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ABSTRACT 
One of the main motivations for the reverse engineering of 
software programs is to help with software comprehension. 
Although several techniques have been presented in the literature 
to reverse-architect software, the corresponding views usually do 
not help much. In fact, most of the published techniques recover 
the architecture of the software by focusing on the abstract 
properties of the components such as coupling and coherence. We 
claim that the recovered components should rather represent 
abstract functional entities whose behavior could be understood 
independently from the others. Then, an abstract view of the 
system would represent the interactions between such functional 
entities. In this paper we present a technique and a tool able to 
generate abstract sequence diagrams to represent the global 
working of legacy programs. This shows the main interactions 
between abstract functional components. When comparing the 
automatically generated sequence diagrams to the one a developer 
would produce by hand, we realized that the representation were 
very close. Our work could then be considered as a first step to the 
automatic generation of human-understandable abstract views of 
the working of legacy programs. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement - Restructuring, reverse engineering, and 
reengineering. 

General Terms: Design, Experimentation, Algorithm. 

Keywords 
Reverse-engineering, functional component, software clustering, 
dynamic analysis, abstract view, sequence diagram. 

1. INTRODUCTION 
For the last 15 years, legacy software reverse-engineering has 
become an important field of computer science and an active field 
of research. It is a known fact that software maintenance is the 
most expensive activity over the software life cycle [20]. In these 
costs, the task of software understanding takes the lion’s share.  
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Nowadays a tremendous research activity is spent on techniques 
to help with software understanding, often targeted at generating 
views of software system architecture [10]. To give a precise 
meaning to the word “understanding” in the context of reverse-
engineering, we borrow the definition by Biggerstaff et al. [8]: “A 
person understands a program when able to explain the program, its 
structure, its behavior, its effects on its operational context, and its 
relationships to its application domain in terms that are qualitatively 
different from the tokens used to construct the source code of the 
program”.  Moreover, it is known for long that to “understand” a 
large software system, which is a critical task in reverse-
engineering, it structural aspects (i.e. its architecture) are more 
important than any single algorithmic component [29]. But the 
problem with legacy software is that, often, the only reliable 
source of information is its mere source code which hardly 
contains clues on higher level components [7]. Therefore it is hard 
to create representations of the architecture of the legacy software 
from its mere source code. Besides, we know that software 
architecture can be represented through many views [10], each 
targeting a particular purpose.  
In this work, we target the construction of an architectural view 
that could help with understanding the code. We have called it the 
functional architecture view of the system, i.e. the structure of 
functional components and their relationships which implement 
the high level business function of the software. In this context, a 
functional component is a cohesive set of classes implementing 
some relevant processing step during the execution of a given 
scenario. To identify the functional components of a legacy 
software, we compute clusters of dynamically-correlated classes 
from the post mortem execution trace of the system. Class 
clustering has been around in software reverse-engineering for 
quite some time. Basically, it could be based on static (i.e. source 
code) or dynamic (i.e. execution trace) analysis techniques or 
both. For example, Tzerpos and Holt [32] use the identification of 
patterns of structure in the source code to cluster classes. The latter 
approach rests on the hypothesis that comprehension is enhanced 
when familiar structures are discovered in the code. We follow the 
same initial goal: the identification of clusters that would help with 
software comprehension. However we are not interested by the 
“discovery” of structural patterns in the code but by functional 
clusters of strongly interacting classes. Then we developed a tool to 
display the functional components on top of the actual structure of 
the code. Often, these components will span several packages. This 
is the first step in our reverse-engineering technique. Since we target 
software understanding, we must show how the functional 
components (i.e. dynamic clusters) interact to implement the 
business scenarios (instances of the use-cases) of the system. Then, 
we developed a tool to automatically generate the sequence diagram 
of cluster interactions, to show the role they played in the actual 
working of the legacy system. The idea of generating a sequence 



diagram from the execution trace of a system is not new. However 
in any industrial size system, the execution trace usually contains on 
the order 105 to 107 events (method calls). Therefore the raw 
presentation of the corresponding sequence diagram is unusable. A 
solution would be to work on sophisticated sequence diagram 
viewers equipped with zooming and navigation features to limit the 
quantity of information to display at any single time. This is the 
approach taken by Bennett et al. [6]. But this approach does not help 
much with the task of separating out important information from the 
“noise”. In our approach, the information to be displayed is limited 
in principle by the very clustering technique: all interactions internal 
to functional components are not represented. As a result we obtain 
a very readable sequence diagram that shows the key interaction 
relevant to the execution of the scenario.  This representation seems 
to be quite close to what the developer would actually have 
produced by hand while explaining his system.  
The structure of the paper is the following. Paragraph 2 presents the 
concept of functional component and functional architecture view 
and its link to the static structure of the code. Paragraph 3 gives a 
summary of the clustering technique that we implemented. 
Paragraph 4 discusses execution trace compression techniques and 
the role played by the clusters in reducing the size of the trace. 
Paragraph 5 presents the cluster visualization technique (the 
functional architecture view) and the corresponding sequence 
diagram. Paragraph 6 presents a case study and Paragraph 7 
concludes the paper.  Paragraph 8 presents the related work. 

2. FUNCTIONAL ARCHITECTURE 
The term “Architecture” is somewhat fuzzy since it has many 
interpretations depending on authors. In software, it has long been 
acknowledged that architecture must be expressed through many 
views [10]. But in software understanding, we are not so much 
interested in recovering an hypothetical design-time architecture 
of the system. In fact, we should produce a view that helps with 
software comprehension. Here, software comprehension means 
being able to understand how the behavior of the system at the 
business level results from the behavior of its components. It has 
been known for long that a necessary feature for the behavior of a 
system to be understandable is for the system to be near-
decomposable hierarchically [28]. Basically this means that we 
should be able to decompose the system in hierarchical 
subsystems whose behavior should be understandable separately 
from the others. Therefore, the goal for us is to find a way to 
decompose a system such that the near-decomposability property 
is exhibited. Any software developer having some experience in 
debugging legacy software knows that, generally, the package or 
module structure of the code does not exhibit the near-
decomposability property: the understanding of a given package 
usually requires the understanding of some others. This is not 
surprising because: 
• The architecture of the system has not necessarily been 

design with the goal to help understanding. In particular it 
could have been design to satisfy any one of the required 
quality attribute [4]. 

• The maintenances on the software system are likely to have 
spoiled its original architecture over time [5]. 

Therefore, if the behavior of the system is the criterion by which to 
decompose it:  
• The resulting set of functional components will usually span 

several packages (or any other static grouping of classes or 
elements). 

• Two functional components may share some of their classes. 

• The name and the graphical icon used to represent the 
functional components must be different from the well known 
syntactical element found in the source code (package, 
module, unit, component, subsystem, …). This is why we use 
the term functional component or dynamic cluster and 
designed a specific UML profile for it. 

In a sense, a functional component can be seen as a grouping of 
classes’ responsibilities involved in some step of the processing 
associated to a scenario. Therefore, if the responsibilities of a class 
are used in several steps of a given scenario we may well end up 
with two clusters (functional component) sharing the same class. 
This is again why packages and dynamic cluster (functional 
components) are not the same concept. This is illustrated in figure 1. 
The grayed zone represents a functional component (cluster) 
grouping the responsibilities involved at a given moment in time 
while executing a scenario. 

 
Figure 1: Packages, classes and clusters 

Since we are interested by the behavior of the system, we should 
analyze its working while executing some scenario. But the latter 
must not be arbitrary. Rather it should represent a real business 
scenarios i.e. an instance of a real use-case. Although the use-
cases of legacy systems are seldom documented, we could rely on 
the actual users of these systems to recover them. In fact the users 
are well aware of the business context and business relevance of 
the tasks performed with the software. Then the users are 
interviewed to recover the use-cases of the system. In one of our 
experiments, we video recorded the users while they were 
performing their job with the system. Then we analyzed the video 
and designed the use-cases that represented these manipulations. 
Finally we presented the use-cases to the users for validation and 
correction. 
Once we have recovered the use-cases, we must record the 
working of the system i.e. its execution trace (sequence of method 
invocations). This is obtained by instrumenting the source code of 
the legacy system. The inserted statements in the source code will 
generate information about the executed function in some standard 
format that can be analyzed later to identify clusters and represent 
them on different architectural views. The instrumentation is 
performed using our own tool developed using JavaCC. The steps 
are the following. First, the legacy source code is parsed to get its 
syntax tree. Next, the latter is explored to attach the relevant 
instrumentation code. The resulting code is recompiled and 
executed following the chosen scenario. 

3. SOFTWARE CLUSTERING TECHNIQUE 
Many techniques have been proposed in the literature to recover the 
architecture of legacy software by computing clusters of classes i.e. 

cluster



sets of classes that are tightly coupled [21]. While most of the 
published work rest on the static analysis of the code, we focus on 
dynamic techniques i.e. on execution trace analysis and trace 
segmentation. Some researchers have tried to analyze the execution 
trace to identify regular collaboration patterns among classes [16]. 
However implementation details, in particular the use of 
polymorphism, could lead to many collaboration variants that 
should nonetheless be considered the same as far as collaboration is 
concerned. Moreover, another problem is to decide on the 
maximum “distance” between two classes in the call sequence to 
still consider them as close collaborators. In summary if one takes 
into account all the variants of the interaction patterns and the 
problem of the distance between the classes to build the clustering 
algorithm, we end up with a computationally intensive algorithm, 
similar to finding a subgraph of a graph which is known to be NP 
complete. Moreover it is important to realize that execution traces of 
all but trivial programs are generally very large (on the order of 105 
~107 events). For example, in one of our experiments, the legacy 
system generated an execution trace with more than 7 millions of 
events (method calls). A true simplification of the problem arises if 
we make the hypothesis that the classes which collaborate heavily 
occur closely in the execution trace. Therefore, an easy way to 
check for collaborating classes is to split the execution trace in 
contiguous segments and observe the class presence in each 
segment (figure 2). In this figure, each vertical string represents a 
method call. The result of the analysis of the occurrences of each 
class is presented as a binary occurrence vector for the class. If a 
class occurs at least once in a segment, the corresponding element in 
the occurrence vector will be 1, 0 otherwise. As an example the 
presence of Class1 has been highlighted in the figure, and its 
corresponding occurrence vector Vc1 is presented below.  

The classes will then be clusterized according to the distance 
between their occurrence vectors. This is the principle of the 
technique we proposed to identify the collaborating application 
classes and that has been presented elsewhere [11][12]. Since we 
focus on application classes i.e. the classes that the developers of the 
system wrote themselves, the instrumentation will only target these 
classes. Therefore the resulting execution trace does not contain 
calls to the system classes or the classes pertaining to some 
framework such as Hibernate [18] or Spring [19]. This greatly 
reduces the number of events to process. To refer to a common 
terminology in software clustering techniques [3], the entities to 
cluster are the classes and the single formal feature used to group 
classes is the binary occurrence of the classes in each segments.  
Therefore we compute for each class the feature vector which 
represents the presence (1) of absence (0) of the class in each 
segment. This feature, that represents a sibling link between the 
classes, is a kind of shortcut to actually represent a direct link [3]. 

 
Figure 2: Trace segmentation and feature vector 

In other words, we use a measure of similar behavior (occurrence in 
trace segments) as a proxy for the collaboration between classes 
when executing some business function. Since the feature is 
asymmetric (the common absence from a segment is not 
informative), we use the Jaccard association coefficient to compute 

the “similarity” (or distance) between classes, which is known to 
provide the best results [21]:  

 

In this formula, ‘a’ represents the number of segment in which the 
two classes simultaneously occur, ‘b’ the number of segment in 
which the first class only occurs and ‘c’ the number of segment in 
which the second class only occurs. The clustering algorithm we use 
is non-hierarchical and non agglomerative: we compute the clusters 
of mutually strongly similar classes. In other words, each pair of 
classes in a cluster represents closely collaborating classes. To 
compute the clusters we rely on graph theoretic concepts. Let 
G(N,E) a graph where the set of nodes N is the set of classes and the 
set of edges E represents the Jaccard similarity measure between the 
adjacent nodes. Let G’ be the partial subgraph of G in which we 
only keep the edges where the Jaccard measure is larger than a 
given threshold T. Then the clusters represent the maximal cliques 
of G’. The detailed technique has been presented in [13]. Although 
the maximal clique algorithm is also computationally intensive, the 
set of classes over which it must be computed is limited: if the 
threshold T big enough (usually 80%, which means that two related 
classes occur simultaneously in at least 80% of the segments), then 
G’ takes the shape of a set of small disconnected components. The 
computation is then performed separately on each of the graph 
components. This algorithm has the important property that the 
resulting set of clusters is unique for a given value of T. On the 
other hand it can produce overlapping clusters as shown in figure 3 
where the grayed node is a class belonging to two clusters. 

 
Figure 3: Overlapping clusters 

The overlap between clusters comes from our very definition of 
what constitutes a cluster: a set of mutually strongly interacting 
classes (functional component). Therefore, it is not enough for a 
class to have a strong interaction with a single class of a cluster to 
be associated with this cluster. It must have the same strong 
interaction with all the classes of the cluster.  

4. COMPRESSION & CLUSTERING 
One of the ways to represent the working of a software system is 
to use the UML2’s sequence diagram. However the direct display 
of an execution trace is not an option since the execution trace can 
contain millions of events. The size of such sequence diagram 
would be several kilometers! Therefore one must find a way to 
“compress” the trace to reduce its size, without impacting its 
usefulness for software comprehension. In the literature, many 
trace compression techniques have been proposed. An approach 
used by Hamou-Lhadj and Lethbridge [15] is to remove the calls 
to classes that represent utilities i.e. convenience classes designed 
for implementation purpose. The authors advocate that because 
implementation details are not important for the understanding of 
the system, utilities could be removed from the execution trace 
without reducing the comprehensibility of the code. Although the 



argument based on implementation details is sensible, it remains 
to be demonstrated that the classes identified using the utilityhood 
metrics [15] do identify implementation-only classes and do not 
contain functional code. In fact, their algorithm is based on the 
fan-in metrics i.e. the number of static links referencing a given 
class. Then a ratio is computed between the fan-in and the total 
number of classes in the system (or component, depending on the 
scope of the search). All classes whose utilityhood value is bigger 
than a predefined threshold are considered utilities. However, 
nothing prevents a class that contains a utility method to contain 
also some functional code. Besides, the compression ratio using 
these techniques is not enough to get a resulting execution trace of 
a displayable size. In a case study, Hamou-Lhadj and Lethbridge 
removed utility classes calls as well as other implementation 
details such as methods of inner classes, accessors, 
constructors/finalizers and the like [15]. The compression ratio 
was about 30 i.e. there were 30 times less events in the 
compressed trace that in the original trace. Such compression 
factor would compress a trace of 6.105 events (that we got in the 
first case study) to about 20.103  events. This is still much too big 
to be displayed as a sequence diagram. It is important to note that 
the compression technique based on utilities produces some noise 
reduction but does not address class clustering. Other published 
compression techniques include the pattern-based trace sequence 
summarization [16]. There, recurring patterns of calls are 
identified and written only once in the resulting trace. Later 
occurrences of the same pattern refer to the first occurrence with 
the number of repetitions. To identify repetitions, Hamou-Lhadj 
and Lethbridge applied the common subexpression algorithm 
borrowed from DNA sequencing techniques [16]. The problem 
with this approach is that the resulting trace format is difficult to 
represent as a sequence diagram since there are references and 
loopback in the compressed format. Moreover, in their case 
studies Hamou-Lhadj and Lethbridge found compression factor 
between 11 and 40, which is still insufficient if the target is to 
display a trace of a million events. 
As far as clustering is concerned, the algorithms can be divided in 
two broad categories: partitional and hierarchical [21]. In 
architecture recovery, most of the techniques pertain to the 
hierarchical category because partitional algorithms must start 
with an initial set of clusters that is supposed to be known in 
advance, which is usually not the case in architecture recovery. On 
the other hand, hierarchical algorithm start with the basic elements 
(for example the classes) and, using some distance metric, try to 
agglomerate them in clusters. Then, at each step of the algorithm, 
a distance between each unclustered element and the clusters is 
computed and the element is associated with the closest cluster. 
Therefore, noise reduction is important in the agglomerative 
hierarchical clustering since, depending on the distance metrics 
used, otherwise unrelated classes may be clustered together, 
especially if the SLA (Single Linkage Algorithm [21]) clustering 
algorithm is used. For example, if utility class A would be 
strongly linked to class B and C, even if B and C are unrelated, the 
three classes would be part of the same cluster because A would 
“glue” B and C. 
Our approach based on graph-theoretic concepts does not need a 
preprocessing step of noise reduction. Since the goal is to help 
with the understanding of legacy code, which is supposed to be 
badly structured, we do not want to make the hypothesis that some 
class is an implementation-only class and does not contains 
functional code. Therefore all classes in the system are considered 
when computing class clusters. But the very algorithm of maximal 
clique requires all classes to be strongly linked. Then, even if 
utility class A would be strongly linked to B and C, these two 

classes would never be part of the same cluster if they are not 
closely collaborating. Once the clusters are computed, we display 
their interactions in a sequence diagram. Since the clustering is 
based on heavy class interactions, i.e. lots of events, there will be 
much less events to display if we remove the inner working of the 
clusters. Figure 4 shows the principle of trace reduction based on 
clusters. Since (A,B) and (C,D) form two clusters, we only display 
the interactions between the classes that are member of different 
clusters. In this case we would then have two interacting 
functional components. 

 
 

Figure 4: Cluster sequence diagram 
 
 

5. FUNCTIONAL ARCHITECTURE VIEW 
The best support for legacy software understanding is to generate 
relevant views of the system’s architecture. Then, we designed a 
new architectural view that we called the Functional Architecture 
View of a system with two representations: 
 
1. The functional components (clusters) displayed on top of the 

package structure of a program.;  
2. The interaction of the functional components (clusters) in a 

sequence diagram. 
This new view has been integrated in the IBM’s Rational Software 
Architect (RSA) environment as an Eclipse plugin. The latter 
computes the clusters and displays the two representations using 
the tools available in RSA. With these views, a maintenance 
engineer could highlight the classes of the legacy system that 
work heavily together to implement some business function and 
observe their distribution among the packages. Then he could 
display the way they interact as functional components. The 
Functional Architecture view was first tested by hand and its 
relevance assessed with respect to the understanding of the code 
[12]. Then we decided to automate this technique using the plugin 
technology of Eclipse [25]. In figure 5 we present the functional 
components part of the view. In the top pane we see the 
architecture of the packages and the classes as reconstructed by 
hand using the Java to UML transformation feature of RSA. In the 
bottom pane, we see a new tab in called “Cluster View” which 
displays the list of clusters (functional components) identified in 
the execution trace. Then, a color can be assigned to each cluster 
and the classes will be colored according to the cluster they 
belong to in diagram on the top. With this representation, the 
maintenance engineer can observe the span of the functional 
components over the actual static structure of the code.  
For a sequence diagram to be useful for system understanding, it 
must be of a limited size (a few dozen of events at most). Even if 
the clustering of classes drastically reduces the number of events 
to be considered, the remaining number of event in industrial size 
systems is generally still too big to be readable by humans. 



 
Figure 5: Functional components 

 

 
Figure 6: Trace repetitions compression and corresponding UML2 sequence diagrams 



 

Therefore, we applied two extra event compression techniques: 
• Removal of accessor methods; 
• Compression of contiguous repetitions of similar patterns of 

events. 
The algorithm used to detect event patterns repetitions is similar 
to what Hamou-Lhadj and Lethbridge proposed to produce the 
Compact Trace Format (CTF) [14]. This works bottom up (from 
the leaves to the root). At each level, the contiguous repetition of 
a pattern in the call tree of an execution trace is detected and 
replaced by a new SEQ node whose sons are the elements of the 
pattern. This indicates that the elements are repeated many times. 
Once a level of nodes is “compressed” we move up to the next 
level to find new repetitions and so on. This is shown in figure 6. 
In the left part we present the original call tree and the 
corresponding sequence diagram. On the right part we present the 
“compressed” version and the associated sequence diagram. For 
example, among the sons of the “B” node on the left we find a 
contiguous repetition of “C” nodes. This becomes a new SEQ 
node with “C” as its single son. Since a single occurrence of a 
node can be considered a unique repetition, we discover that the 
sons of “B” are now: (“sequence of C”, “D”), (“sequence of C”, 
“D”). We can then replace it with a new SEQ node for the 
pattern: (“sequence of C”, “D”), as shown in the final call tree on 
the right. Again, since a single occurrence of a node is matchable 
against any number of repetitions of the same node, the same 
compression applies to the sons of “A”. The translation to UML2 
sequence diagram is easy: the SEQ node becomes a loop 
fragment and its sons become the sequence that is repeated. 
However, there is still a problem to solve. As explained in 
paragraph 3, our clustering algorithm may well generate 
overlapping clusters. This is when a subset of classes is strongly 
associated to two different clusters. But the two clusters cannot 
be merged because the other classes of both clusters are not 
coupled enough to each other. This is shown in figure 7. 
However nothing prevents a class outside the two clusters to call 
the methods of the classes that are located at the intersection of 
the clusters. This is shown in figure 8 where the class C0 calls a 
method in cluster A (C1) as well as a method at the intersection 
of both clusters (C3).  

 
Figure 7: Overlaping clusters 

 
But the latter creates a representation problem: how to display a 
method call to 2 different entities at the same time in a sequence 
diagram? To solve this problem we created the concept of “union-
cluster” to represent an entity whose contents belong to several 

clusters (functional component). Therefore, in a sequence 
diagram, we would represent both the individual clusters and the 
union clusters. To visually identify the clusters and union clusters 
in UML2 diagrams, we designed two new stereotypes stored as a 
new profile. They are represented in figure 9 where the 
containment relationship is represented using the aggregation 
association.  
Figure 10 presents a sequence diagram displaying the calls to the 
clusters A and B and to the union cluster between clusters A and 
B. However, there remains a problem to be solved. What to do 
with the classes that are not clusterized? Due to the fact that our 
clustering technique only groups closely interacting classes, there 
will remain application classes that are not member of any cluster 
[13]. However our goal is to identify and represent the functional 
components that are involved in the implementation of the main 
steps of a scenario. Therefore the interactions between the 
unclustered classes are not relevant at this granularity level. These 
classes are then grouped in a single container just to show when 
ones of these classes interacts with the functional components. 
This is represented by yet another cluster that we called 
“Undefined”.  We could see an example of this in the figures 12 
and 13 of the case study.  

 
Figure 8: Calls to the class at the intersection of two clusters 

 
 

 
Figure 9: Cluster and “union cluster” stereotype 

 
 

 
Figure 10: Sequence diagram with a “union cluster” 



As for the Eclipse plugin, figure 11 presents its main screen in the 
IBM’s Rational Software Architect environment. This works as 
follow. The first step of a reverse engineering experiment is to 
create a new UML modeling project. Then we generate the UML 
class diagram of the legacy Java system using the standard Java to 
UML transformation of RSA. The resulting model is then stored 
in the new project. In parallel, the source code of the legacy 
system is instrumented, recompiled, executed and the execution 
trace generated. The latter can now be loaded and analyzed using 
the trace analysis features of our plugin (whose screen is displayed 
in figure 11).  

 

 
Figure 11: The plugin’s GUI 

 
Once this analysis is completed, the identified clusters are 
displayed in the project explorer together with the classes they 
contain as showed in figure 12. Finally we can generate a 
sequence diagram that would only take into account the 
discovered clusters as well as the cluster “Undefined” that gathers 
the remaining, unclustered, classes. 

 
Figure 12: Project explorer with clusters 

6. CASE STUDY 
Our tool and technique have been applied to the trace analyser 
itself that we instrumented before running a standard cluster 
analysis scenario. The execution trace had 365’000 events that we 
segmented in 600 contiguous segments. The exact number of 

segment must be computed with respect to the number of classes 
in the execution trace as explained in [12]. A common factor is 32 
(i.e. the number of segments must be 32 times the number of 
classes in the execution trace). In this example, the clustering 
algorithm found 3 clusters in the system.  

Compression Remaining  
events 

Clustering 324 

Clustering + Accessors removal 166 

Clustering + Accessors removal 
+ Repetitive sequences 

compression 
45 

  
Figure 13: Trace compression results 

 
In figure 13, we present the compression factors of the trace using 
the three steps presented above: the clustering, the removal of 
accessors and the compression of repetitive sequences of events. 
Altogether the clustering of the trace and the extra compression 
steps took about 15 seconds to perform on a standard PC (3Mhz, 
3Gb RAM). The clustering alone shows an impressive 
compression factor of 1000. If one adds the two other 
compression techniques one gets a compression factor of 8000: 
from the starting trace of 365’000 events one ends up with only 45 
events which is quite manageable.  
The question now is: are the remaining 45 events be of any help to 
understand the working of the system? As expected we found that 
the remaining event were quite informative and expressed clearly 
the main steps in the computation of the clusters.  

 
 

Figure 14: Sequence diagram for the initialization step 
 
For example, figure 14 presents the part of the sequence diagram 
that represents the initialization of the work. First, all the 
processing parameters are read from a parameter file. As we can 
see, the main method of the parameter file reading step are 
represented in the diagram, especially the “readParameterFile” 



event and the loop to read the keywords in the file. The 
“writeParameterFile” event at the end represents the recording of 
the chosen parameters. Figure 15 presents the part of the sequence 
diagram associated with the core of the analysis process. The main 
task is launched by the “processTrace” event. Then the key 
subtask is to compute the occurrence vector for each class that is 
represented by the “getOccurenceVectorMap”.  
 

 
 

Figure 15: Sequence diagram for the analysis step 

Finally the event “getSortedClassList” is used to display the 
results on the screen. In this example, our “abstraction” technique 
was able to retain and display the key events in the system. As a 
second test we applied the technique to an industrial system with 
600 classes and whose execution trace had more than 600’000 
events. The trace involved 169 classes and the clustering 
algorithm found 35 clusters. The compression technique ended up 
with about 200 events. This represents a compression factor of 
3000. Although we could still display the resulting sequence 
diagram in RSA, we cannot show it in this paper since this would 
take about 8 pages. Again, the resulting event set showed the key 
working steps of the system.  

7. CONCLUSION 
In this paper we have showed that our software clustering technique, 
which is based on the dynamic analysis of the methods called when 
executing a scenario, allow us to automatically build an “abstract” 
view of the working of a system. In particular we are able to show 
that the main steps of a complex processing have been automatically 
revealed in a sequence diagram. Moreover, the generated sequence 
diagram seems to be close to the one we would actually draw by 
hand to explain the working of the system. Although this important 
feature needs be confirmed by more experiments it is very 
encouraging. This result has been obtained because of our very 
dynamic analysis technique coupled with the automatic generation 
of sequence diagrams. Here again are the main steps of our 
approach: 

• An execution trace is generated when executing some scenario 
of business value (use-case). We only keep the events between 
application classes. 

• The clusters that are identified are strongly linked to business 
functions. In a sense they represent chunks of elementary 
functionality; 

• The working of the system is abstracted by displaying only the 
method called between the clusters. 

• The resulting event set is further compressed using event 
patterns repetition compression. 

Our cluster identification technique is to be contrasted with the 
ones that try to identify the components based on some software 
engineering metrics such as high cohesion and low coupling. As 
explained in paragraph 2, we are not targeting the recovery of any 
structural view of the software. Rather, we wish to generate a view 
that would support the understanding of software behavior. 
Therefore the conceptual grouping of classes as well as the 
analysis technique cannot rest on static analysis techniques. With 
the latter, there is no hope that the component will represent steps 
of some complex behavior related to the business function. The 
comparison of the dynamic clusters with the static structure of the 
program (for example its packages) is useful to show where the 
responsibilities pertaining to some behavior are actually 
implemented. But, as we already explained in paragraph 2, the 
criteria that lead to the static structure of the code are usually not 
based on the working of scenarios. Therefore, there little hope to 
end up with a set of functional components that would match the 
packages of the source code.  

Our technique has been integrated in the IBM’s RSA environment 
as an Eclipse plugin. In summary, the key contribution of this 
paper is to show that the automatic generation of an abstract view 
of a legacy system is indeed possible and we presented the way we 
achieved this. To refer back to the definition of program 
understanding by Biggerstaff at al. [8] we generated a view that 
would let an engineer understand the program behavior as 
interacting abstract functional components that are qualitatively 
different from the tokens of the source code i.e. the classes. Our 
approach therefore represents a step toward the true support of 
program understanding at higher level of abstraction. 

So far, we only worked on single scenarios at the time (i.e. the 
main flow of a use-case). As future work we will develop multi-
scenarios clustering and analysis techniques with alternatives. This 
may allow us to identify reusable functional components. 
Moreover we will integrate some zooming feature to be able to 
perform the same clustering analysis on the functional components 
themselves. Then we will develop a new view with the links 
between the different abstraction levels.  

8. RELATED WORK 
In the literature, many techniques have been proposed to recover the 
structure of a system by splitting it into components. They range 
from document indexing techniques [22], slicing [34]  to the more 
recent “concept analysis” technique [27][30] or even mixed 
techniques [17]. All these techniques are static i.e. they try to 
partition the set of source code statements and program elements 
into subsets that will hopefully help to rebuild the architecture of the 
system. But the key problem is to choose the relevant set of criteria 
(or similarity metrics) [35] with which the “natural” boundaries of 
components can be found. In the reverse-engineering literature, the 
similarity metrics range from the interconnection strength of Rigi 
[24]  to the sophisticated information-theory based measurement of 
Andritsos and Tzerpos [1][2], the information retrieval technique 
such as Latent Semantic Indexing [22] or the kind of variables 
accessed in formal concept analysis [31]. Then, based on such a 
similarity metric, an algorithm decides what element should be part 
of the same cluster [21]. In their work, Xiao and Tzerpos compared 
several clustering algorithms based on dynamic dependencies. In 



particular they focused on the clustering based on the global 
frequency of calls between classes [37]. This approach does not 
discriminate between situations where the calls happen in different 
locations in the trace. This is to be contrasted with our approach that 
analyzes where the calls happen in the trace. Very few authors have 
worked on sampling or segmentation techniques for trace analysis. 
One pioneering work is the one of Chan et al. [9] to visualize long 
sequence of low-level Java execution traces in the AVID system 
(including memory event and call stack events). But their approach 
is quite different from ours. It selectively picks information from the 
source (the call stack for example) to limit the quantity of 
information to process. The problem to process very large execution 
traces is now beginning to be dealt with in the literature. For 
example, Zaidman and Demeyer proposed to manage the volume of 
the trace by searching for common global frequency patterns [38]. 
In fact, they analyzed consecutive samples of the trace to identify 
recurring patterns of events having the same global frequencies. In 
other words they search locally for events with similar global 
frequency. This is then quite different from our approach that 
analyzes class distribution throughout the trace. Another technique 
is to restrict the set of classes to “trace” like in the work of Meyer 
and Wendehals [23]. In fact, their trace generator takes as input a 
list of classes, interfaces and methods that have to be monitored 
during the execution of the program under analysis. Similarly, the 
tool developed by Vasconcelos, Cepêda and Werner [33] allows the 
selection of the packages and classes to be monitored for trace 
collection. In this work, the trace is sliced by use-case scenarios and 
message depth level and it is then possible to study the trace per 
slice and depth level. Sartipi and Safyallah [26] use a patterns search 
and discovery tool to separate, in the trace, the patterns that 
correspond to common features from the ones that correspond to 
specific features.  
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