
A Task-sets Generator for Supporting the Analysis of
Multi-Agent Systems under General Purpose and

Real-Time Conditions

Davide Calvaresi1,2, Giuseppe Albanese2, Fabien Dubosson2, Mauro Marinoni1, and
Michael Schumacher2

1 Scuola Superiore Sant’Anna,Pisa, Italy
2 University of Applied Sciences Western Switzerland, Sierre, Switzerland

m.marinoni@sssup.it, {name.surname}@hevs.ch

Abstract. The adoption of Multi-Agent Systems (MAS) is permeating Inter-
net of Things (IoT) and Cyber-Physical Systems (CPS). Timing reliability of
MAS is a daring challenge. The study of local task execution and negotiation
of workloads are catalyzing considerable interest. By adopting techniques typ-
ical of Real-Times Systems (RTS), MAS’s ability to comply with strict timing
constraints has been proven. However, a complete formalization is still missing,
and some of the existing mathematical models introduce considerable pessimism
in the performance analysis. Therefore, the need for tools supporting the study
of the behavior of agent-based systems is rising. Particularly, the capability of
systematic assessment and comparison of their performance.
This paper presents a system to generate task-sets and operating scenarios, to sup-
port the study of timing reliability, behavior, and performance of MAS. The pa-
rameters required for such a generation are characterized by randomly extracted
values (e.g., the number of agents, single agent utilization factors, and single task
utilization factor). For each parameter, it is possible to select a given statistical
distribution to be applied to user-defined ranges. In particular, logic, constraints,
and dependencies characterizing the generation algorithm are detailed and framed
in a functional work-flow. Moreover, such a system integrates a MAS simula-
tor powered by both general-purpose and real-time algorithms, named MAXIM-
GPRT. Hence, the presented tool is also able to show the logs of the tested sce-
narios equipped with graphs to enable the performance analysis.

Keywords: Task-Set Generator, Timing-Reliability, Deadline Miss Ratio, Schedul-
ing Simulation, Multi-Agent Simulator, Performance Analysis

1 Introduction

The maximal expression of distributed systems pervading humankind’s daily living is
represented by the Cyber-Physical Systems (CPS) [9]. The distributed entities compos-
ing a CPS interact with each other and with their surrounding, collecting data, negoti-
ating, and providing services. An increasing range of distributed applications has been
developed according to the agent-based paradigm. For example, Multi-Agent Systems
(MAS) can be mentioned in domains such as e-health [5, 6], telerehabilitation [8], en-
ergy [15], and manufacturing [14].

melissa.sarrasin
Texte tapé à la machine
Published in proceedings of the 1st International Workshop on Real-Time compliant Multi-Agent Systems co-located with the Federated Artificial Intelligence Meeting, Stockholm, Sweden, 15 July 2018, which should be cited to refer to this work.

melissa.sarrasin
Texte tapé à la machine

melissa.sarrasin
Texte tapé à la machine

melissa.sarrasin
Texte tapé à la machine

melissa.sarrasin
Texte tapé à la machine

melissa.sarrasin
Texte tapé à la machine

melissa.sarrasin
Texte tapé à la machine

However, their employment in safety-critical scenarios has been recently questioned [9].
This is due to the fact that a system is considered able to guarantee its correct execution
if it can deliberate the right output at or within a given time, even in the worst-case
scenario [3], a feature not yet provided by current MAS.

This class of systems is characterized by a multitude of elements with factors oper-
ating simultaneously. To study their primitive mechanisms, the compliance with strict
timing constraints, the load balancing, and the overall performance, they have to be
individually and collectively studied.

Investigating the timing-reliability, Calvaresi et al. studied the behavior and role of
the local-scheduler [7], and the assumptions, requirements, strengths, and limitations of
current negotiation protocols [4] in MAS.

Currently, the most used agent-based framework and systems take the negotiation,
allocation, and execution of tasks/services for granted [7]. Therefore, Calvaresi et al.
developed an agent-based simulator, named MAXIM-GPRT, to analyze qualitatively
and quantitatively the behavior of a set of local schedulers, negotiation protocols, and
the overall dynamics of the studied agency [1]. Still unique in its purpose, such a sim-
ulator accepts a broad range of parameters in inputs, enabling the outcomes listed in
Table 1.

Table 1: Possible simulator outcomes
Id Indicator Description
I1 Deadline Miss Ratio (DMR) Number of deadlines missed by a task in a given simulated time.
I2 Lateness (LT) Extra time required by a task missing its deadline to complete.
I3 Response Time (RTM) Amount of time required to complete a given task.
I4 Performance Analysis Assessment of the obtained results.

However, by investigating the state of the art, the need for a standardized and semi-
automatic manner to generate task-sets and MAS scenarios is still clearly unmet. There-
fore, in the context of MAS, our aim is to support studies of performances analysis, risk
and failure detection 3, in both General-Purpose (GP) and Real-Time (RT) scenarios.
Contributions:
This paper presents a generator of task-sets and scenarios that we have recently devel-
oped. Although it has been conceived to cope with MAS, it can be employed to study
any type of system requiring the generation of task-sets according to a given set of
parameters and bounds. The task-sets are composed of tasks, which are randomly gen-
erated and subject to given statistical distributions applied to user-defined bounds. The
scenarios are characterized by a set of parameters representing the operating conditions
and the selected algorithms (see Table 2).

The paper is organized as follows: Section 2 presents and elaborates the state of the
art, Section 3 describes the task-set and scenario generator, Section 4 details the steps
and a case study used as an example. Section 5 discusses about the design approach and
assesses the accuracy of the generator. Finally, Section 6 concludes the paper.

3 with particular emphasis for safety-critical systems

2 State of the art

On one hand, by investigating the state of the art in the domain of multi-agent sys-
tems, the notion of scheduling applies mainly to mechanisms of task/resources alloca-
tion among the agents rather than concerning the arrangement and execution of the local
tasks/behaviors within a given agent [7]. Therefore, no similar tool can be mentioned.
On the other hand, a few solutions arose in the domain of real-time systems. De Bock et
al. [11] presented a tool allowing the generation of synthetic task-sets. Its main purpose
is the evaluation of the performance obtained from the tested scheduling algorithms and
to determine the Worst Case of the computation times (C) of the tested tasks.

Such a tool is composed of three main modules operating sequentially:

(i) the generator produces a synthetic task-set composed of periodic tasks with im-
plicit deadlines (i.e. Deadline (D) = Period (T)). Such tasks are generated accord-
ing to the following parameters:
• range of task-set utilization;
• step value between two utilization;
• number of task-sets per utilization;
• number of tasks per task-set;
• lower and upper bound of the period;
• level of granularity of the period;
• seed value for pseudo-random generators.

Firstly, the generator assigns a utilization Uτi to each task according to the con-
straint that

∑n
i=0 U

τi = Ut, where Ut is the total utilization of the task-set.
Then, the period of each task is generated within the given bounds, and the compu-
tation time is calculated according to Equation 2.

(ii) Secondly, the Timing Analysis on Code-Level Benchmark suite (TACLeBench) eval-
uates the Worst Case Execution Time (WCET) for each generated task.

(iii) Finally, the task-set is implemented as a collection of C++ functions and a makefile.
Compiling that source code produces a set of executables which can be run on a
target hardware.

Emerson et al. [12] outlined the Randfixedsum algorithm to study the underly-
ing mathematical problem of the efficient generation of uniformly distributed random
points whose elements sum-up to a predefined value (i.e., 1, indicating a feasible task
set). In the uni-processor case, the UUniFast algorithm created by Bini and Buttazzo [2]
has proven to be able to generate an unbiased distribution of task-sets. The extension
for the multi-processor case is given by UUniFast-Discard, suggested by Davis and
Burns [10]. This algorithm allows the application of the classic UUniFast for values of
U > 1. It randomly generates n task utilization, picking each one from a predefined
range [0, Ut], where Ut can be greater than 1. If any of the generated tasks has utiliza-
tion greater than 1, such a solution is discarded. The main issue of this algorithm is its
efficiency (i.e., it becomes increasingly inefficient as the value of U approaches n/2,
with n indicating the number of the cores). Once the task-set is generated, it is dis-
tributed among the cores. Stafford et al. [16] compare the UUniFast and the UUniFast-
Discard with the Randfixedsum. This last resulted in being more efficient to generate
feasible task-sets. Finally, on top of the task-sets generation, the Multi-Core Real-Time

Systems simulator (MCRTsim) [17] provides a workload generator. Each workload is
characterized by a base speed, a set of shared resources, and a set of tasks. Each task
is characterized by unique id, type, arrival time, period, relative deadline, computation
time, and a set of critical sections. Aperiodic tasks are only characterized by an arrival
time and a computation amount. These features are defined in an XML file that is given
as an input to the above mentioned simulator.

However, the requirements of agent-based systems, particularly the ones of the sim-
ulator MAXIM-GPRT, go beyond what is currently available. Therefore, the next sec-
tion presents the tool that we have developed to cope with the still unmet requirements.

3 The generator tool

To support a comprehensive and meaningful analysis of the indicators provided by
MAXIM-GPRT (see Table 1), there is the need for coordinating many parameters and
inter-dependencies. This section presents elements, constraints, and logic standing be-
hind the presented tool.

3.1 Task-set and Setup Generation

The parameters characterizing the generated task-sets and setups are listed in Table 2.

Table 2: Configurable parameters
Id Parameter Description
P1 Number of agents number of agents participating in the simulation.
P2 Agent knowledge set of tasks an agent is able to execute.
P3 Agent task-set set of running tasks.
P4 Agent Services set of tasks an agent might execute on demand.
P5 Agent Needs set of tasks an agent needs, but it is unable to execute.
P6 Tasks models typology of running tasks.
P7 Agent utilization load of the agent’s CPU (see Equation 1).
P8 Tasks utilization load of a single task (see Equation 2).
P9 Tasks Computation time computation time of a single task (see Equation 2).
P10 Negotiation prot. mechanisms used to negotiate task execution.
P11 Local scheduler algorithm scheduling the agent tasks/behaviors.
P12 Heuristics policies used by agents to select possible contractors and to award

them.

The features P4 and P5 are expressed in the form of a percentage. Such a value indi-
cates the number of services and needs requiring generation with respect to the number
of tasks composing the task-set. Moreover, it is possible to define a range indicating the
time of release of the needs4. Similarly, the generation of the parameters P7, P8, and P9

4 It triggers the needs release during the simulation, abstracting the “will” of the agent .

depends on the ranges chosen by the user and related statistical distributions (e.g., uni-
form and Gaussian). Figure 1 shows that P7 and P8 will be generated in the [0.2− 0.8]
range, and that P9 will be generated in the [2 − 4] range, according to the selected
distributions. Hence, it is possible to select the statistical distribution singularly.

Fig. 1: Selectors for the ranges of P7, P8, and P9 (web interface).

The number of agent composing the simulated community (P1) indicates the num-
ber of task-sets to be generated. The user can define it assigning an integer value (x ≥ 1)
to such a variable;

A task is characterized by: id, executor, demander, computation time 5, residual
computation time, arrival time5, relative deadline, period5, number of executions, first
activation time, last activation time, public flag, and server id. The task-set is generated
in CSV and XML (see listing 1) formats.

The set of tasks that an agent is capable of executing represents its knowledge (P2).
Elements of such tasks can be labeled as public, which are services (P4) eligible to be
demanded for by other agents6. The needs (P5) are tasks that an agent have to execute
at a certain point in time. Such tasks might be part of its knowledge (P2) and/or marked
public by other agents. For each agent, the running tasks (among those contained in
their P1) compose the task-set (P3).

Figure 2 proposes a graphical representation of P2, P3, P4, and P5. In particular,
such sets are generated as follows: (i) generation of P3, (ii) possibly marking a given
percentage of the tasks in P3 public and generating new services, and (iii) When the

5 Values computed according to a uniform or Gaussian probability distribution.
6 The execution of such tasks is subject to negotiation mechanisms.

P4 of all the agents have been generated, a percentage of needs with the related release
time 7 is associated to each agent.

Fig. 2: Graphical representation of P2, P3, P4, and P5.

The task (P6) models that can be generated are: periodic, periodic in an interval,
and aperiodic [3]. Recalling that the processor utilization factor U (P7) is the sum of
the fractions of processor-time spent to execute a task-set composed of n tasks [3], it is
calculated according to Equation (1).

U =

n∑
i=1

Ci
Ti

(1)

The user can define a lower bound (ual) and an upper bound (uah), such that P7 can
assume a real value (0 < ual ≤ x ≤ uah ≤ 1). Thus, all the generated task-sets are
schedulable under the Earliest Deadline First (EDF) conditions (Processor utilization
Factor U ≤ 1)8.

Moreover, the user can define two ranges in which the following features of the
generated tasks are extracted:

– a lower bound (uτl) and an upper bound (uτh), such that the single task-utilization
Ui is a real number x | (0 < uτl ≤ x ≤ uτh ≤ 1) (P8),

– a lower bound (cτl) and an upper bound (cτh), such that the computational time Ci
is an integer number x | (0 < cτl ≤ x ≤ cτh) (P9).

Thus, according to the generated Ui and Ci, the period of the task Ti is computed as
shown in Equation (2). Finally, the generation of the tasks composing a given task-set
stops when the sum of their Ui matches (P7).

Ti =
Ci
Ui

(2)

Concerning the negotiation protocols (P10), the demonstrated tool proposes the se-
lection of a generic implementation of the Contract Net Protocol and Reservation-Based
Negotiation Protocol (RBN) [9]. Concerning the local scheduler (P11), the First Come

7 values subject to given ranges and distributions.
8 EDF has been chosen since, according to Horn [13], it produces optimal schedules and its

lower upper bound Ulub is equal to 1.

First Served (FCFS), Round Robin (RR), EDF, and Constant Bandwidth Server (CBS)
selection is proposed [3]

Heuristics can be selected for key activities such as (i) selecting which agents re-
quire a given service, (ii) how to elaborate a proposal for a given request, and (iii) how
to select the agent to award for the execution of the negotiated service. Those heuristics
are:

– (H1) select first agent in the list,
– (H2) select a random agent,
– (H3) select a random subset of agents,
– (H4) select the best offer according to a cost function.

P1 and P10 are the only parameters valid for the entire community. The remaining
parameters can be set differently for each agent.

1 <t a s k P a r a m e t e r s >
2 <id >1</ id>
3 <a g e n t E x e c u t e r >0</ a g e n t E x e c u t e r>
4 <agentDemander >0</agentDemander>
5 <computa t ionTime u n i t =” s ”>3</ computa t ionTime>
6 <r e s i d u a l C o m p u t a t i o n T i m e u n i t =” s ”>3</ r e s i d u a l C o m p u t a t i o n T i m e>
7 <a r r i v a l T i m e u n i t =” s ”>0</ a r r i v a l T i m e >
8 < r e l a t i v e D e a d l i n e u n i t =” s ”>7</ r e l a t i v e D e a d l i n e >
9 <p e r i o d u n i t =” s ”>7</ p e r i o d>

10 <n exec >−1</n exec>
11 <f i r s t A c t i v a t i o n T i m e >−1</ f i r s t A c t i v a t i o n T i m e >
12 < l a s t A c t i v a t i o n T i m e u n i t =” s”>−1</ l a s t A c t i v a t i o n T i m e >
13 < i s P u b l i c >t r u e </ i s P u b l i c >
14 <s e r v e r >0</ s e r v e r >
15 </ t a s k P a r a m e t e r s >

Listing 1: Generated task in XML format.

Finally, Figure 3 shows the distribution and characterization of presented param-
eters. It is worth to notice that the elements of both the agents and tasks have been
included in the generator tool.

3.2 Functionalities

The operations and functionalities required to generate task-sets and scenarios accord-
ing to the input set by the user are reported in the form of pseudocode by the Listing 2.

Once the initial ranges for all the parameters have been set, the generation can be
triggered. The tool starts iterating on the agents number to generate the related task-sets.
For each of them, it generates the agent utilization (P7), and it iterates generating tasks
to reach it. By defining Ua

temp equal to P7 minus the sum of the generated P8 for that
task-set, the stop conditions are:

(i) if (Uτ
l ≤ Ua

temp < Uτ
h), a task is generated with uτ equal to the remaining utiliza-

tion to match P7;

Agent

Task
P6 P8 P9

P3 P2

P11P10 P12 P7

P1

P5P4

Fig. 3: Graphical representation of a Scenario.

(ii) if (Ua
temp < Uτ

l), the task generation for that task-set is stopped (no task respecting
the preset range and distribution can be generated).

1 /∗ Given t h a t : na = number o f a g e n t s , Ua = a g e n t u t i l i a z t i o n ,
2 Ut = t a s k u t i l i a z t i o n , Ct = t a s k c o m p u t a t i o n t ime ,
3 u t m i n = min t a s k u t i l i z a t i o n , u t max = max t a s k u t i l i z a t i o n ,
4 c t m i n = min t a s k compu ta t i on , c t max = max t a s k compu ta t i on ,
5 Tt = t a s k p e r i o d
6 ∗ /
7

8 C r e a t e S c e n a r i o (na)
9 n =0 , k=0

10 w h i l e (n < na)
11 Ua = 0
12 P7 = Genera teUa ()
13 w h i l e ((P7 − Ua) <= ut max) :
14 G e n e r a t e T a s k ()
15 Ua = Ua + P8
16 i f ((P7 − Ua) >= u t m i n) :
17 G e n e r a t e T a s k ()
18 Ua = Ua + P8
19 G e n e r a t e S e r v i c e s ()
20 n++
21 w h i l e (k < na)
22 Genera t eNeeds ()
23 n++
24

25 G e n e r a t e T a s k ()
26 P8 = g e n e r a t e U t (u t min , ut max)
27 P9 = g e n e r a t e C t (c t min , c t max)
28 Tt = P9 / P8

Listing 2: Operation of the presented tool.

According to Buttazzo [3], C and T have to be an integer. To compute T (already
subject to relation expressed in Equation 2) we impose constraints to Uτ and Cτ . Thus,
the values generated initially require some adjustments. For C, i only the integer is
taken, whilst for T , the ceiling of the targeted value is taken. The next section proposes
a case study to better understand the generation of the task-sets.

4 Examples and Results

Table 3 proposes the setup characterizing the case study used to show the main func-
tionality of the presented tool. Concerning the generation of the parameters within the
ranges (Ua

l − Ua
h), (U

τ
l − Uτ

h), and (Cτl − Cτl), the current case study employs a
uniform distribution. This case study focuses on the generation of task-sets. Therefore,
the generation of needs and services has been neglected9. Table 4 presents the task-

Table 3: Setup of the case study
Na Ual Uah Uτl Uτh Needs Interval Cτl Cτh Needs % Needs Interval

3 0.6 0.9 0.1 0.4 0 1 10 0 0

sets generated according to Table 3, detailing the values of the main variables at each
step. The objective is to show the behavior of the algorithm shown in Listing 2, thus
facilitating its understanding.

Table 4: Steps and values of the presented case study.
step ida idτ t. Uτ g. Uτ t. C g. C t. T g. T t. Ua g. Ua Ua −

∑
Uτ s.c.

1 0 0.626
2 0 0.161 0.160 9.899 9 55.772 56 0,466
3 1 0.384 0.375 3.542 3 7.808 8 0.091
4 0.535 0.091 < Uτl

5 1 0.786
6 0 0.393 0.391 9.318 9 22.894 23 0.393 Uτl < 0.393 < Uτh
7 1 0.393 0.333 1.58 1 2.542 3 0.724 0.060 0.06 < Uτl

8 2 0.800
9 0 0.1 0.100 8.19 8 79.9 80 0.700

10 1 0.123 0.120 3.627 3 24.376 25 0.580
11 2 0.2 0.200 1.855 1 4.917 5 0.380 Uτl < 0.38 < Uτh
12 3 0.38 0.330 1.141 1 2.626 3 0.753 0.050 0.050 < Uτl

——————————————– Legend ——————————————–
ida = agent id; idτ = task id; t. = targeted; g. = generated; s.c. = stop criteria.

————————————————————————————————–

9 setting to 0 the related parameters neither needs or services have been generated.

5 Discussion

To realize this generator tool, we followed a top-down approach. Hence, as shown in
Listing 2, the sequence to break down the problem starts by (i) generating the parame-
ters per agent, then (ii) generating the parameters per tasks-set (for every given agent),
and finally (iii) generating parameters for any given task.

Concerning the accuracy of the generated task-sets, Figure 4 shows how close gen-
erated task-sets meet the requirements expressed in input. In particular, Figure 4 plots
the agents utilization values obtained by generating a task-set with 1000 agents on three
different ranges of Uτ (0.01 − 0.05; 0.1 − 0.2; 0.2 − 0.3). The targeted Ua is defined
in the range Ua

l = 0.7 and Ua
h = 0.9. Both Ua and Uτ employ a Gaussian distribution.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Agent utilization

Target
Generated

(a) 0.01 ≤ Uτ ≤ 0.05

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Agent utilization

Target
Generated

(b) 0.1 ≤ Uτ ≤ 0.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Agent utilization

Target
Generated

(c) 0.2 ≤ Uτ ≤ 0.3

Fig. 4: Graphical representation of Ua target and Ua generated [classic method].

Thus, it is possible to notice that the accuracy is given by Uτ
l . Its impact, in the form

of a shift between the centers of the two bells (targeted and generated), becomes more
relevant when Uτ

l rises.
The principal cause generating this behavior is that the last task is generated only

if the remaining Ua is greater than Uτ
l (see line 16 in Listing 2). This results in an

inevitable shift downwards of the distribution.
To reduce this phenomena, we allowed the task utilization range to expand. Mean

and distribution are initially kept centered and then shifted. This is possible by over-
riding the final criteria to generate the last task employed in the algorithm presented
above. The precision (pr) is now defined as pr = Uτ

l /2. Consecutively, the new Ua

target becomes Ua + pr. Such a tweak, helps to recenter the distribution, setting pr as
the new precision. Nevertheless, borderline cases (e.g., Uτ

h = 1) still need attention. A
possible solution would be to recompute those task-sets that exceeded such a bound.

Figure 5 is obtained by repeating the tests performed to generate Figure 4 and ap-
plying the updated stop condition.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Agent utilization

Target
Generated

(a) 0.01 ≤ Uτ ≤ 0.05

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Agent utilization

Target
Generated

(b) 0.1 ≤ Uτ ≤ 0.2

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Agent utilization

Target
Generated

(c) 0.2 ≤ Uτ ≤ 0.3

Fig. 5: Graphical representation of Ua target and Ua generated [update method].

Although minimally observable, the utilization of the generated task-sets for 0.1 ≤
Uτ
l < 0.2 (Figure 5b) starts to shift towards a bi-modal distribution. In the case of 0.2 ≤

Uτ
l < 0.3 (Figure 5c), such a utilization assumes a pronounced bi-modal Gaussian

distribution.
Such behavior is due to the employement of a Gaussian distribution which, with the

above mentioned bound, generates in average Uτ ∼ 0.25. By summing up three tasks
we get Ua ∼ 0.75. Therefore, recalling that the stop condition is Ua −

∑
Uτ < Uτ

l ,
if Ua > 0.8 for Uτ

l = 0.2, the task generation stops. Thus, explaining the distribution-
gap.

Observing the inputs listed in Table 2 and related constraints highlights how the
presented tool copes with an over-determined system. Let us consider, for example,
the constraints (statistical distributions) applied to Ua and Uτ . Being related to each
other as shown in Equation 1, results in the behavior shown in Figure 5c as a direct
consequence.

Over-determined systems have been studied for decades. A possible solution sim-
plifying the approach can be used for constrained optimization techniques (e.g., by

employing linear programming solvers). Adopting a bottom-up approach results in the
sequence (i) generating the parameters following their distributions, (ii) aggregating
such parameters to compose tasks, and (iii) distributing tasks among the agents. Such
a new approach might optimize the overall system while respecting all the preset con-
straints. This new approach is under evaluation to be included in the future version of
the presented tool.

5.1 Additional features

With respect to the traditional command-line interface, the presented tool also provides
a web interface. Such a version is still an ongoing work. However, at the current status,
it provides a few additional features such as the enabling of the visualization of graphs
supporting the analysis of the results obtained by the generated task-sets and scenarios
simulated in MAXIM-GPRT [1].

Concerning the indicators provided by MAXIM-GPRT (see Table 1), it is possible
to visualize:

(i) which tasks missed their deadlines within an agent in a given time window (see
Figure 6a)

(i) the trend of the deadline-missed of all the tested agents in a given time window (see
Figure 6b).

(a) Deadline misses for 10 agents, time window
[0-200s].

D
e
a
d

lin
e
 m

is
se

s

0

10

20

30

40

50

60

70

80

12001000800
time (s)

6004002000

(b) Deadline misses for 10 agents time window
[0-1200s].

Fig. 6: Results of the deadline miss analysis.

6 Conclusions

Fostering the study of timing-reliability and load balancing in MAS, this work presented
a tool to generate task-sets and scenarios for testing purposes. The current implemen-
tation provides the output in the format supported by the MAXIM-GPRT, but can be
easily extended to handle different output formats.

Considering that the performances of general-purpose scheduling algorithms are
strongly dependent from the features of the scheduled task-set, it is impossible to pro-
vide any off/on-line timing guarantee. Such a study faces more challenges if it refers to
communities of agents scheduling and negotiating tasks executions in a broad range of
scenarios. Therefore, the employment of a task-set and scenario generator is strategical
to many unpredictable scenarios with the support of a simulator.

In light of the data produced by the presented generator, it has proven to be a strate-
gical tool fulfilling the need for a generator of task-sets and scenarios of Multi-Agent
Systems.

As future work, we aim at: (i) improving the functionalities related to the perfor-
mance analysis, (ii) enabling possible benchmarks by indexing and saving the gener-
ated scenarios, and (iii) providing customizable scenarios directly from the industrial
domain.

References

1. Albanese, G., Calvaresi, D., Sernani, P., Dubosson, F., Dragoni, A.F., Schumacher, M.:
Maxim-gprt: A simulator of local schedulers, negotiations, and communication for multi-
agent systems in general-purpose and real-time scenarios. In: Proceedings of 16th Interna-
tional Conference on Practical Applications of Agents and Multi-Agent Systems (Jul 2018),
https://doi.org/10.1007/978-3-319-94580-4 23

2. Bini, E., Buttazzo, G.C.: Measuring the performance of schedulability tests. Real-Time Sys-
tems 30(1-2), 129–154 (2005)

3. Buttazzo, G.: Hard real-time computing systems: predictable scheduling algorithms and ap-
plications, vol. 24. Springer Science & Business Media (2011)

4. Calvaresi, D., Appoggetti, K., Lustrissimini, L., Marinoni, M., Sernani, P., Dragoni, A.F.,
Schumacher, M.: Multi-agent systems negotiation protocols for cyber-physical systems: Re-
sults from a systematic literature review. In: Proceedings of 10th International conference on
agents and artificial intelligence (2018)

5. Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Dragoni, A., Sturm, A.: Exploring the
ambient assisted living domain: a systematic review. Journal of Ambient Intelligence and
Humanized Computing pp. 1–19 (2016)

6. Calvaresi, D., Claudi, A., Dragoni, A., Yu, E., Accattoli, D., Sernani, P.: A goal-oriented re-
quirements engineering approach for the ambient assisted living domain. In: Proceedings of
the 7th International Conference on PErvasive Technologies Related to Assistive Environ-
ments. pp. 20:1–20:4. PETRA ’14 (2014), http://doi.acm.org/10.1145/2674396.2674416

7. Calvaresi, D., Marinoni, M., Lustrissimini, L., Appoggetti, K., Sernani, P., Dragoni, A.F.,
Schumacher, M., Buttazzo, G.: Local scheduling in multi-agent systems: getting ready for
safety-critical scenarios. In: Proceedings of 15th European Conference on Multi-Agent Sys-
tems. Springer (Dec 2017)

8. Calvaresi, D., Schumacher, M., Marinoni, M., Hilfiker, R., Dragoni, A., Buttazzo, G.: Agent-
based systems for telerehabilitation: strengths, limitations and future challenges. In: proceed-
ings of X Workshop on Agents Applied in Health Care (2017)

9. Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M., Buttazzo, G.: The challenge of
real-time multi-agent systems for enabling iot and cps. in proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence (WI’17) (Aug 2017)

10. Davis, R.I., Burns, A.: Priority assignment for global fixed priority pre-emptive scheduling
in multiprocessor real-time systems. In: Real-Time Systems Symposium, 2009, RTSS 2009.
30th IEEE. pp. 398–409. IEEE (2009)

11. De Bock, Y., Altmeyer, S., Huybrechts, T., Broeckhove, J., Hellinckx, P.: Task-set generator
for schedulability analysis using the taclebench benchmark suite. SIGBED Rev. 15(1), 22–28
(Mar 2018), http://doi.acm.org/10.1145/3199610.3199613

12. Emberson, P., Stafford, R., Davis, R.I.: Techniques for the synthesis of multiprocessor
tasksets. In: proceedings 1st International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS 2010). pp. 6–11 (2010)

13. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics (NRL) 21(1), 177–
185 (1974)

14. Hsieh, F.: Modeling and control of holonic manufacturing systems based on extended con-
tract net protocol. In: American Control Conference, 2002. Proceedings of the 2002. vol. 6,
pp. 5037–5042. IEEE (2002)

15. McArthur, S.D.J., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D.,
Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications 2014;part i:
Concepts, approaches, and technical challenges. IEEE Transactions on Power Systems 22(4),
1743–1752 (Nov 2007)

16. Stafford, R.: Random vectors with fixed sum. See http://www. mathworks. com/matlabcen-
tral/fileexchange/9700 (2006)

17. Wu, J., Huang, Y.C.: Mcrtsim: A simulation tool for multi-core real-time systems. In: 2017
International Conference on Applied System Innovation (ICASI). pp. 461–464 (May 2017)

