
Automatic Generation of Abstract Views for Legacy
Software Comprehension

Philippe Dugerdil, Julien Repond
Dept. of Information Systems

HEG-Univ. of Applied Sciences of Western Switzerland
7 route de Drize, CH-1227 Geneva, Switzerland

+41 22 388 17 00
philippe.dugerdil@hesge.ch, julien.repond@hesge.ch

ABSTRACT
One of the main motivations for the reverse engineering of
software programs is to help with software comprehension.
Although several techniques have been presented in the literature
to reverse-architect software, the corresponding views usually do
not help much. In fact, most of the published techniques recover
the architecture of the software by focusing on the abstract
properties of the components such as coupling and coherence. We
claim that the recovered components should rather represent
abstract functional entities whose behavior could be understood
independently from the others. Then, an abstract view of the
system would represent the interactions between such functional
entities. In this paper we present a technique and a tool able to
generate abstract sequence diagrams to represent the global
working of legacy programs. This shows the main interactions
between abstract functional components. When comparing the
automatically generated sequence diagrams to the one a developer
would produce by hand, we realized that the representation were
very close. Our work could then be considered as a first step to the
automatic generation of human-understandable abstract views of
the working of legacy programs.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement - Restructuring, reverse engineering, and
reengineering.

General Terms: Design, Experimentation, Algorithm.

Keywords
Reverse-engineering, functional component, software clustering,
dynamic analysis, abstract view, sequence diagram.

1. INTRODUCTION
For the last 15 years, legacy software reverse-engineering has
become an important field of computer science and an active field
of research. It is a known fact that software maintenance is the
most expensive activity over the software life cycle [20]. In these
costs, the task of software understanding takes the lion’s share.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISEC’10, February 25-27, 2010, Mysore, India.
Copyright 2010 ACM 978-1-60558-922-0/10/02…$10.00.

Nowadays a tremendous research activity is spent on techniques
to help with software understanding, often targeted at generating
views of software system architecture [10]. To give a precise
meaning to the word “understanding” in the context of reverse-
engineering, we borrow the definition by Biggerstaff et al. [8]: “A
person understands a program when able to explain the program, its
structure, its behavior, its effects on its operational context, and its
relationships to its application domain in terms that are qualitatively
different from the tokens used to construct the source code of the
program”. Moreover, it is known for long that to “understand” a
large software system, which is a critical task in reverse-
engineering, it structural aspects (i.e. its architecture) are more
important than any single algorithmic component [29]. But the
problem with legacy software is that, often, the only reliable
source of information is its mere source code which hardly
contains clues on higher level components [7]. Therefore it is hard
to create representations of the architecture of the legacy software
from its mere source code. Besides, we know that software
architecture can be represented through many views [10], each
targeting a particular purpose.
In this work, we target the construction of an architectural view
that could help with understanding the code. We have called it the
functional architecture view of the system, i.e. the structure of
functional components and their relationships which implement
the high level business function of the software. In this context, a
functional component is a cohesive set of classes implementing
some relevant processing step during the execution of a given
scenario. To identify the functional components of a legacy
software, we compute clusters of dynamically-correlated classes
from the post mortem execution trace of the system. Class
clustering has been around in software reverse-engineering for
quite some time. Basically, it could be based on static (i.e. source
code) or dynamic (i.e. execution trace) analysis techniques or
both. For example, Tzerpos and Holt [32] use the identification of
patterns of structure in the source code to cluster classes. The latter
approach rests on the hypothesis that comprehension is enhanced
when familiar structures are discovered in the code. We follow the
same initial goal: the identification of clusters that would help with
software comprehension. However we are not interested by the
“discovery” of structural patterns in the code but by functional
clusters of strongly interacting classes. Then we developed a tool to
display the functional components on top of the actual structure of
the code. Often, these components will span several packages. This
is the first step in our reverse-engineering technique. Since we target
software understanding, we must show how the functional
components (i.e. dynamic clusters) interact to implement the
business scenarios (instances of the use-cases) of the system. Then,
we developed a tool to automatically generate the sequence diagram
of cluster interactions, to show the role they played in the actual
working of the legacy system. The idea of generating a sequence

diagram from the execution trace of a system is not new. However
in any industrial size system, the execution trace usually contains on
the order 105 to 107 events (method calls). Therefore the raw
presentation of the corresponding sequence diagram is unusable. A
solution would be to work on sophisticated sequence diagram
viewers equipped with zooming and navigation features to limit the
quantity of information to display at any single time. This is the
approach taken by Bennett et al. [6]. But this approach does not help
much with the task of separating out important information from the
“noise”. In our approach, the information to be displayed is limited
in principle by the very clustering technique: all interactions internal
to functional components are not represented. As a result we obtain
a very readable sequence diagram that shows the key interaction
relevant to the execution of the scenario. This representation seems
to be quite close to what the developer would actually have
produced by hand while explaining his system.
The structure of the paper is the following. Paragraph 2 presents the
concept of functional component and functional architecture view
and its link to the static structure of the code. Paragraph 3 gives a
summary of the clustering technique that we implemented.
Paragraph 4 discusses execution trace compression techniques and
the role played by the clusters in reducing the size of the trace.
Paragraph 5 presents the cluster visualization technique (the
functional architecture view) and the corresponding sequence
diagram. Paragraph 6 presents a case study and Paragraph 7
concludes the paper. Paragraph 8 presents the related work.

2. FUNCTIONAL ARCHITECTURE
The term “Architecture” is somewhat fuzzy since it has many
interpretations depending on authors. In software, it has long been
acknowledged that architecture must be expressed through many
views [10]. But in software understanding, we are not so much
interested in recovering an hypothetical design-time architecture
of the system. In fact, we should produce a view that helps with
software comprehension. Here, software comprehension means
being able to understand how the behavior of the system at the
business level results from the behavior of its components. It has
been known for long that a necessary feature for the behavior of a
system to be understandable is for the system to be near-
decomposable hierarchically [28]. Basically this means that we
should be able to decompose the system in hierarchical
subsystems whose behavior should be understandable separately
from the others. Therefore, the goal for us is to find a way to
decompose a system such that the near-decomposability property
is exhibited. Any software developer having some experience in
debugging legacy software knows that, generally, the package or
module structure of the code does not exhibit the near-
decomposability property: the understanding of a given package
usually requires the understanding of some others. This is not
surprising because:
• The architecture of the system has not necessarily been

design with the goal to help understanding. In particular it
could have been design to satisfy any one of the required
quality attribute [4].

• The maintenances on the software system are likely to have
spoiled its original architecture over time [5].

Therefore, if the behavior of the system is the criterion by which to
decompose it:
• The resulting set of functional components will usually span

several packages (or any other static grouping of classes or
elements).

• Two functional components may share some of their classes.

• The name and the graphical icon used to represent the
functional components must be different from the well known
syntactical element found in the source code (package,
module, unit, component, subsystem, …). This is why we use
the term functional component or dynamic cluster and
designed a specific UML profile for it.

In a sense, a functional component can be seen as a grouping of
classes’ responsibilities involved in some step of the processing
associated to a scenario. Therefore, if the responsibilities of a class
are used in several steps of a given scenario we may well end up
with two clusters (functional component) sharing the same class.
This is again why packages and dynamic cluster (functional
components) are not the same concept. This is illustrated in figure 1.
The grayed zone represents a functional component (cluster)
grouping the responsibilities involved at a given moment in time
while executing a scenario.

Figure 1: Packages, classes and clusters

Since we are interested by the behavior of the system, we should
analyze its working while executing some scenario. But the latter
must not be arbitrary. Rather it should represent a real business
scenarios i.e. an instance of a real use-case. Although the use-
cases of legacy systems are seldom documented, we could rely on
the actual users of these systems to recover them. In fact the users
are well aware of the business context and business relevance of
the tasks performed with the software. Then the users are
interviewed to recover the use-cases of the system. In one of our
experiments, we video recorded the users while they were
performing their job with the system. Then we analyzed the video
and designed the use-cases that represented these manipulations.
Finally we presented the use-cases to the users for validation and
correction.
Once we have recovered the use-cases, we must record the
working of the system i.e. its execution trace (sequence of method
invocations). This is obtained by instrumenting the source code of
the legacy system. The inserted statements in the source code will
generate information about the executed function in some standard
format that can be analyzed later to identify clusters and represent
them on different architectural views. The instrumentation is
performed using our own tool developed using JavaCC. The steps
are the following. First, the legacy source code is parsed to get its
syntax tree. Next, the latter is explored to attach the relevant
instrumentation code. The resulting code is recompiled and
executed following the chosen scenario.

3. SOFTWARE CLUSTERING TECHNIQUE
Many techniques have been proposed in the literature to recover the
architecture of legacy software by computing clusters of classes i.e.

cluster

sets of classes that are tightly coupled [21]. While most of the
published work rest on the static analysis of the code, we focus on
dynamic techniques i.e. on execution trace analysis and trace
segmentation. Some researchers have tried to analyze the execution
trace to identify regular collaboration patterns among classes [16].
However implementation details, in particular the use of
polymorphism, could lead to many collaboration variants that
should nonetheless be considered the same as far as collaboration is
concerned. Moreover, another problem is to decide on the
maximum “distance” between two classes in the call sequence to
still consider them as close collaborators. In summary if one takes
into account all the variants of the interaction patterns and the
problem of the distance between the classes to build the clustering
algorithm, we end up with a computationally intensive algorithm,
similar to finding a subgraph of a graph which is known to be NP
complete. Moreover it is important to realize that execution traces of
all but trivial programs are generally very large (on the order of 105
~107 events). For example, in one of our experiments, the legacy
system generated an execution trace with more than 7 millions of
events (method calls). A true simplification of the problem arises if
we make the hypothesis that the classes which collaborate heavily
occur closely in the execution trace. Therefore, an easy way to
check for collaborating classes is to split the execution trace in
contiguous segments and observe the class presence in each
segment (figure 2). In this figure, each vertical string represents a
method call. The result of the analysis of the occurrences of each
class is presented as a binary occurrence vector for the class. If a
class occurs at least once in a segment, the corresponding element in
the occurrence vector will be 1, 0 otherwise. As an example the
presence of Class1 has been highlighted in the figure, and its
corresponding occurrence vector Vc1 is presented below.

The classes will then be clusterized according to the distance
between their occurrence vectors. This is the principle of the
technique we proposed to identify the collaborating application
classes and that has been presented elsewhere [11][12]. Since we
focus on application classes i.e. the classes that the developers of the
system wrote themselves, the instrumentation will only target these
classes. Therefore the resulting execution trace does not contain
calls to the system classes or the classes pertaining to some
framework such as Hibernate [18] or Spring [19]. This greatly
reduces the number of events to process. To refer to a common
terminology in software clustering techniques [3], the entities to
cluster are the classes and the single formal feature used to group
classes is the binary occurrence of the classes in each segments.
Therefore we compute for each class the feature vector which
represents the presence (1) of absence (0) of the class in each
segment. This feature, that represents a sibling link between the
classes, is a kind of shortcut to actually represent a direct link [3].

Figure 2: Trace segmentation and feature vector

In other words, we use a measure of similar behavior (occurrence in
trace segments) as a proxy for the collaboration between classes
when executing some business function. Since the feature is
asymmetric (the common absence from a segment is not
informative), we use the Jaccard association coefficient to compute

the “similarity” (or distance) between classes, which is known to
provide the best results [21]:

In this formula, ‘a’ represents the number of segment in which the
two classes simultaneously occur, ‘b’ the number of segment in
which the first class only occurs and ‘c’ the number of segment in
which the second class only occurs. The clustering algorithm we use
is non-hierarchical and non agglomerative: we compute the clusters
of mutually strongly similar classes. In other words, each pair of
classes in a cluster represents closely collaborating classes. To
compute the clusters we rely on graph theoretic concepts. Let
G(N,E) a graph where the set of nodes N is the set of classes and the
set of edges E represents the Jaccard similarity measure between the
adjacent nodes. Let G’ be the partial subgraph of G in which we
only keep the edges where the Jaccard measure is larger than a
given threshold T. Then the clusters represent the maximal cliques
of G’. The detailed technique has been presented in [13]. Although
the maximal clique algorithm is also computationally intensive, the
set of classes over which it must be computed is limited: if the
threshold T big enough (usually 80%, which means that two related
classes occur simultaneously in at least 80% of the segments), then
G’ takes the shape of a set of small disconnected components. The
computation is then performed separately on each of the graph
components. This algorithm has the important property that the
resulting set of clusters is unique for a given value of T. On the
other hand it can produce overlapping clusters as shown in figure 3
where the grayed node is a class belonging to two clusters.

Figure 3: Overlapping clusters

The overlap between clusters comes from our very definition of
what constitutes a cluster: a set of mutually strongly interacting
classes (functional component). Therefore, it is not enough for a
class to have a strong interaction with a single class of a cluster to
be associated with this cluster. It must have the same strong
interaction with all the classes of the cluster.

4. COMPRESSION & CLUSTERING
One of the ways to represent the working of a software system is
to use the UML2’s sequence diagram. However the direct display
of an execution trace is not an option since the execution trace can
contain millions of events. The size of such sequence diagram
would be several kilometers! Therefore one must find a way to
“compress” the trace to reduce its size, without impacting its
usefulness for software comprehension. In the literature, many
trace compression techniques have been proposed. An approach
used by Hamou-Lhadj and Lethbridge [15] is to remove the calls
to classes that represent utilities i.e. convenience classes designed
for implementation purpose. The authors advocate that because
implementation details are not important for the understanding of
the system, utilities could be removed from the execution trace
without reducing the comprehensibility of the code. Although the

argument based on implementation details is sensible, it remains
to be demonstrated that the classes identified using the utilityhood
metrics [15] do identify implementation-only classes and do not
contain functional code. In fact, their algorithm is based on the
fan-in metrics i.e. the number of static links referencing a given
class. Then a ratio is computed between the fan-in and the total
number of classes in the system (or component, depending on the
scope of the search). All classes whose utilityhood value is bigger
than a predefined threshold are considered utilities. However,
nothing prevents a class that contains a utility method to contain
also some functional code. Besides, the compression ratio using
these techniques is not enough to get a resulting execution trace of
a displayable size. In a case study, Hamou-Lhadj and Lethbridge
removed utility classes calls as well as other implementation
details such as methods of inner classes, accessors,
constructors/finalizers and the like [15]. The compression ratio
was about 30 i.e. there were 30 times less events in the
compressed trace that in the original trace. Such compression
factor would compress a trace of 6.105 events (that we got in the
first case study) to about 20.103 events. This is still much too big
to be displayed as a sequence diagram. It is important to note that
the compression technique based on utilities produces some noise
reduction but does not address class clustering. Other published
compression techniques include the pattern-based trace sequence
summarization [16]. There, recurring patterns of calls are
identified and written only once in the resulting trace. Later
occurrences of the same pattern refer to the first occurrence with
the number of repetitions. To identify repetitions, Hamou-Lhadj
and Lethbridge applied the common subexpression algorithm
borrowed from DNA sequencing techniques [16]. The problem
with this approach is that the resulting trace format is difficult to
represent as a sequence diagram since there are references and
loopback in the compressed format. Moreover, in their case
studies Hamou-Lhadj and Lethbridge found compression factor
between 11 and 40, which is still insufficient if the target is to
display a trace of a million events.
As far as clustering is concerned, the algorithms can be divided in
two broad categories: partitional and hierarchical [21]. In
architecture recovery, most of the techniques pertain to the
hierarchical category because partitional algorithms must start
with an initial set of clusters that is supposed to be known in
advance, which is usually not the case in architecture recovery. On
the other hand, hierarchical algorithm start with the basic elements
(for example the classes) and, using some distance metric, try to
agglomerate them in clusters. Then, at each step of the algorithm,
a distance between each unclustered element and the clusters is
computed and the element is associated with the closest cluster.
Therefore, noise reduction is important in the agglomerative
hierarchical clustering since, depending on the distance metrics
used, otherwise unrelated classes may be clustered together,
especially if the SLA (Single Linkage Algorithm [21]) clustering
algorithm is used. For example, if utility class A would be
strongly linked to class B and C, even if B and C are unrelated, the
three classes would be part of the same cluster because A would
“glue” B and C.
Our approach based on graph-theoretic concepts does not need a
preprocessing step of noise reduction. Since the goal is to help
with the understanding of legacy code, which is supposed to be
badly structured, we do not want to make the hypothesis that some
class is an implementation-only class and does not contains
functional code. Therefore all classes in the system are considered
when computing class clusters. But the very algorithm of maximal
clique requires all classes to be strongly linked. Then, even if
utility class A would be strongly linked to B and C, these two

classes would never be part of the same cluster if they are not
closely collaborating. Once the clusters are computed, we display
their interactions in a sequence diagram. Since the clustering is
based on heavy class interactions, i.e. lots of events, there will be
much less events to display if we remove the inner working of the
clusters. Figure 4 shows the principle of trace reduction based on
clusters. Since (A,B) and (C,D) form two clusters, we only display
the interactions between the classes that are member of different
clusters. In this case we would then have two interacting
functional components.

Figure 4: Cluster sequence diagram

5. FUNCTIONAL ARCHITECTURE VIEW
The best support for legacy software understanding is to generate
relevant views of the system’s architecture. Then, we designed a
new architectural view that we called the Functional Architecture
View of a system with two representations:

1. The functional components (clusters) displayed on top of the

package structure of a program.;
2. The interaction of the functional components (clusters) in a

sequence diagram.
This new view has been integrated in the IBM’s Rational Software
Architect (RSA) environment as an Eclipse plugin. The latter
computes the clusters and displays the two representations using
the tools available in RSA. With these views, a maintenance
engineer could highlight the classes of the legacy system that
work heavily together to implement some business function and
observe their distribution among the packages. Then he could
display the way they interact as functional components. The
Functional Architecture view was first tested by hand and its
relevance assessed with respect to the understanding of the code
[12]. Then we decided to automate this technique using the plugin
technology of Eclipse [25]. In figure 5 we present the functional
components part of the view. In the top pane we see the
architecture of the packages and the classes as reconstructed by
hand using the Java to UML transformation feature of RSA. In the
bottom pane, we see a new tab in called “Cluster View” which
displays the list of clusters (functional components) identified in
the execution trace. Then, a color can be assigned to each cluster
and the classes will be colored according to the cluster they
belong to in diagram on the top. With this representation, the
maintenance engineer can observe the span of the functional
components over the actual static structure of the code.
For a sequence diagram to be useful for system understanding, it
must be of a limited size (a few dozen of events at most). Even if
the clustering of classes drastically reduces the number of events
to be considered, the remaining number of event in industrial size
systems is generally still too big to be readable by humans.

Figure 5: Functional components

Figure 6: Trace repetitions compression and corresponding UML2 sequence diagrams

Therefore, we applied two extra event compression techniques:
• Removal of accessor methods;
• Compression of contiguous repetitions of similar patterns of

events.
The algorithm used to detect event patterns repetitions is similar
to what Hamou-Lhadj and Lethbridge proposed to produce the
Compact Trace Format (CTF) [14]. This works bottom up (from
the leaves to the root). At each level, the contiguous repetition of
a pattern in the call tree of an execution trace is detected and
replaced by a new SEQ node whose sons are the elements of the
pattern. This indicates that the elements are repeated many times.
Once a level of nodes is “compressed” we move up to the next
level to find new repetitions and so on. This is shown in figure 6.
In the left part we present the original call tree and the
corresponding sequence diagram. On the right part we present the
“compressed” version and the associated sequence diagram. For
example, among the sons of the “B” node on the left we find a
contiguous repetition of “C” nodes. This becomes a new SEQ
node with “C” as its single son. Since a single occurrence of a
node can be considered a unique repetition, we discover that the
sons of “B” are now: (“sequence of C”, “D”), (“sequence of C”,
“D”). We can then replace it with a new SEQ node for the
pattern: (“sequence of C”, “D”), as shown in the final call tree on
the right. Again, since a single occurrence of a node is matchable
against any number of repetitions of the same node, the same
compression applies to the sons of “A”. The translation to UML2
sequence diagram is easy: the SEQ node becomes a loop
fragment and its sons become the sequence that is repeated.
However, there is still a problem to solve. As explained in
paragraph 3, our clustering algorithm may well generate
overlapping clusters. This is when a subset of classes is strongly
associated to two different clusters. But the two clusters cannot
be merged because the other classes of both clusters are not
coupled enough to each other. This is shown in figure 7.
However nothing prevents a class outside the two clusters to call
the methods of the classes that are located at the intersection of
the clusters. This is shown in figure 8 where the class C0 calls a
method in cluster A (C1) as well as a method at the intersection
of both clusters (C3).

Figure 7: Overlaping clusters

But the latter creates a representation problem: how to display a
method call to 2 different entities at the same time in a sequence
diagram? To solve this problem we created the concept of “union-
cluster” to represent an entity whose contents belong to several

clusters (functional component). Therefore, in a sequence
diagram, we would represent both the individual clusters and the
union clusters. To visually identify the clusters and union clusters
in UML2 diagrams, we designed two new stereotypes stored as a
new profile. They are represented in figure 9 where the
containment relationship is represented using the aggregation
association.
Figure 10 presents a sequence diagram displaying the calls to the
clusters A and B and to the union cluster between clusters A and
B. However, there remains a problem to be solved. What to do
with the classes that are not clusterized? Due to the fact that our
clustering technique only groups closely interacting classes, there
will remain application classes that are not member of any cluster
[13]. However our goal is to identify and represent the functional
components that are involved in the implementation of the main
steps of a scenario. Therefore the interactions between the
unclustered classes are not relevant at this granularity level. These
classes are then grouped in a single container just to show when
ones of these classes interacts with the functional components.
This is represented by yet another cluster that we called
“Undefined”. We could see an example of this in the figures 12
and 13 of the case study.

Figure 8: Calls to the class at the intersection of two clusters

Figure 9: Cluster and “union cluster” stereotype

Figure 10: Sequence diagram with a “union cluster”

As for the Eclipse plugin, figure 11 presents its main screen in the
IBM’s Rational Software Architect environment. This works as
follow. The first step of a reverse engineering experiment is to
create a new UML modeling project. Then we generate the UML
class diagram of the legacy Java system using the standard Java to
UML transformation of RSA. The resulting model is then stored
in the new project. In parallel, the source code of the legacy
system is instrumented, recompiled, executed and the execution
trace generated. The latter can now be loaded and analyzed using
the trace analysis features of our plugin (whose screen is displayed
in figure 11).

Figure 11: The plugin’s GUI

Once this analysis is completed, the identified clusters are
displayed in the project explorer together with the classes they
contain as showed in figure 12. Finally we can generate a
sequence diagram that would only take into account the
discovered clusters as well as the cluster “Undefined” that gathers
the remaining, unclustered, classes.

Figure 12: Project explorer with clusters

6. CASE STUDY
Our tool and technique have been applied to the trace analyser
itself that we instrumented before running a standard cluster
analysis scenario. The execution trace had 365’000 events that we
segmented in 600 contiguous segments. The exact number of

segment must be computed with respect to the number of classes
in the execution trace as explained in [12]. A common factor is 32
(i.e. the number of segments must be 32 times the number of
classes in the execution trace). In this example, the clustering
algorithm found 3 clusters in the system.

Compression Remaining
events

Clustering 324

Clustering + Accessors removal 166

Clustering + Accessors removal
+ Repetitive sequences

compression
45

Figure 13: Trace compression results

In figure 13, we present the compression factors of the trace using
the three steps presented above: the clustering, the removal of
accessors and the compression of repetitive sequences of events.
Altogether the clustering of the trace and the extra compression
steps took about 15 seconds to perform on a standard PC (3Mhz,
3Gb RAM). The clustering alone shows an impressive
compression factor of 1000. If one adds the two other
compression techniques one gets a compression factor of 8000:
from the starting trace of 365’000 events one ends up with only 45
events which is quite manageable.
The question now is: are the remaining 45 events be of any help to
understand the working of the system? As expected we found that
the remaining event were quite informative and expressed clearly
the main steps in the computation of the clusters.

Figure 14: Sequence diagram for the initialization step

For example, figure 14 presents the part of the sequence diagram
that represents the initialization of the work. First, all the
processing parameters are read from a parameter file. As we can
see, the main method of the parameter file reading step are
represented in the diagram, especially the “readParameterFile”

event and the loop to read the keywords in the file. The
“writeParameterFile” event at the end represents the recording of
the chosen parameters. Figure 15 presents the part of the sequence
diagram associated with the core of the analysis process. The main
task is launched by the “processTrace” event. Then the key
subtask is to compute the occurrence vector for each class that is
represented by the “getOccurenceVectorMap”.

Figure 15: Sequence diagram for the analysis step

Finally the event “getSortedClassList” is used to display the
results on the screen. In this example, our “abstraction” technique
was able to retain and display the key events in the system. As a
second test we applied the technique to an industrial system with
600 classes and whose execution trace had more than 600’000
events. The trace involved 169 classes and the clustering
algorithm found 35 clusters. The compression technique ended up
with about 200 events. This represents a compression factor of
3000. Although we could still display the resulting sequence
diagram in RSA, we cannot show it in this paper since this would
take about 8 pages. Again, the resulting event set showed the key
working steps of the system.

7. CONCLUSION
In this paper we have showed that our software clustering technique,
which is based on the dynamic analysis of the methods called when
executing a scenario, allow us to automatically build an “abstract”
view of the working of a system. In particular we are able to show
that the main steps of a complex processing have been automatically
revealed in a sequence diagram. Moreover, the generated sequence
diagram seems to be close to the one we would actually draw by
hand to explain the working of the system. Although this important
feature needs be confirmed by more experiments it is very
encouraging. This result has been obtained because of our very
dynamic analysis technique coupled with the automatic generation
of sequence diagrams. Here again are the main steps of our
approach:

• An execution trace is generated when executing some scenario
of business value (use-case). We only keep the events between
application classes.

• The clusters that are identified are strongly linked to business
functions. In a sense they represent chunks of elementary
functionality;

• The working of the system is abstracted by displaying only the
method called between the clusters.

• The resulting event set is further compressed using event
patterns repetition compression.

Our cluster identification technique is to be contrasted with the
ones that try to identify the components based on some software
engineering metrics such as high cohesion and low coupling. As
explained in paragraph 2, we are not targeting the recovery of any
structural view of the software. Rather, we wish to generate a view
that would support the understanding of software behavior.
Therefore the conceptual grouping of classes as well as the
analysis technique cannot rest on static analysis techniques. With
the latter, there is no hope that the component will represent steps
of some complex behavior related to the business function. The
comparison of the dynamic clusters with the static structure of the
program (for example its packages) is useful to show where the
responsibilities pertaining to some behavior are actually
implemented. But, as we already explained in paragraph 2, the
criteria that lead to the static structure of the code are usually not
based on the working of scenarios. Therefore, there little hope to
end up with a set of functional components that would match the
packages of the source code.

Our technique has been integrated in the IBM’s RSA environment
as an Eclipse plugin. In summary, the key contribution of this
paper is to show that the automatic generation of an abstract view
of a legacy system is indeed possible and we presented the way we
achieved this. To refer back to the definition of program
understanding by Biggerstaff at al. [8] we generated a view that
would let an engineer understand the program behavior as
interacting abstract functional components that are qualitatively
different from the tokens of the source code i.e. the classes. Our
approach therefore represents a step toward the true support of
program understanding at higher level of abstraction.

So far, we only worked on single scenarios at the time (i.e. the
main flow of a use-case). As future work we will develop multi-
scenarios clustering and analysis techniques with alternatives. This
may allow us to identify reusable functional components.
Moreover we will integrate some zooming feature to be able to
perform the same clustering analysis on the functional components
themselves. Then we will develop a new view with the links
between the different abstraction levels.

8. RELATED WORK
In the literature, many techniques have been proposed to recover the
structure of a system by splitting it into components. They range
from document indexing techniques [22], slicing [34] to the more
recent “concept analysis” technique [27][30] or even mixed
techniques [17]. All these techniques are static i.e. they try to
partition the set of source code statements and program elements
into subsets that will hopefully help to rebuild the architecture of the
system. But the key problem is to choose the relevant set of criteria
(or similarity metrics) [35] with which the “natural” boundaries of
components can be found. In the reverse-engineering literature, the
similarity metrics range from the interconnection strength of Rigi
[24] to the sophisticated information-theory based measurement of
Andritsos and Tzerpos [1][2], the information retrieval technique
such as Latent Semantic Indexing [22] or the kind of variables
accessed in formal concept analysis [31]. Then, based on such a
similarity metric, an algorithm decides what element should be part
of the same cluster [21]. In their work, Xiao and Tzerpos compared
several clustering algorithms based on dynamic dependencies. In

particular they focused on the clustering based on the global
frequency of calls between classes [37]. This approach does not
discriminate between situations where the calls happen in different
locations in the trace. This is to be contrasted with our approach that
analyzes where the calls happen in the trace. Very few authors have
worked on sampling or segmentation techniques for trace analysis.
One pioneering work is the one of Chan et al. [9] to visualize long
sequence of low-level Java execution traces in the AVID system
(including memory event and call stack events). But their approach
is quite different from ours. It selectively picks information from the
source (the call stack for example) to limit the quantity of
information to process. The problem to process very large execution
traces is now beginning to be dealt with in the literature. For
example, Zaidman and Demeyer proposed to manage the volume of
the trace by searching for common global frequency patterns [38].
In fact, they analyzed consecutive samples of the trace to identify
recurring patterns of events having the same global frequencies. In
other words they search locally for events with similar global
frequency. This is then quite different from our approach that
analyzes class distribution throughout the trace. Another technique
is to restrict the set of classes to “trace” like in the work of Meyer
and Wendehals [23]. In fact, their trace generator takes as input a
list of classes, interfaces and methods that have to be monitored
during the execution of the program under analysis. Similarly, the
tool developed by Vasconcelos, Cepêda and Werner [33] allows the
selection of the packages and classes to be monitored for trace
collection. In this work, the trace is sliced by use-case scenarios and
message depth level and it is then possible to study the trace per
slice and depth level. Sartipi and Safyallah [26] use a patterns search
and discovery tool to separate, in the trace, the patterns that
correspond to common features from the ones that correspond to
specific features.

8. REFERENCES
[1] Andritsos P., Tzerpos V. 2003. Software Clustering based on

Information Loss Minimization. Proc. IEEE Working
Conference on Reverse engineering. 2003

[2] Andritsos P., Tzerpos V. 2005. Information Theoretic
Software Clustering. IEEE Trans. on Software Engineering
31(2). 2005

[3] Anquetil N., Lethbridge T.C. – Experiments with Clustering
as a Software Remodularization Method. Proc IEEE WCRE,
1999.

[4] Bass L., Clements P., Kazman R. 2003. Software
Architecture in Practice, 2nd edition. Adison-Wesley Inc.

[5] Belady L., Lehman M. 1976. A Model of Large Program
Development. IBM Syst. Journal 15(3), pp. 225-252.

[6] Bennett C., Myers D., Storey M.-A., German D. 2007.
Working with ‘Monster’ Traces: Building a Scalable, Usable
Sequence Viewer. Proc. of the 3rd International Workshop on
Program Comprehension through Dynamic Analysis.

[7] Bergey J., Smith D., Weiderman N., Woods S. 1999. Options
Analysis for Reengineering (OAR): Issues and Conceptual
Approach. Software Engineering Institute, Tech. Note
CMU/SEI-99-TN-014, 1999.

[8] Biggerstaff T. J., Mitbander B.G., Webster D.E. 1994.
Program Understanding and the Concept Assignment
Problem. Communicaitons of the ACM, CACM 37(5), 1994.

[9] Chan A., Holmes R., Murphy G.C., Ying A.T.T. 2003.
Scaling an Object-oriented System Execution Visualizer

through Sampling. Proc. of the 11th IEEE International
Workshop on Program Comprehension (ICPC'03).

[10] Clements P.et al. 2002. Documenting Software Architectures:
Views and Beyond, Addison Wesley.

[11] Dugerdil Ph. 2007. Using trace sampling techniques to
identify dynamic clusters of classes. Proc. of the IBM CAS
Software and Systems Engineering Symposium (CASCON),
2007

[12] Dugerdil Ph., Jossi S. 2008. Empirical Assessment of
Execution Trace Segmentation in Reverse-Engineering. Proc.
ICSOFT 2008, Porto Portugal.

[13] Dugerdil Ph., Jossi S. 2009. Computing Dynamic Clusters.
2nd Indian / ACM Conference on Software Engineering
(ISEC) 2009, Pune, India, February 23-26.

[14] Hamou-Lhadj A. Lethbridge T. 2004. A Metamodel for
Dynamic Information Generated From Object Oriented
Systems. Electronic Notes in Theoretical Computer Science
94, pp.59-69.

[15] Hamou-Lhadj A. Lethbridge T. 2006. Summarizing the
Content of Large Traces to Facilitate the Understanding of the
Behavior of a Software System. Proc. of the IEEE Int.
Conference on Program Comprehension (ICPC’06).

[16] Hamou-Lhadj A., Lethbridge T.C 2002. Compression
Techniques to Simplify the Analysis of Large Execution
Traces. Proc. of the IEEE Workshop on Program
Comprehension (IWPC).

[17] Harrman M., Gold N., Hierons R., Binkeley D. 2002. Code
Extraction Algorithms which Unify Slicing and Concept
Assignment. Proc IEEE Working Conference on Reverse
Engineering (WCRE’02).

[18] www.hibernate.org
[19] www.springsource.org
[20] Koskinen J. – Software Maintenance Costs. University of

Jyväskylä, Finland, http://users.jyu.fi/~koskinen/smcosts.htm
[21] Maqbool O., Babri H.A. 2007. Hierarchical Clustering for

Software Architecture Recovery. IEEE Trans. On Software
Engineering, Vol. 33, No. 11.

[22] Marcus A. 2004. Semantic Driven Program Analysis. Proc
IEEE Int. Conference on Software Maintenance (ICSM’04).

[23] Meyer M., Wendehals L. 2005. Selective Tracing for
Dynamic Analyses. Proceedings of the 1st International
Workshop on Program Comprehension through Dynamic
Analysis (PCODA’05).

[24] Müller H.A., Orgun M.A., Tilley S., Uhl J.S. 1993. A Reverse
Engineering Approach To Subsystem Structure Identification.
Software Maintenance: Research and Practice 5(4), John
Wiley & Sons. 1993

[25] Repond J. 2009. Génération de diagrammes UML à partir
d’une analyse dynamique. Bachelor Thesis, HEG, Univ of
Applied Sciences of Western Switzerland, Geneva.

[26] Sartipi K., Safyallah H. 2006. An Environment for Pattern
based Dynamic Analysis of Software Systems. Proceedings of
the 2nd International Workshop on Program Comprehension
through Dynamic Analysis (PCODA’06).

[27] Siff M., Reps T. 1999. Identifying Modules via Concept
Analysis. IEEE Trans. On Software Engineering 25(6). 1999.

[28] Simon H.A. 1969. The architecture of complexity. In: The
Sciences of the Artificial, MIT Press. (Reprinted in 1981)

[29] Tilley S.R., Santanu P., Smith D.B. 1996. Toward a
Framework for Program Understanding. Proc. IEEE Int.
Workshop on Program Comprehension.

[30] Tonella P. 2001. Concept Analysis for Module Restructuring.
IEEE Trans. On Software Engineering, 27(4).

[31] Tonella P. 2003. Using a Concept Lattice of Decomposition
Slices for Program Understanding and Impact Analysis. IEEE
Trans. On Software Engineering. 29(6).

[32] Tzerpos V., Holt R.C. 2000. ACDC : An Algorithm for
Comprehension-Driven Clustering. Proc. IEEE Working
conference on reverse Engineering (WCRE).

[33] Vasconcelos A., Cepêda R., Werner C. 2005. An Approach to
Program Comprehension through Reverse Engineering of
Complementary Software Views. Proceedings of the 1st

International Workshop on Program Comprehension through
Dynamic Analysis (PCODA’05).

[34] Verbaere M. 2003. Program Slicing for Refactoring. MS
Thesis, Oxford University.

[35] Wiggerts T.A. 1997. Using Clustering Algorithms in Legacy
Systems Remodularization. Proc IEEE Working Conference
on Reverse Engineering (WCRE '97).

[36] Wirfs-Brock R., McKean A. 2003. Object Design, Roles,
Responsibilities and Collaborations. Addison-Wesley.

[37] Xiao C., Tzerpos, V. 2005. Software Clustering basd on
Dynamic Dependencies. Proc. of the IEEE European
Conference on Software Maintenance and Reengineering
(CSMR’2005).

[38] Zaidman A., Demeyer S. 2004. Managing trace data volume
through a heuristical clustering process based on event
execution frequency. Proc. of the IEEE European Conference
on Software Maintenance and Reengineering (CSMR’2004).

