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ABSTRACT 

Demand response allows consumers to reduce their 

electrical consumption during periods of peak energy 

use. This reduces the peaks of electrical demand, and, 

consequently, the wholesale electricity prices. However, 

buildings must coordinate with each other to avoid 

delaying their electricity consumption simultaneously, 

which would create new, delayed peaks of electrical 

demand. In this work, we examine this coordination 

using batch reinforcement learning (BRL). BRL does not 

require a model, and allows the buildings to adapt over 

time to the optimal behavior. We implemented our 

controller in CitySim, a building simulator, using 

TensorFlow, a machine learning library. 

INTRODUCTION 

Residential buildings account for about 30% of the 

global energy consumption, of which space conditioning 

constitutes a large portion (IEA 2013). In regions where 

summers can be very hot, air conditioning can produce 

high peaks of electrical demand which lead to constraints 

in the power transmission lines that can cause very high 

wholesale prices of electricity (Dupont, De Jonghe, et al. 

2014). Furthermore, in developing countries, the demand 

for air conditioning devices if expected to increase 

significantly in the coming years (McNeil and Letschert 

2008).  

Distributed renewable energy resources, such as 

photovoltaic PV panels, can improve the energy 

autonomy of residential consumers, reduce CO2 

emissions, and reduce the peaks of electrical demand of 

the power grid. However, high penetration of renewable 

energy resources can cause instability problems in the 

electrical infrastructure because of their limited 

predictability, controlability, and high variability 

(Dupont, Dietrich, et al. 2014). 

Demand response can enable consumers to reduce their 

electrical consumption during periods of peak energy 

demand in exchange for a lower energy bill (Siano 

2014). Furthermore, demand response can improve grid 

stability by increasing demand flexibility, and by 

shifting peak demand towards periods of peak renewable 

energy generation, if available. Two examples of 

implementations of demand response programs in the 

U.S. are the Energy-Smart Pricing PlanSM in Illinois from 

2003-2006 (Summit Blue Consulting 2007), and the 

Critical Peak Pricing experiment in California (Herter et 

al. 2007).  However, when multiple buildings delay their 

electrical consumption simultaneously, they can produce 

new peaks when prices of electricity were expected to be 

lower. To avoid such rebound effects, buildings must 

provide a coordinated response, which can be either 

cooperative or competitive (as it is the case in this paper). 

Advanced control approaches, such as Model-Predictive 

Control (MPC) (Rault 1978), can achieve near-optimal 

energy cost savings in systems for which a mathematical 

model is available. However, such models are often too 

time and cost intensive to implement in medium sized 

residential buildings (Shaikh et al. 2014). Moreover, if 

buildings are retrofitted, their models are no longer be 

accurate. 

Reinforcement learning (RL) is a model-free learning 

algorithm that can adapt to changing factors such as 

weather conditions, building retrofitting, or the 

installation of additional solar PV capacity. RL does not 

require any kind of model identification, but rather 

behaves as a “plug and play” controller. It can learn both 

on-line (as it takes control actions), and off-line (from 

historical data, or by observing another controller). Off-

line learning is particularly useful because it allows RL 

to take advantage of the growing amount of sensor data 

that there will be available for buildings. It also allows 

any RL controller to be coupled with a secondary or 

“back-up” controller from which it can learn. 

Furthermore, if the RL controller has not learned enough 

to take the appropriate control decisions, it can switch to 



   

 

the back-up controller and keep learning from the sensor 

data. 

Reinforcement learning was used for the first time in the 

built environment by Mozer in his neural network house 

project in 1998 (Mozer 1998). Since then, some research 

has focused on the use of RL to minimize the cost of 

electricity in buildings with energy storage devices and 

renewable energy resources (Ruelens et al. 2014), 

maximize the self-consumption of local PV generation 

by storing the energy in DHW buffers (De Somer et al. 

2017), or control a building energy system with several 

photovoltaic-thermal panels, geothermal boreholes, 

(Yang, L., et al. 2015). However, little research has been 

done in the use of RL to coordinate different buildings 

sharing the same electricity prices, which are dependent 

on their cumulated energy demand. RL has been used to 

coordinate several HVAC systems in a double-auction 

market using GridLAB as the simulation environment 

(Sun et al. 2015). However, the researchers focused on 

modifying the indoor temperature of the buildings to 

allow for more discomfort when the price of electricity 

was higher, which in a real-world scenario could 

discourage consumer from participating in demand 

response programs. The implementation of multi-agent 

reinforcement learning in the field of demand response 

still needs further research in order to achieve scalable 

control systems that allow buildings to learn from each 

other (Vázquez-Canteli, J.R., and Nagy 2018). 

Previous research (Vázquez-Canteli, J.R., Kämpf, J. H., 

and Nagy 2017) demonstrated how batch reinforcement 

learning (BRL) can achieve significant energy savings in 

a single building with a heat pump and a chilled water 

tank. In this paper, we demonstrate how BRL can be used 

to reduce the cost of the electricity consumed by multiple 

buildings in a demand response scenario. Another 

important contribution is that we created a new 

simulation environment that allows us to use a building 

energy simulator designed for urban scale analysis, 

CitySim (Robinson 2011), combined with a powerful 

machine learning library, TensorFlow (Agarwal et al. 

2015), that allows us to take advantage of advanced 

machine learning algorithms. Finally, we test this 

simulation environment with a case study of two 

residencial buildings located in Austin, TX. In the case 

study, we simulated two buildings that share the same 

prices for electricity. In each building, a heat pump 

provides the necessary cooling, and a water tank 

provides storage capabilities. The price for electricity 

increases with the electrical demand of both buildings. 

Therefore, the BRL controller of each building must 

learn how to compete with the other building to achieve 

greater cost savings and avoid consuming energy 

simultaneously. We also demonstrate how BRL can 

adapt to the installations of PV panels on top of the 

buildings, which completely changes the dynamics of 

the system.  

METHODOLOGY 

Reinforcement learning 

Reinforcement learning can be formalized using a 

Markov Decision Process (MDP), which contains four 

elements: a set of states S, a set of actions A, a reward 

function R: S x A, and transition probabilities between 

the states P: S x A x S  𝜖 [0,1]. A policy  then maps 

states to actions as : S A, and the value function V(s) 

of a state s, given by the Bellman equation, eq. 1. 

 

𝑉𝜋(𝑠) = 𝑟(𝑠, 𝜋(𝑠)) + 𝛾 ∑𝑃(𝑠, 𝜋(𝑠), 𝑠′) 𝑉𝜋(𝑠′)         (1) 

  

is the expected return for the agent when starting in the 

state s and following the policy . In (1) r is the reward 

received for taking the action 𝑎 =  𝜋(𝑠𝑘), and 𝛾 𝜖 [0,1]  
is a discount factor for future rewards. The goal of the 

agent is to find a policy that maximizes its rewards. An 

agent that uses 𝛾 = 1 will focus on long term rewards, 

whereas an agent using 𝛾 = 0 will seek immediate 

rewards. RL is particularly useful when the model 

dynamics (P and R) are not known, and have to be 

determined or estimated through interaction of the agent 

with the environment as depicted in Fig. 1.  

 

  
Figure 1 Agent and environment interaction 

 

Q-learning is the most widely used algorithm to solve eq. 

1 due to its simplicity (Watkins and Dayan 1992). In 

simple tasks with small finite state sets, all transitions 

can be represented with a table storing state–action 

values, or q-values. Each entry in the table represents a 

state–action (s,a) tuple, and Q-values are updated as  

 

𝑄𝑘+1 = 𝑄𝑘 + 𝛼[𝑟 + 𝛾 max 𝑄 − 𝑄𝑘]               (2) 

       

𝛼 ∈ (0,1) is the learning rate, which explicitly defines to 

what degree new knowledge overrides old knowledge: 

For 𝛼 = 0, no learning happens, while for 𝛼 = 1, all 

prior knowledge is lost at each iteration. It can be shown, 

that the optimal value for a state, 𝑉∗(𝑠), is given by 

 

𝑉∗(𝑠) = max𝑎 𝑄∗(𝑠, 𝑎)                                                   (3) 



   

 

Where 𝑄∗(𝑠, 𝑎) is the optimal Q value for state s. The 

drawback of this tabular approach is that only one Q-

value is updated at a time, and requires the states and 

actions to be discrete. When the state-action space is 

larger, and has continuous values, the Q-table is 

substituted by an Artificial Neural Network (ANN) 

(Busoniu et al. 2010) that maps states and actions 

directly to their Q-values, Fig. 2. This version of Q-

learning that uses ANNs to estimate the Q-values from 

their states and actions is known as batch reinforcement 

learning (BRL) (Kalyanakrishnan et al. 2008). Table 1 

shows the BRL algorithm work as implemented in this 

work. 

 

Figure 2 Artificial neural network for batch 

reinforcement learning 

 

 

To find the best action for a given state, BRL uses a 

trade-off between exploring actions that the algorithm is 

uncertain on how good they are (may not have high Q-

values at that time) and exploiting actions that seem to 

provide high long-term rewards (have high Q-values). 

Two of the most popular action-selection algorithms are 

ϵ-greedy, and soft-max action-selection. This work uses 

soft-max action-selection, which selects the actions with 

a probability that is related to the Q-value as 

 

 

Actions with higher Q-values are more likely to be 

selected than actions with lower Q-values. T is the 

Boltzmann temperature constant. High values of T (i.e. 

T > 3) make the probability of selecting any action very 

homogeneous regardless of their Q-values. Low values 

of T (i.e. T < 0.1) lead the action-selection algorithm 

towards a greedy policy, in which actions with the 

highest Q-values are selected most of the time. It is 

convenient to start the learning process with high values 

of T to increase exploration, and then reduce T to exploit 

the acquired knowledge to maximize the rewards 

obtained. 

CitySim and TensorFlow 

To perform the simulations, we created a framework that 

allows us to take advantage of the features of a building 

energy simulator for urban scale analysis, and advanced 

machine learning algorithms, (i.e. different kinds of 

artificial neural networks and training algorithms). 

CitySim is a building energy simulator developed at 

École Polytechnique Fédérale de Lausanne (EPFL) that 

computes an hourly estimation of the energy demand for 

heating, cooling, and lighting in every building 

(Robinson 2011). CitySim is validated (Walter and 

Kämpf 2015), and has been used, e.g.,  in urban retrofit 

analysis (Vazquez-Canteli and Kampf 2016). It allows 

us to easily create scenarios with multiple buildings, 

make changes (i.e. building retrofitting, population 

growth, construction of new buildings, additional 

shadowing effects), and analyze how buildings can learn 

and adapt to those changes through reinforcement 

learning.  

TensorFlow is an open source machine learning library 

created for efficient numerical computation, using data-

flow graphs (Agarwal et al. 2015). Furthermore, there 

exist high-level APIs for implementation of machine 

learning algorithms, such as Keras, an open source 

library that uses TensorFlow as a back-end engine. Keras 

provided modular access to the backend features of 

TensorFlow that we used to build the neural network. 

We implemented the reinforcement learning controller 

in CitySim, while we used TensorFlow to efficiently 

implement the artificial neural network that the 

controller needs. Fig. 3 depicts this framework we 

created for our simulations. This simulation framework 

Table 1  Batch reinforcement learning 

 

1:   �̃� ← Initialize ANN randomly 

2: 𝑖 ← 0 

3: Repeat 

4:       (𝑠𝑖 , 𝑠′𝑖−1) ← scale(𝑠𝑡 , 𝑠𝑡) 

5:       𝑎𝑖  ←  𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑖 , �̃�) 

6:       𝑠𝑡+1 ← 𝑡𝑎𝑘𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑠𝑖 , 𝑎𝑖) 

7:       𝑟𝑖 ← 𝑔𝑒𝑡𝑅𝑒𝑤𝑎𝑟𝑑(𝑠𝑖 , 𝑎𝑖 , 𝑠𝑡+1) 

8:       𝐷𝑖 ← (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠′
𝑖)  

9:       𝐈𝐟 (i + 1) % batchSize == 0 

10:             Repeat 

11:                    𝑎∗ ← 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎�̃�(𝑠′, 𝑎)   
12:                   𝑄(𝑠, 𝑎) ← 𝑟(𝑠, 𝑎) + 𝛾 �̃�(𝑠′, 𝑎∗) 

13:                   �̃� ← trainANN(s, a, 𝑄) 

14:             Until p == epochs 

15:       𝐞𝐧𝐝 𝐢𝐟 

16:       𝐈𝐟 t % stepSize == 0 

17:             𝑖 + + 

18:       𝐞𝐧𝐝 𝐢𝐟 

19: 𝐮𝐧𝐭𝐢𝐥 t = simulation time        



   

 

is detailed in (Vázquez-Canteli, J.R., Ulyanin, S., 

Kämpf, J. H., and Nagy 2018). 

 

 

Figure 3 CitySim-TensorFlow framework 

SIMULATION 

We conducted our simulations for a case study under the 

climatic conditions of a typical year in Austin, TX. We 

chose a period of hot weather comprised of 122 days for 

our simulation, between May the 19th and September the 

7th, as Fig. 4 illustrates. We selected this period because 

it was comprised between a relatively small and steady 

range of warm temperatures that would allow us to study 

the performance of our controller when implemented in 

a cooling system. The weather file was obtained from 

Meteonorm.  

 

 

Figure 4 Selected period of cooling that we chose for 

the simulation. 
 

Building energy models 

The building energy system of this study is comprised of 

an air-source to water heat pump, that provides cooling 

energy to a chilled water tank, which stores the water and 

provides cooling to the building.  The objective of the 

controller is to reduce the dependency of the heat pump 

on the electrical grid by storing and releasing cooling 

energy from the chilled water tank at different times.  

A photovoltaic array may provide electricity to the heat 

pump, and we assume that the electricity generated is lost 

if it is not consumed immediately. During the day the PV 

panel reduces the electricity that the heat pump 

consumes from the grid, but the coefficient of 

performance (COP) of the heat pump will typically be 

lower during these hours. During the night, the heat 

pump will typically benefit from a higher COP, but will 

lack the electricity generated by the PV panel.  

 

 

Figure 5 Building envelopes and the representation of 

their building energy models in CitySim 

 

For the case study, we modelled one seven-story, and 

one nine-story residential building, both located in 

downtown Austin, TX. The buildings are illustrated in 

Fig. 5, and their physical characteristics have been 

estimated based on typical values that complied with the 

norm ASHRAE Fundamentals 90.1. We used infiltration 

rates of 0.9 h-1, and 0.8 h-1 respectively, windows with an 

U-value of 2.135 W/m2K for one building, and 6.23 

W/m2K for the other. The solar energy transmittance 

coefficients (G-value) of the windows were 0.49 and 

0.62 respectively, and we assumed window to wall ratios 

of 0.3 for both buildings.  

 

Table 2  Materials of construction of the envelopes 

 MATERIAL THICK. 

[m] 

THERMAL. 

COND. 

[W/(mK)] 

Cp 

[J/kgK] 

DENSITY 

[kg/m3] 

W
A

L
L

S
 

Rendering 

PS30 polystyrene 

Reinfor. concrete 

Plaster 

0.02 

0.10 

0.17 

0.01 

0.87 

0.036 

2.40 

0.43 

1100 

1400 

1000 

1000 

1800 

30 

2350 

1200 

F
L

O
O

R
 

Reinfor. concrete 0.3 2.40 1000 2350 

R
O

O
F

 

Rendering 

PS30 polystyrene 

Reinfor. concrete 

Plaster 

0.02 

0.10 

0.17 

0.01 

0.87 

0.036 

2.40 

0.43 

1100 

1400 

1000 

1000 

1800 

30 

2350 

1200 

 



   

 

Table 2 contains the materials we used to model the walls 

of the envelopes of both buildings. The purpose of this 

paper is not to accurately model the buildings but rather 

demonstrate that buildings with different thermal 

characteristics can use the same reinforcement learning 

controller, and learn to coordinate with each other in a 

competitive way.  

Electricity price 

The price of electricity is proportional to the sum of the 

electrical consumption of both buildings at any given 

time. This constitutes an incentive for the buildings not 

to consume electrical energy simultaneously. The 

relation between the price of electricity (in USD), and 

the sum of the electricity consumption of both buildings 

(in kWh) at any given time is modeled as  

𝑃 =  3 ⋅ 10−5 ⋅ 𝐸 +  0.045    (5) 

In a real scenario with dozens of buildings, the increase 

of their electrical demand produces increases in the 

wholesale prices for electricity, which lead to higher 

retail prices of electricity in the long term. Eq. 5 is based 

on a reasonable estimation of retail prices provided by 

Austin Energy. In this paper, we do not intend to 

simulate the electricity market, but to show that 

buildings can learn and adapt to constant changes in the 

prices of electricity caused by the actions of other 

buildings, learn from each other and compete for a lower 

energy bill. 

The controller state-action space 

The objective of the batch reinforcement learning 

controller is to minimzie the cost of the electricity 

consumed by the heat pump from the power grid. 

Therefore, the reward that the controller receives is the 

cost of electricity. As states and actions we chose all 

those variables that help in predicting the future reward 

of the system. Fig. 6 illustrates all the variables we chose 

because of their influence over the cost of the energy 

buildings consume.  

The action of the RL controller is the target temperature 

of the chilled water tank (for the next time-step), while 

the states are defined as the current temperature of the 

water in the tank, the outdoor temperature (which is a 

predictor of the energy demand in the building as well as 

of the coefficient of performance (COP) of the heat 

pump), the hour of the day, and the price of electricity. 

Indoor temperatures are always maintained between the 

appropriate temperature set-points, and they are never 

increased to achieve greater cost savings at the expense 

of thermal comfort. Since indoor temperature is 

maintained constant most of the time, it is not used as a 

state. Both the electricity prices and the COP of the heat 

pump have an influence on the overall cost of the 

electricity. 

 

Figure 6 State-action space to predict the reward 

 

Reinforcement Learning Controllers 

We compared three different controllers: a rule-based 

controller (RBC), a single-agent BRL controller, and a 

multi-agent BRL controller. The RBC cools the water in 

the chilled water tank every time it reaches 20 °C until it 

reaches 10 °C. On the other hand, both the single-agent, 

and the multi-agent BRL controllers use reinforcement 

learning in each building to adjust the temperature of the 

tank every two hours.  

The single-agent BRL controllers reward their respective 

buildings by calculating an energy cost that uses a virtual 

electricity price, which is calculated from eq. 5 using 

their individual electricity consumption as the input E. 

This virtual price is only used to calculate the reward for 

each controller, whereas the real price both buildings pay 

is computed using the sum of the electricity consumption 

of both buildings as the input E  in eq. 5. This virtual 

price (at the previous time-step) was also used as the 

state “Price of electricity” that Fig. 6 shows. 

The multi-agent BRL controllers reward their respective 

buildings using their real cost of electricity, which is 

calculated using the electricity price buildings share 

(using eq. 5 with the sum of both electrical demands as 

the input E). Therefore, the multi-agent BRL controller 

penalizes more the buildings if they consume electricity 

simultaneously, while the single-agent BRL controller 

only penalizes each of them, separately, for increasing 

their individual electricity consumption. The real price 

of electricity both buildings share (at the previous time-

step) was also used as a state for every controller as Fig. 

6 illustrates.  

In a second experiment, we add a photovoltaic array on 

one of the buildings, covering 20% of its roof surface. 

We analyze how this can affect the electricity prices and 

whether the different controllers can adapt to this new 

situation. 



   

 

RESULTS AND DISCUSSION 

Fig. 7 shows how the single-agent BRL controller 

learned to cool the water tank when the outdoor 

temperature is low and the COP high, and discharge the 

cooling energy from the tank into the building when the 

outdoor temperature is high and the COP low. This 

control achieves greater energy cost savings than the 

RBC, which switches on and off without considering the 

outdoor temperature. On the other hand, the multi-agent 

BRL controller not only considers the outdoor 

temperature, but also the price of electricity both 

buildings share, which depends on the electrical 

consumption of the other building. Therefore, it did not 

follow a pattern intended to maximize the COP. 

 

Figure 7 Variations of the temperature of the water 

tanks, with respect to the outdoor temperature, and 

electricity prices for one building and different 

controllers 

 

Fig. 8 illustrates the energy cost of each building using 

the three different controllers. The cost of electricity is 

scaled for a better visualization of the cost reductions. 

The RLC led to the highest electricity costs in both 

buildings. The reason for this is that it is an on-off 

controller, which makes use of the heat pump at full 

power capacity when the water tank reaches 20 °C until 

it reaches 10 °C. This creates spikes in the energy 

consumption of both buildings, leading to high 

electricity prices and costs. 

On the other hand, both the single-agent, and the multi-

agent BRL controllers achieved the same improvement 

with respect to the RBC. However, the single-agent BRL 

controller optimized the COP of the heat pump, while the 

multi-agent BRL controller did not. Therefore, the multi-

agent BRL controller achieved some level of 

coordination between the buildings to make sure that the 

best price was paid rather than the COP maximized. This 

shows that even though we violate the markovian 

property, we achieve similar results than the single-agent 

controller, which shows that coordination did happen. 

 

Figure 8 Scaled electricity cost of both buildings using 

three different controllers 

Addition of a photovoltaic array 

Fig. 9 illustrates the temperature of the tanks for the 

building that does not have a photovoltaic array, and the 

shared price of electricity. While the single-agent BRL 

controller still focused on COP maximization to increase 

the energy cost savings, the multi-agent BRL controller 

learned how, during the day, the other building generated 

electricity and reduced the price of electricity. Therefore, 

the multi-agent BRL controller tended to cool the water 

tank when the power output from the photovoltaic array 

of the other building was higher. 

 

Figure 9 Variations of the temperature of the water 

tanks, with respect to the outdoor temperature 



   

 

 

In this new scenario, as Fig. 10 shows, the multi-agent 

BRL controller of the building without PV panels 

achieves greater cost savings than the single-agent BRL 

controller. This is because it takes into consideration the 

effect that the photovoltaic generation of the other 

building has on the price of electricity. 

 

Figure 10 Scaled electricity cost of both buildings using 

three different controllers 

 

CONCLUSION 

Demand response allows consumers to reduce their 

electrical consumption during periods of peak energy use 

in exchange for a lower energy bill. This can help to 

reduce the peaks of energy demand, leading to lower 

wholesale prices of electricity. However, buildings must 

coordinate with each other to avoid delaying their energy 

consumption simultaneously, and creating new, delayed 

peaks of electrical demand.  

We have used batch reinforcement learning (BRL), an 

adaptive algorithm that does not require model 

identification, to control the energy storage and supply 

in two buildings that buy electricity from the grid at price 

they both share. We have also created a new simulation 

environment that takes advantage of CitySim, a 

validated building energy simulator for urban scale 

analysis, and TensorFlow, a machine learning library. 

This simulation environment allows us to easily create 

scenarios with multiple buildings, and implement 

advanced machine learning algorithms efficiently.  

We tested our batch reinforcement learning controller in 

a simulated case study. We showed how both, single-

agent and multi-agent, BRL controllers achieved the 

same improvement in energy cost with respect to the 

RBC controller. However, the single-agent controller 

optimized the COP of the heat pump, while the multi-

agent controller did not. Therefore, the multi-agent 

controller achieved some level of coordination between 

the buildings to make sure that the best price was paid 

rather than the COP maximized. 

When a photovoltaic array was added on top of one of 

the buildings, the multi-agent BRL controller did 

achieve greater energy cost savings than the single-agent 

controller. The building without the PV array learned to 

store more cooling energy when the other building was 

generating a higher power output, and therefore, 

lowering the price of electricity.  

Our further research will focus on investigating new 

multi-agent BRL frameworks, either competitive or 

cooperative, that will allow the buildings to share enough 

information more effectively to coordinate better with 

each other and achieve greater energy cost savings. We 

will try recurrent approaches, in which the future action 

of one controller is used a state for the other controller in 

an iterative way. 
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NOMENCLATURE 

S states  Q action-value  

γ discount factor A  actions   

V state-value  policy 

R rewards  α learning rate 

 

ANN Artificial Neural Network 

S’ States at the following time-step  

P transition probability  

MDP Markov Decision Process 

T Boltzmann exploration constant  

RL Reinforcement Learning  

BRL Batch Reinforcement Learning 


