 to 16), which still makes 147 good modes.

5. OUTER-SCALE VARIANCE ATTENUATION
MODEL

We now need a model for W, , the damping factor of the
modal variances due to the optical outer scale.
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the damping factor (courtesy D. Winker), and the cont/dashed lines
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Winker [14] has developed the analytical expressions for the
covariance of the Zernike coefficients, in a Von Karman model
of the optical turbulence phase spatial power spectrum, as a
function of D/L,. These equations contain hypergeometric
functions which are not practical to handle in a minimization
algorithm such as ours. Also, we only need a model for the
variances of the Zernike coefficients, not the covariances, so
in our case £ = /.

Winker provided us with a grid of W, ; values for a range
D/L, =[0.002,2] (or Ly/D =[0.5,500]) and Zernike in-
dexes up to j = 153 (or n = 16), and from these data we have
built an empiric model of the damping factor (see Fig. 8). In its
domain of validity, the accuracy of our model is about 1%.

Defining x = D/ L, with 7 being the radial order associated
with the Zernike index j, the model is given by

exp{—n[A(x) In 7+B(x)] exp C(x)}

Wil = = 56540 (10)
where

5

Alx) =D a;ln'(x),
i=0
5

B(x) =) _piIn'(x),
i=0
5

Clx) = y:In(v), (11)
i=0

and the coefficients @;, f5;, and y; are given in Table 1.
Figure 9 shows the variance attenuation expected for a 9 m

pupil and an outer scale of 13 m, equal to the average of what

we have measured on the Keck telescope (see Section 7). It can

Research Article

Table 1. Coefficients of the L, Variance Attenuation
Model

®...5 bo..s Yo...5
-0.54628 -2.55240 0.21361
0.76701 0.36600 0.27999
0.27252 0.45688 0.28100
0.05060 0.36283 0.14758
0.01861 0.05929 0.02611
0.00191 0.00310 0.00156
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Fig. 9. Expected variance attenuation for the 9 m Keck telescope
seeing estimation pupil considering an outer scale of 13 m, equal
to the average value measured using the DM seeing monitor.

be seen that when the outer scale is on the order of the pupil
diameter, its effect on the variance is very significant even on

the highest radial orders.

6. PREPARATION OF THE DM DATA

The DM commands 2, are built from the application of the
command matrix to the WFS measurements vector, followed
by the application of a control law (at the minimum a simple
integrator). For a well adjusted and aligned system, the sources
of WEFS measurement error are essentially the detector and pho-
ton noise, and the WES spatial aliasing of the high-frequency
part of the turbulent wavefront. These errors are added to the
DM commands during reconstruction and control.

It is relatively easy to build a model of the covariances as-
sociated with these two errors terms, allowing us to identify and
remove them from the DM command statistics. This procedure
was first described by Véran e al. [2] for a modal system and a
curvature WES. Here it is adapted to the Keck AO, a zonal and
Shack—Hartmann WES based system.
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Assuming that the AO system does not suffer from signi-
ficant calibration and alignment errors, the command ;, to
actuator 4, at each loop instant, is given by the sum of the
following components:

my = 4, + ny + a|J|_,k’ (12)

where 4, is the projection coefficient on the kth influence
function of the low-frequency part of the turbulent wavefront
that can be seen by the WEFS, averaged over the WES integra-
tion time and delayed by the data processing time required by
the loop operations; 7 is the random command noise associ-
ated with the WFS noise; and 4;, is the command error due to
the WES spatial aliasing of the high spatial frequencies into the
low-frequency domain.

The covariance of the coefficients 4, is what is needed in
Eq. (4) to compute the modified Zernike coefficients covari-
ance, on which the modified Noll-Winker model is applied.
It is given by

(ay -]} = {m - m') - {n-n')
- (aﬁ‘ . aﬁt) -(a - aﬁt) - (aﬁ‘ -aj). (13)

The first term on the right member dominates the others, ex-
cept in the case of a faint guide star. The noise is correlated
between neighbor actuators sharing the same area of the WES,
so its covariance matrix is not diagonal. But the noise is not
correlated with the atmospheric signal, and therefore covariance
between n and a is null.

Let us discuss first how to evaluate the noise covariance from
the DM commands themselves. We will discuss the estimation
and compensation of the aliasing contribution next.

A. Compensating for the Wavefront Sensor Noise

We are aware of two methods to evaluate the noise level. The
first involves a statistical modeling of the WES signal: compar-
ing the real statistics with the expected statistics in the absence
of noise, the noise variance can be estimated. This powerful
technique has been developed by Véran er al. [2] and tested
on a curvature-sensing WES. An adaptation to the Shack—
Hartmann WFES is given in Jolissaint ez a/. [15]. This technique
requires the raw WES data (the WES camera pixel values). We
did not get access to these data in the Keck experiment, so we
had to turn to the second technique: the noise power spectrum
method, detailed in the following.

1. Estimating the WFS Noise Variance Using the Noise
Transfer Function
Figure 10 shows the temporal power spectrum (t-PSD) of the
command to one of the actuators of the Keck AO system DM.
At low frequency, the spectrum is dominated by the atmos-
pheric signal. At high frequency, the spectrum saturates to a
noise plateau. As the noise transfer function can be computed
from the parameters of the AO loop, which are known by de-
sign, it is possible to adjust to the data a model of the filtered
t-PSD of the two components m and n, and extract the noise
variance from the fit (the procedure to go from the noise t-PSD
to the noise variance will be detailed later).

Let us develop the DM commands t-PSD model. The AO
loop diagram is shown in Fig. 11. a; indicates the vector of
the projection of the turbulent phase into the DM mode basis
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Fig. 10. Temporal PSD of the command to the actuator # 107.
The red line shows the convergence to the white noise plateau.
With a guide star magnitude 11 in R-band for this example, the signal
noise is moderate. The ¢-PSD has been smoothed in this figure.

(any of the actuators), and e is the residual after partial correc-
tion by the DM command m, i.e., e = aj - m. The model is
developed in the continuous frequency domain (v [Hz]), and
hence the Laplace transform is used. Once the AO system is
running, the transient response is quickly over, and therefore
the argument of the Laplace transform can be replaced with
s = i2nv.

With v, standing for the loop sampling frequency, the trans-
fer functions of each block are as follows:

1. The WES transfer function is the composition of a time
average and a time shift (half a loop period):

W (v) = sinc(v/v,) exp(-inv/vy). (14)

2. The WES aliasing transfer function is the same as the
WES transfer function; it is only the shape of the aliased signal
power spectrum that differs from 4.

3. The time delay transfer functions for the WES detector
reading, wavefront reconstruction, and command computation
are all given by the same equation,

R(v) = exp(-2rilAty), (15)

where Atz is the time delay.

WFS aliasing
W(s)

—_—> .
noise

Sn
delay to wavefront
read the rec. + delay]

WFS R1(s) R2(s)

turbulent
phase

slopes

g >saved to telemetry saved to telemetry <
I}

= E delay to

SIS compute the

command R3(s)

Fig. 11. Block diagram of the classical Keck AO system, based on a
single Shack—Hartmann wavefront sensor.
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4. The control law transfer function for the Keck AO con-
trol system, based on a third-order proportional, derivative and
integration (PID) algorithm, is given in the discrete domain by
(see van Dam et al. [16]):

ag+ a1zt + apzt + a3z'3
Clz) = . . 5

1+ b1zl + byz? + bz
where the Z-transform argument z is replaced by exp 27v /v,
when we want to express this law in the continuous domain.
The coefficients @; and &; are set by design. 4, is the propor-
tional loop gain, and 4 is set to a value slightly smaller than 1
(leaky integrator gain) in order to avoid invisible modes build-
ing up in the DM commands. Note that the control law might
vary between systems. Our objective here is only to demon-
strate the noise-reduction technique on a particular case, the

Keck AO system.

5. The DM transfer function is assumed to be 1, as the
first mechanical resonance frequency is much higher than
the usual bandwidth of the AO system.

6. The zero-order hold transfer function is actually 1 be-
cause it is already included in the WES integration time.

(16)

From inspection of the loop diagram in Fig. 11, we find, for
the amplitude spectrum of the command of actuator 4 (we skip
the frequency in the notation to improve the reading and ~
indicates a Fourier transform),

77’% = HCL‘?H,/e + ;3;1 lf(/\%k, (1 7)
where the aliasing term is ignored (we will take care of its con-
tribution in the direct space, not using the current transfer
function method). Here,

* wny is the kth component of the transformation of the
slope white noise vector S, into a white noise actuator com-
mand vector (by application of the command matrix D7),
and is related to the noise command 7, we are interested in

Eq. (12) by

Hep —
iy, = W(]:?Ll wny, (18)
* Hcy is the closed-loop transfer function,
WR\RR;C
Har TN (19)

T 1+ WRRR,C
* 4 is the spectrum of the turbulent phase projected onto
actuator k.

From Eq. (17), we can now compute the cross-spectrum of
the DM commands (x indicates complex conjugation),

He |

S sk 25 =%
iy = |Howl iy, + =55
1

(ﬁ”’kl,l;;l; + ﬁﬁ‘,lu’;;zk)

He,
WR
The second term of the right member of the equation is null on
average, and does not contribute to the t-PSD. The model of
the temporal cross spectrum that we need to fit to the data,
considering that |R;| = 1, is therefore

Hey

2

+ Dy, (20)

2

(i) = |Heol* (@) pdr ;) + (wnpwny).  (21)

Practically, the procedure to get the white noise covariance
(wnywn}) is the following:
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1. From the telemetry, compute the actuator command
temporal power cross-spectrum (772,77} );

2. Build the closed loop and WES transfer functions;

3. Multiply the commands cross-spectrum with the ratio
|W /Hcyp|* to make the high-frequency wn,wn} white noise
cross-spectrum plateau evident

4. At this point, we are left with a temporal cross-spectrum
term equal to

(@4 )IW? + (wnywny). (22)

Here, there are two options: either we have some clue about the
atmospheric signal, in which case we can adjust a model to the
spectrums Zj; ;; or we do not, in which case (a) we use the fact
that the atmospheric signal is low at high frequency and is do-
minated by noise, which is generally true unless we work at very
low sampling frequency, and (b) we evaluate the average level of
the high-frequency plateau (Fig. 12). This is actually the easiest
way. Indeed, knowing the atmospheric signal would actually
require us to know not only the seeing, but also the vertical
distribution of the turbulence and wind velocity. In this case,
we would not need the DM-based seeing monitor.

Therefore, we have no choice but to assume that the noise
dominates the signal at high frequency, and make a reasonable
choice of the frequency above which the average of the t-PSD
plateau is computed. Of course, it is possible to iterate: get a
first estimate of the seeing, assume a certain vertical distribution
of the OT and wind profiles, compute the terms 4 4, and redo
the estimation. Due to the large number of assumptions that
are needed in such a case, it remains to be demonstrated that
this iterative procedure brings any advantage.

5. Once the white noise --PSD plateau level (wn,wn]) is
estimated, the command noise covariance can be computed
using Parseval equality:

DM actuator # 107 i
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o
N

DM command PSD [V2s?]
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Fig. 12. Red dots show raw DM command t-PSD for actuator #
107. Guide star magnitude 14.5 (R-band). Black dots: after compen-
sating with the transfer function |W/H ¢y |?. The red line shows the
estimated white noise t-PSD level.
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Fig. 13. Unfiltered DM command white noise RMS as a function
of the number of photons NV, per WES integration time, for actuator

number 107. The line shows the expected behavior in 1/,/N,.

G = [ momrde =1 [ mwiow

o Ho (v)|?
= (wnywny) /y V) dv. (23)

This procedure is illustrated in Fig. 12 on the power spectrum
(k = 1) of a noisy signal. The white noise plateau is well ap-
parent. We also compare in Fig. 13 the estimated actuator noise
as a function of the number of photoelectrons detected during
the WES integration over the full detector, with the theoretical
law in 1/ \/N; . This is done for about 100 data sets, over three
nights, with a ratio of high to low photon flux of 100. The
transfer function was adapted for the-loop frame for each case,
and the range was 140—1054 Hz. The agreement is remarkable,
even for a low light level.

B. Compensating the Contribution of the Wavefront
Sensor Spatial Aliasing

The three last terms on the right member of Eq. (13) show the
contribution of the WES spatial aliasing that we need to remove
from the DM command covariance,

alias cov. = (aﬁ . aﬁ’) +(a - aﬁ’) + (aﬁ -aj). (24)

We can think of two methods to estimate this term. The first
would be the procedure proposed in Kolb ez a/. [6], where they
propose to run a first wy and L, estimate ignoring the aliasing
term, then use a model of the aliasing term adjusted for the
seeing amplitude and do a second estimation taking into ac-
count the aliasing term. According to Kolb ez 4/. this technique
quickly converges and produces good results.

We think it is not necessary to apply an iterative procedure.
Indeed, the effect of aliasing is to systematically increase the
DM command variance in relation to the number of lenslets
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Fig. 14. Top, Zernike coefficient variance for seeing and WEFS
aliasing. Bottom, relative excess of Zernike coefficient variance due

to aliasing for the Keck AO WES.

or degree-of-freedom of the WES, independently of the seeing
amplitude. Thus, because this effect is systematic, we can com-
pute numerically, using a Monte Carlo procedure, the variance
of the WES aliasing expressed in the modified Zernike coeffi-
cients for D/ry =1, and simply compensate the Zernike
variances for this factor.

Figure 14, top, shows the RMS of the aliasing Zernike co-
efficients and the RMS of the OT Zernike coefficients for a
seeing of 0.7", 20 m outer scale, and the Keck AO system DM
pitch. The computation is based on the generation of random
phase screens drawn from the aliasing spatial power spectrum
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given in Jolissaint [17]. These phase screens are then projected
in the modified Zernike basis. The top figure shows that the
aliasing RMS is quite constant over a large range of indexes
until it drops. Therefore, as the OT Zernike variance decreases
steeply with j, the relative effect of aliasing increases towards the
high orders until a maximum is reached (bottom of Fig. 14).
We have computed the latter curve for different values of the
outer scale (down to 10 m) and saw essentially no change.

Therefore, it is possible to build an empirical model of the
variance excess as a function of the radial order, and compensate
this excess on the modified Zernike variance after the noise
has been compensated. Our model is an order 4 polynomial,
fit to the curve shown in Fig. 14, valid for the range » = 3 to
n=15:

Ny = po + pin+ pyr® + p3n’ + pynt', (25)
with
p = [0.998935,7.706682 x 1074, —1.823336 x 1074,
1.903760 x 1075, -2.762067 x 1077].

We have found that the impact of the aliasing error is minor,
only about 0.4% excess of seeing angle. But again, as our ob-
jective is to compensate all possible sources of systematic errors,
we did implement this correction in our algorithm.

7. ON-SKY VALIDATION

The PSE-R project at Keck Observatory started in 2007 with
Flicker [18], and was continued and completed by our team
from 2009 to 2017. During this period, more than 1000
AO runs were dedicated to the project and 841 were considered
valid to test our PSF-R algorithm. Of these, 636 runs are in
NGS mode and 205 in LGS mode. There is no conceptual
difference between the two modes as far as seeing estimation
is concerned. In reality, a close inspection of the modified
Zernike coefficient variances showed some unexpected behav-
ior in the LGS case, requiring further rejection of some modes.
At the end, the seeing estimation quality is no different for the
two modes.

In this section, after a summary of the OT estimation pro-
cedure, we will show how well the variance model we developed
fits the data, and then show a comparison of the estimated see-
ing with a simultaneous seeing estimated from on-loop PSF on
the same telescope, as well as with differential image motion
monitor (DIMM) and multi-aperture scintillation sensor
(MASS) seeing measurements.

A. Calculating the Seeing Angle and Outer Scale,

in Practice

The procedure to get the seeing angle and the outer scale from
the raw DM commands is summarized as follows:

1. Identify and discard the bad modes by inspection of the
modified Zernike variances for a significant number of AO ex-
periments. This point is very critical and requires some analysis
of the system’s behavior;

2. Remove the average from the DM commands in case an
offset is applied on the DM to compensate for nonturbulent
static aberrations. Optical turbulence wavefront error shall be
null on average;

3. Compute the DM command covariance (mm’);

4. Estimate the DM command noise covariance (nn’) and
subtract it from the DM command covariance;

5. Transform the noise-free DM command covariance
into the modified Zernike coefficient covariance matrix;

6. Remove the bad modes from the modified Zernike
covariance matrix;

7. Keep only the variances of the modified Zernike coef-
ficients; indeed it makes enough valid data points, and in any
case the outer-scale damping model is only for the variances;

8. Apply the aliasing correction factor to the modified
Zernike variances;

9. Construct the normalized variance model, i.e., for
D/ry = 1 and an infinite outer scale;

10. Divide the modified Zernike variances by the normal-
ized model for each mode individually;

11. Find the ratio D/L;, making the preceding ratio inde-
pendent of the j-index, using the empirical model for the outer-
scale damping W, ;5 this provides the best estimation of the
outer scale;

12. Divide once again the modified Zernike variances by
the normalized model for each mode individually, but now in-
cluding the outer-scale damping; we get, for each good mode,
a value of the (D/r,)*/? ratio from which we extract a series of
ro values, and then the average r; and w; for the AO run, as
well as an estimate of the uncertainty on rj, given by

a(ro) = 0.6D{(D/r0)P)*el(D/r0)*"’); (26)

13. As a verification, find the (D/r)*/? ratio that mini-
mizes the total quadratic difference between the variances
and the model, including the effect of the outer scale; in prin-
ciple, this best fit (D/ry)>/? should be compatible with the
average value computed from individual modes, i.e., it must
be within the 1-¢ dispersion range; if not, it is a sign that there
might be an issue with the data.

B. Comparison of the Variance Model and the
Measured Variances in NGS Mode

The estimation of w, and L are made via a fit of the modified
Zernike variance model to the DM command variances.
Therefore, it is critical to verify how well the model represents
the real data. In order to do this, we normalized the variances by
the factor (D/ro)s/awj)j(D/Lo), using for each set the Fried
parameter and outer scale determined from the set itself.
Figure 15 shows the comparison of the model variances, in
green and black, and the average variances for the 636 NGS
cases. From this, we concluded the following:

* The model is consistent with the data on average (see in
particular the zoomed graph). The 1-¢ error bars almost always
include the model prediction except for the modes for which
the azimuthal index 7 = 1, where the model is strangely al-
most two orders of magnitude above the data. We were not
able to identify the origin of the discrepancy, and we simply
considered all 7 =1 modes as bad modes, excluded from
the fit. The purely radial modes, 72 = 0, while compatible with
the data, showed also a systematic trend; because we had so
many valid modes, we decided to also discard these modes
in order not to add a possible systematic error.

* Beyond the j-index 120, we found that the difference be-
tween the model and the average variance was getting gradually
larger than the ¢ of the variances (not for all the modes,
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Fig. 15. NGS mode. Top figure: average of the variances of the
modified Zernike coefficients calculated from the DM actuator com-
mands, with 1-¢ bars, in red. In green, model prediction of the var-
iances for the good modes. For each AO run, and the model, we have
normalized the variances by the ratio (D/74)%/? and removed the ef-
fect of the outer scale by dividing by the Winker’s factor, using the
value of L assessed from the data. In black, the same for the modes
m = 0 (first sets of points above the green line) and 7 = 1 (top series
of points). Bottom: a zoom in the region j = 70-120.

though), so we decided to reject the modes j > 120 as well.
Overall, we were left with 90 valid modes in NGS mode, in
the range j = 9 to j = 120.

e For a significant fraction of the modes, Noll’s model is
perfectly suitable, i.e., the representation and sampling errors
do not affect the quality of the model. Once these modes
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Fig. 16. Example of model fitting to telemetry data. Case August
Ist, 2013, data set 0004. Seeing was 0.44"" £ 0.03" (1-0) and the
outer scale 12 m. Only the good modes were used for the model fit.

are identified, it should be safe to use the simpler Noll model,
with Winker factor, for the fit.

Figure 16 shows an example of model fitting to the data after
final selection of the good modes. There is some statistical
noise, certainly due to the fact that the AO run exposures were
limited in time: indeed, only a stationary optical turbulence
and an infinite exposure time would make the measurements
perfectly identical to the OT models we are using. Overall,
though, the model matches the data because the residual
statistical error due to the limited exposure time has a random
sign for each mode, and gets somewhat cancelled in the fitting
process.

It is important to note here that because the seeing changes
relatively rapidly, the seeing we are estimating can only be an
average of the seeing during the AO run science exposure. If the
seeing has changed too much, i.e., if the turbulence has been
too unstable during the AO run, there will be an excess variance
in the DM data with respect to the model we use. This is clearly
a limit of the current method, which assumes spatial and
temporal stationarity of OT. We have been made aware that
techniques to extract the OT parameters for a non-stationary
turbulence have been developed (see Brennan and Mann [19]
and references therein). Implementation of these techniques
in the context of astronomical AO application is left to
another study.

C. Comparison of the Variance Model and the
Measured Variances in LGS Mode

Figure 17 shows the comparison of the variance model and the
average variance in LGS mode for the 205 sets. Overall, the
match between the model and the data is good, and the same
comments as for the NGS mode apply except for one thing;: for
all the Zernike polynomials whose azimuthal component is in
cos m6, with m even, there is a systematic excess of variance as
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Fig. 17. LGS mode. Top figure: average of the variances of the
modified Zernike coefficient variances calculated from the DM actua-
tor commands, with 1-¢ bars, in red. In green, model prediction of the
variances for the good modes. For each AO run and the model, we
have normalized the variances by the ratio (D/r)>/® and removed
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the value of Z assessed from the data. In black, the same for the modes
m = 0 (first sets of points above the green line) and 7 = 1 (top series
of points). Bottom: a zoom in the 67 region around 104 rad? showing
an unexpected oscillation of the variances for the even azimuthal
modes.

shown in Fig. 17, bottom. This behavior is not seen at all in
NGS mode. Thus, there is some systematic error in LGS mode
whose origin we have not been able to identify. We do not
think it is coming from the data processing, as we process
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the NGS and LGS the same way. It should therefore come from
the LGS data itself. Keck AO is a zonal system, so we cannot
expect the actuator control itself to be at the origin of this
asymmetry.

The objective of the seeing estimation project is not to de-
bug the AO system, however, so therefore we simply decided to
discard the Zernike modes impacted by this effect. We were
therefore left with 75 good LGS modes, still enough for an
accurate determination of OT. Note that before suppressing
these modes, the estimated seeing in LGS mode was systemati-
cally about 15% higher than in NGS mode. This example
shows the importance of a close inspection of the system behav-
ior in order to avoid spurious systematic errors in the seeing
determination.

D. WFS Noise and Error in the Seeing Determination
If the noise contribution to the variance has been well sub-
tracted, then there should be no correlation between the WES
noise level and the error in the seeing angle. Figure 18 shows
that such is indeed the case for both NGS and LGS, for all 841
data sets. The noise variance in LGS mode is simply higher than
in NGS mode, but there is no correlation with the relative error
in the seeing angle.

E. Seeing Angle and Outer-Scale Statistics

We show in Figs. 19 and 20 the seeing angle and outer-scale
distribution for all the 841 valid measurements done during the
PSF-R project. The mean and median seeing are in line with
the values measured for this site, albeit slightly larger. This
might be due to some mirror seeing on the telescope. According
to Zago [20], what is called dome seeing is actually essentially
coming from a temperature difference between the primary
mirror and the immediate layer or air above it. The rule of
thumb, validated on many telescopes, is that a difference of
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Fig. 18. Relative uncertainty of the seeing angle determination as a
function of the variance of the noise for modified Zernike coefficient
ay (considered as a proxy for the noise variance). In black, NGS cases;
in red, LGS case.
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Fig. 19. Histogram of the seeing measurements in NGS and LGS
modes for the 841 experiments. Median seeing 0.62, mean seeing
0.70, standard deviation 0.3.

+1°C between the air and the mirror generates 0.1" of seeing,.
We also see that there is no statistical difference between the
results obtained in NGS and LGS mode. Note that the uncer-
tainty on the seeing (10) for each measurement was 0.03" on
average.

The outer scale we are measuring is on average a factor 2
smaller than values measured on the same summit on a nearby
8 meter telescope (Subaru) by the RAVEN AO system team
(Ono et al. [21]) on different nights (which might also explain
some part of the observed discrepancy). Using a SLODAR
technique, they were able to retrieve vertical profiles of the
outer scale and show that this parameter varies significantly
with the altitude in a range 15-35 m, on average. The
SLODAR technique, as it makes use of the correlation of
the slopes from an array of Shack—Hartmann lenslets, is in prin-
ciple relatively insensitive to the limited size of the telescope
aperture while, in the DM-seeing method, we determine the

DM-based seeing monitor, KECK-Il AO system, 2011-2015
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Fig. 20. Histogram of the outer-scale measurements in NGS and
LGS modes for the 841 experiments. Median 12 m, mean 12.7 m,
standard deviation 6 m.

outer scale from the effect it has on the Zernike modes varian-
ces over the full aperture. Therefore, our outer-scale determi-
nation method critically depends on the pupil diameter, and it
might be that the SLODAR and DM-seeing methods do not
measure the outer scale with the same biases. This assumption
remains to be explored.

We tried to force the outer scale to 20 m in the data reduc-
tion, but found that the fitting of the model with the low-order
variances was not satisfactory, with a model variance always
larger than the measurements at low order. As a consequence,
the estimated seeing angle was lowered by about 5%.

In our opinion, here we are reaching the limits of the optical
turbulence theory. The assumption that the turbulent flow is
homogeneous and the scales of the eddies distributed according
to the Kolmogorov law (see Tatarski for details) is truly valid in
the free atmosphere, but ground structures like the observatory
building and dome certainly break the homogeneity of the flow,
where optical turbulence is at its strongest. Also, if the turbu-
lence is at its strongest—near the ground and the dome slit—
where the outer scale is at its lowest, it should not be a surprise
that the outer scale measured on the fitll aperture tends to be
equal to the slit and mirror diameter (see Eq. 12 in Ono ez al.,
showing how the optical outer scale is weighted by the optical
turbulence profile). This is of course only an assumption need-
ing further exploration as well.

Besides, we must not forget, as Voitsekhovich and Cuevas
[22] remind us, that the von Karman model of the turbulent
phase spatial power spectrum, at the basis of all models used so
far to account for the damping effect of the outer scale, is only a
simple empirical model not based on physics. In fact, other
models exist that produce, according to Voitsekhovich, similar
results as the VK model.

What we can finally conclude from our measurements is
that there is a significant damping of the low-order aberration
variances with respect to a fully developed Kolmogorov flow,
and that this damping is relatively well described by the von
Karman empirical modification of the Kolmogorov model us-
ing an outer scale of 13 m on average. Deciding if the VK
model is appropriate or not to describe the real shape of the
turbulent flow near the telescope aperture, or if a more sophis-
ticated inhomogeneous model shall be used, is beyond the
scope of this work.

F. Note on the Number of Good Modes and the
Seeing Determination Accuracy

The selection of the first good mode has an impact on the ac-
curacy with which the outer scale is estimated: the lower the j-
index, the stronger the Ly-damping effect and therefore the bet-
ter the accuracy on Ly, which has an immediate impact on the
seeing determination (ignoring the problem with the potential
instrument aberrations); on the other hand, the higher the last
j-index, the more data points we have and the better the seeing
estimation, but we also need to remove bad modes here and
there for various reasons. As we have seen, we are left with
90 data points in NGS mode and 75 in LGS mode. In prin-
ciple, as we have de-trended the measured variance from the
outer-scale damping, when we divide the variances with
Noll's model, we should see a straight line. The average of this
line gives the mean (D/70)°/3, from which we get 7y and the
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seeing. As the departure from Noll’s model has many different
(unknown) origins, we expect the error distribution to be
Gaussian, so the RMS on the mean 7y shall be given by the
classical formula o(mean) = mean(c(data))/+/nb.data. So,
going from 90 to 75 data points (NGS to LGS), the relative
loss is 10%, i.e., the statistical error of the seeing determination
from the LGS data is only 10% larger than that for the
NGS case.

Buct all this is relatively theoretical. Indeed, in our under-
standing, the accuracy of the OT parameters has more to do
with the selection of the good modes than with the number
of modes, assuming of course that there are enough valid
modes. As we see in the Keck example, a few tens of modes
well distributed from the very first to last mode shall be enough.
For any other system, we would therefore recommend carefully
examining the behavior of the modal variances to select the
appropriate modes. Also, the only solid way to estimate the ac-
curacy of the seeing determination is to run a AO on/off experi-
ment as we describe next.

G. Comparison with Open-Loop PSF Seeing

Certainly the most important test of our method was the direct
comparison of the DM-monitor seeing with the seeing ex-
tracted from simultaneous on-sky open-loop PSF, acquired
on the same telescope, on the same optical axis. In such a case,
it is expected that both seeings should be highly correlated.
During two nights, June 22 and 23 of 2011, we did 96 AO
runs alternated with 75 open-loop PSF acquisitions. The typ-
ical delay between a closed-loop and an open-loop run was 90 s.
This delay was too long to catch the same turbulent conditions,
but short enough to catch the long term evolution of the atmos-
phere over a few minutes, and verify that the seeing evolution
were identical in both time series (Fig. 21).

On the Keck AO system, the open-loop mode is actually a
tip-tilt correction mode, so the seeing cannot be estimated di-
rectly from the long exposure PSF themselves. Furthermore,
there is the PSF improvement due to the outer scale. We there-
fore built, using a Monte Carlo simulation of tip-tilt correction,
a library of synthetic long exposure tip-tilt corrected PSF, for a
range of seeing values from 0.2" to 1.9”, and an outer scale
equal to the average we have measured in our darta set, 12 m.
Then, after careful cosmetic cleaning of the sky open-loop PSF
(acquired with the near infrared camera NIRC2, at 1.65 pm)
we looked into the library for the PSF whose Strehl ratio was
the closest to the sky PSF Strehl. We knew that there were some
uncorrected static aberrations in the system (about 150 nm),
but their contribution on the tip-tilt corrected PSF Strehl
was negligible.

The median rate of change of the seeing during the experi-
ments was, measured from the seeing time series themselves,
0.3 mas/s, in both directions (increase or decrease of the
seeing). Therefore, the seeing change from a closed-loop to an
open-loop run, separated by 90 s, was on average +0.03"".
Adding to this the uncertainty of 0.03"” of the seeing angle,
we end up with a probable deviation of £0.06"" between a
DM-based seeing measurement and the subsequent PSF-based
seeing measurement. In Figs. 21, we show the superposed time
evolution of the DM- and PSF-based seeing measurements for
the two on-sky experiments of June 22 and 23, 2011. Most of
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Fig. 21. Closed-/open-loop secing experiment. June 22/23, 2011
(top/bottom). Plus signs, DM-seeing; red squares, PSF seeing. The
continuous lines show the range of values within which the PSF seeing
is expected, if the PSF seeing is the same as the DM-based seeing. The
dashed vertical line indicates an interruption in the data acquisition for
about 10 min.

the PSF seeing is within the expected range, so we can conclude
that the two series are compatible, which is also apparent in
their statistics, given in Table 2.

We show the correlation between the DM and PSF seeing
measurements in Fig. 22, where the DM-based seeing mea-
surements has been interpolated at the same time as the PSF
measurements. The correlation coefficient is 90.6% and the
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Table 2. Statistics of the DM- and PSF-Based Seeing
Measurements for June 22 and 23, 2011

June 22 June 23
DM PSF DM PSF
(w0) 0.59" 0.59" 0.78" 0.75"
ow 0.09" 0.09" 0.11" 0.10"
L B L L A
1.0 [ June-October // /]
"y [ 2011 tests g e
% - D/ //
o 0.8r L 7
e - nm E//
o i T
R I q;g
o 0.6 I - 7
» . Fog
2 0.4l Vs
a 0.4r1 s 7
O 7
_Q i ////
s B //:/ correlation
5 027 Y4 r = 90.6 %
0.0l L ! L

0.0 0.2 04 06 08 1.0
OL PSF based seeing [asec]

Fig. 22. DM seeing and PSF seeing for the two nights all together,
plus five data points taken on October 13, 2011. The DM seeing val-
ues are an interpolation at the time of the PSF seeing acquisition. The
dashed lines show a range of £10% from the PSF seeing reference.

slope between the two series is 1.02. Most of the DM-based
seeing values are within +10% of the PSE-based values. In
our opinion, these results fully validate the DM-seeing monitor
technique.

H. Comparison with DIMM and MASS Seeing

The last test we did was comparing the DM-based seeing with
simultaneous measurements made by the Mauna Kea seeing
monitors’ differential image motion monitor (DIMM, Sarazin
and Roddier [23]) and multi aperture scintillation sensor (MASS,
Kornilov et al. [24]). The DIMM and MASS data are taken
from the Mauna Kea Weather Center web site archive
(http://mkwec.ifa.hawaii.edu/current/seeing/). Figure 23 shows
the night average seeing for the DM/DIMM/MASS monitors
for nine nights between June 2011 and July 2015.

It appears that for most of the nights, the DM and DIMM
night average seeing are similar. This is not the case for the
MASS seeing, which is for five over eight nights significantly
smaller than the DM values, but this is expected, as it is known
that the MASS monitor is not sensitive to the low-altitude
layers. These measurements can be interpreted as an indication
that most of the time there is a significant ground layer of op-
tical turbulence at Mauna Kea, a fact that is well known (see for
instance Ono et a/. [21] and reference herein).
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Fig. 23. Average seeing during the same period of time as the AO
runs, for nine nights. Dates and seeing values are given in Table 3.
MASS data is missing for night # 5.

Table 3. Mean Seeing Measured with the DM, PSF,
DIMM, and MASS for the Nine Dates Indicated’

Exp Date DM PSF DIMM MASS
1 2011/06/22 0.59 0.59 0.70 0.52

2 2011/06/23 0.78 0.75 0.61 0.75

3 2011/10/13 0.58 0.56 0.64 0.23

4 2012/02/10 1.14 - 1.06 1.22

5 2013/02/03 0.41 - 0.52 -

6 2013/09/14 0.65 - 0.34 0.11

7 2014/07/11 0.58 - 0.51 0.29

8 2015/03/31 0.56 - 0.52 0.13

9 2015/07/01 0.60 - 0.71 0.32

“Unit is asec.—means data is not available.

That being said, while the correlation between the nightly
average can be relatively good, at least with the DIMM values,
this is not the case on a shorter time basis (minutes/hours). This
is demonstrated by the RMS of the difference between the DM,
DIMM, and MASS seeing shown in Table 4: the DIMM-DM
dispersion is four times larger than the open-loop PSE-DM
dispersion, and the MASS-DM one is six times larger.

Also, there can be important differences between the DM,
DIMM, and MASS seeing from one night to another as well as

Table 4. Average Dispersion Between DM Seeing and
the Other Sensors®

OL-PSF DIMM MASS
0.06" 0.22" 0.37"
“The DIMM and MASS seeing were interpolated at the time of the DM-

seeing acquisition.
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Fig.24. Comparison of the DIMM, MASS, and DM seeing for the
night of June 22/23, 2011, when correlation of the night average was
at its highest amongst our data sets.

during a given night. The night of June 22, 2011 (Fig. 24)
shows a case in which the average seeing was relatively similar,
but we can see that this correlation was mostly coincidental. The
night of September 14, 2013 (Fig. 25) shows an example where
the three monitors were producing totally different results.
Figure 26 shows the DIMM, MASS, and OL PSF seeing
versus the DM seeing. It is obvious that the OL PSF seeing is
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Fig.25. Comparison of the DIMM, MASS, and DM seeing for the

night of September 14/15, 2013, when correlation of the night average
was at its lowest.
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Fig.26. Comparison of the DIMM, MASS, OL PSF, and DM sece-
ing. The DIMM/MASS seeing was interpolated at the time of the DM
seeing acquisition.

much more correlated with the DM seeing than are the DIMM
and MASS seeing. This is a clear demonstration of the fact that
the seeing changes significantly from a place to another because
of the influence of the ground structures on the turbulent flow,
which might change with the wind direction, and because the
monitors are not sensing the turbulence from the same altitude.
Besides, mirror seeing can be present.

As a consequence, we think that an accurate estimation of
the seeing associated with a given AO observation requires a
measurement collocated with the system optical axis at the
same time as the observation. The DM-seeing monitor is the
ideal solution for this. A distant seeing monitor cannot produce
any useful results in that respect, and shall only be used for site
monitoring. It might even be that, because of the poor correlation
between seeing monitors and the telescope seeing measured by the
DM seeing, observation scheduling based on seeing prediction
would only have a limited interest unless the very local and
mirror seeing could be predicted. It is therefore essential, in
our understanding, to collocate as much as possible the OT
monitors and the optical axis of the telescope.

8. CONCLUSIONS

We have presented a detailed analysis of the systematic and ran-
dom errors affecting the determination of the seeing angle and
outer scale of optical turbulence from the deformable mirror
commands of an adaptive optics system. Mitigation or correc-
tion solutions have been proposed for each term. The method
was developed for both the natural and laser guide star modes of
the adaptive optics system of the W. M. Keck-1I telescope, and
can be applied to any other system. The method has been va-
lidated with a comparison to simultaneous measurements of the
seeing from open-loop PSF acquired on the same optical axis.
We have demonstrated that an accuracy of 10% on the deter-
mination of the local and instantaneous seeing is achievable.
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We tested the DM wavefront for stationarity in the pupil, a
particularly important requirement in this method, and showed
that the pupil edges had to be avoided by selecting an annulus
inside the telescope pupil for the seeing determination. Zernike
projection error on the DM influence function basis and
numerical representation error have been identified and com-
pensated by a proper use of a modified Zernike polynomial
basis. A noise covariance determination from the power spec-
trum of the actuator commands has been developed, and com-
parison of the noise amplitude with the expected behavior as a
function of the number of photons per integration time has
validated the approach. A simple method to compensate for
wavefront sensor aliasing has been developed.

The statistical analysis of the DM commands expressed in
the modified Zernike basis demonstrates the validity of the
Kolmogorov model, with the von Karman empirical modifica-
tion, to describe the Keck AO system behavior. This in turn
indicates that, by using this system, it is possible to extract
the OT parameters from the telemetry (which is not the case
on all systems) because non-Kolmogorov sources of dynamical
errors are negligible. That being said, in LGS mode, an unex-
pected excess of dynamical aberration was identified for modes
with an even azimuthal order 7. These modes were simply dis-
carded from the seeing determination process. After this cor-
rection, no statistical difference between the natural and
laser guide star modes was found.

The statistics of the seeing angle determined for 841 AO
runs from 2011 to 2015 is similar to the expected value for
the Mauna Kea summit, about 0.6". The estimated outer scale
is smaller than the average value measured with other monitors.
We postulate without proof that this might be due to the differ-
ence between the geometry of the outer-scale determination in
the DM-seeing approach, where the whole pupil is used, and
the other methods, which study the statistics of the wavefront
as a function of the separation vector within the pupil. The
dome structure might also have an influence.

We finally demonstrated that the DM-based seeing was
highly correlated with the seeing measured on the same axis,
at a quasi-simultaneous time, on open-loop PSF. The relative
difference was 10% on average, with a dispersion of only 0.06".
This method is therefore valid for retrieving accurate seeing
determination values, a particularly critical aspect for system
performance validation and other sensitive post-AO methods
such as PSF reconstruction. On the contrary, the difference be-
tween the DM and DIMM seeing can be more than 40%, and
more than 80% with the MASS seeing. It is therefore highly
recommended not to use non-collocated seeing monitors when
accurate seeing estimation is required at a given telescope.
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