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Abstract. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is sensitive but not specific to
determining treatment response in early stage triple-negative breast cancer (TNBC) patients. We propose an
efficient computerized technique for assessing treatment response, specifically the residual tumor (RT) status
and pathological complete response (pCR), in response to neoadjuvant chemotherapy. The proposed approach
is based on Riesz wavelet analysis of pharmacokinetic maps derived from noninvasive DCE-MRI scans,
obtained before and after treatment. We compared the performance of Riesz features with the traditional
gray level co-occurrence matrices and a comprehensive characterization of the lesion that includes a wide
range of quantitative features (e.g., shape and boundary). We investigated a set of predictive models (~96)
incorporating distinct combinations of quantitative characterizations and statistical models at different time points
of the treatment and some area under the receiver operating characteristic curve (AUC) values we reported are
above 0.8. The most efficient models are based on first-order statistics and Riesz wavelets, which predicted RT
with an AUC value of 0.85 and pCR with an AUC value of 0.83, improving results reported in a previous study by
~13%. Our findings suggest that Riesz texture analysis of TNBC lesions can be considered a potential frame-
work for optimizing TNBC patient care. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1
.011008]
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1 Introduction provides quantitative information about the tumor and its
microenvironment.”!! This imaging procedure involves the
intravenous injection of gadolinium-based contrast agent to
highlight the vascularity of the tumor.!> DCE-MRI does not use
ionizing radiation, allowing longitudinal imaging to capture
change in tumor vasculature during treatment, without being
limited by patient dose considerations.'®

Currently, biological variability in tumors is recognized to be
important in differentiating treatment outcomes.'* However, this
variability is difficult to measure using random tumor sampling
or biopsies because the entire tumor must be considered to
comprehensively measure biological variations.'> Therefore, the
noninvasive assessment of treatment response using texture
analysis may provide clinical benefit. For example, MRI texture
analysis has shown potential in predicting treatment responses
for rectal cancer, allowing the potential development of person-
alized treatment.'®

DCE-MRI produces pharmacokinetic maps that measure the
kinetic properties of the contrast agent in the tumor. These
kinetic parameters of the lesion have been shown to correlate
with NAC response in breast cancer, especially when used in
conjunction with quantitative measurements of tumor hetero-
geneity, which was shown to be associated with breast lesion

Between 15% and 20% of all diagnosed breast cancers are
a unique subtype called triple-negative breast cancer (TNBC),
characterized by the absence of estrogen, progesterone, and
HER2/neu receptors.! Compared with other breast cancer
subtypes, TNBC is less likely to be detected by an annual
mammogram and has a higher risk of distant relapse.>* Unlike
patients with hormone receptor or HER2/neu-positive breast
tumors, TNBC patients have limited targeted treatment options.
Combination chemotherapy in the early stage setting is the stan-
dard of care for TNBC. This therapy is often administered prior
to surgery and is referred to as neoadjuvant chemotherapy
(NAC).* Achieving a pathologic complete response (pCR) to
NAC is associated with excellent long-term outcomes.*® NAC
combinations targeting DNA repair defects in TNBC have
recently been investigated.”® Finding biomarkers that can
predict therapeutic response to these and other breast cancer
treatments is crucial for identifying patients who will benefit.

Radiological imaging plays a crucial role in the diagnosis
of cancer patients. Dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI), in particular, has shown
promise in diagnosing and characterizing breast cancer as it
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malignancy and disease progression.!”™'® Heterogeneity reflects
the biological variability of the tumor tissue by characterizing
necrosis, angiogenesis, and various cell growth patterns.

The pattern of lesion heterogeneity can be determined by
analyzing the texture that characterizes the local spatial organi-
zation of pixels inside the tumor region.’ While tumor hetero-
geneity itself is generally associated with a worse prognosis,
heterogeneity measures can gauge inter- or intratumoral texture
to improve the performance.'” Over the last decade, most
commonly applied techniques for analyzing texture have been
statistics-based. For example, gray level co-occurrence matrices
(GLCM) and runlength matrices have been widely used second-
order statistical method for texture analysis.?! In particular, the
GLCM features have been shown to correlate closely with many
aspects of breast cancer, such as lesion malignancy and the pres-
ence of heterogeneous enhancement.””> Moreover, there exist
other prior studies”?* that exploit traditional GLCM features
to predict the response of breast cancer patients to the chemo-
therapy. Previous research has provided promising evidence that
GLCM features extracted from pharmacokinetic maps can also
be used to develop a model that identifies treatment responders
and nonresponders in TNBC patients.”> However, the perfor-
mance of the reported GLCM framework depends on the arbi-
trary choice of scales and orientations as well as a necessary
gray level reduction, which entail the risk of losing precious
information contained in the full bit depth of the original image.

We proposed characterizing the TNBC lesion using a multi-
scale, translation, and rotation-covariant texture analysis frame-
work based on the Riesz wavelets,”® which showed promising
results for interpreting high-resolution computed tomography
scan images of interstitial lung diseases and liver lesions.”’
Its balanced performance among various lung and liver texture
features demonstrates an adaptability that suggested its potential
suitability for breast lesion texture analysis in TNBC patients.
Additionally, to complement the texture features, we sought to
incorporate first-order statistics, which deal with the gray-level
frequency distribution within the region of interest (ROI) and are
dependent on single pixel intensities rather than comparisons
with neighboring pixels.?! Our ultimate goal is to create a
statistically valid framework that can predict the response of
patients to NAC in newly diagnosed early stage TNBC.

2 Method

2.1 Dataset
2.1.1 Patient population

PrECOG 0105 was a multicenter phase II trial that examined the
efficacy of gemcitabine, carboplatin, and iniparib as neoadju-
vant therapy for patients with triple-negative and BRCA1/2
mutation-associated breast cancer.”® Patients had stage I-IIIA
newly diagnosed breast cancer and had received no prior
therapy. The investigational therapy was given for four to six
cycles prior to surgery, at which point pathologic response
was assessed. Eighty patients received six cycles of therapy and
thirteen received four cycles. Breast MRI was performed pre-
and posttreatment per protocol. The cohort of patients used
in this study is identical to that from a previous study.”> The
patients had provided written informed consent for their data
to be used in this research, and our study was approved by
our institutional review board. These patients had early stages
of TNBC (Table 1). Seventy-five patients who had completed
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Table 1 Patient cohort information. The cohort used in this study was
also used in a previous study.?®

Patients Percentage
AJCC clinical stages
1A 5 12.2
A 15 36.9
1B 11 26.8
A 10 24.4
AJCC grade
| 0 0
] 6 14.6
1] 35 85.4
Estrogen receptor status (> 5%)
Positive 0 0
Negative 41 100
Progesterone receptor status (> 5%)
Positive 0 0
Negative 41 100
HER2 status
Positive 0 0
Negative 41 100
Germline BRCA1 status
Positive 7 17.1
Negative 34 82.9
Germline BRCA2 status
Positive 1 24
Negative 39 95.1
Variant of unknown significance 1 2.4

No. of treatment cycles at postchemotherapy point

Four cycles 8 19.5

Six cycles 33 80.5

Magnetic field strength

15T 10 24.3

3T 31 75.6

the PrECOG 0105 study were identified as being potentially
eligible for the analysis. However, 15 were excluded because
they had BRCA mutation-associated non-TNBC and had more
than one dominant lesion (i.e., multifocal disease). Seven
patients of the remaining 60 were later excluded due to poor
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80 patients registered
for PeECOG 0105 study

\

75 patients

completed
PeECOG 0105 study

15 patients excluded due to
xclusion of multifocal diease

7 patients excluded due to

\

poor image quality

Final cohort: 53 patients
with quality pretherapy image

¥ Y Y
Pretherapy timepoint: Posttherapy timepoint: Pre & Posttherapy timepoint:
53 patients 44 patients 41 patients

Fig. 1 Flowchart of the cohort selection.

quality imaging. Thus, when generating the predictive models,
the 53 patients who had quality prechemotherapy images were
used for models based on the prechemotherapy image only,
44 for models based on the postchemotherapy image only, and
41 patients for models including both time points. Figure 1 sum-
marizes the cohort selection process for the predictive modeling
as a flowchat diagram.

Patients were imaged at over 25 different imaging centers,
each of which conformed to the standard-of-care protocols spe-
cific to the location. As such, the scans taken were with two field
strengths, either 1.5 or 3 T. Typical slice thickness is between 3
to 5 mm, and the pixel size (field of view/matrix) is less than
1 X1 mm. A dynamic T1 sequence was used. The DCE-MRI
imaging protocol also varied between centers. All centers
used one of the following gadolinium-based contrast agents:
Magnevist, Multihance, or Omniscan. The agents were injected
at a concentration of either 0.2 mL per kilogram or 20 mL for all
patients. Certain centers injected the agent at a rate of 2 mL per
second, while others did so at a rate of 1.5 mL per second.
Postchemotherapy scans were taken after either four or six
cycles of treatment, depending on the center at which the patient
was treated. The time between pre- and postchemotherapy
scans varied across the imaging centers, from ~3 months to
1 year. The maximum interval between pre- and posttherapy
was <12 months. The scans were all done at baseline and just
after the completion of NAC (12 to 18 weeks duration) prior to

surgery.

2.1.2 Kinetic maps

A board certified radiologist circumscribed the breast lesion on
a single axial slice with the largest diameter of the lesion. All
analyses were performed on the two-dimensional (2-D) ROL
The lesions were delineated in both pre- and postchemotherapy
images using a web-based, freely available quantitative imaging
informatics platform—epad.”’ This ROI was used to select
a subset of the pixel values in the six DCE-MRI kinetic
maps used in this analysis. DCE-MRI kinetic maps include
both empirical and pharmacokinetic parameters. The pharma-

cokinetic parameters consisted of the ke, Ku"ns - and v,
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which was derived from k., and K" values through v, =
K™ /ke,, shown in Fig. 2. The K" measures the volume
transfer constant of the diffusion of contrast agent from the
blood plasma to the extracellular extravascular space (EES),
whereas the k., parameter looks at the rate constant of contrast
agent from the EES to the blood plasma. Thus, v, represents
the EES volume per unit of tissue volume. The nonlinear least-
squares curve fitting was used to estimate the values for &, and
K™, Unlike the empirical maps, the pharmacokinetic maps
used all available patient time points. The pharmacokinetic
modeling is based on the Tofts model.*

The empirical parameters consisted of the wash-in and
wash-out, which measure the rate of contrast flow into and
out of the area of interest, as well as the area under the receiver
operating characteristic curve (AUC) of pixel intensity versus

Fig. 2 Pharmacokinetic maps for a patient (id 104): (a) postcontrast

MRI of pretherapy lesion (t=1.5 min), (b) KS(min~"),
(c) kep(min“), and (d) ve(unitless). Each image illustrates values
(colored pixels) of a particular pharmacokinetic parameter.
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Fig. 3 Visualization of the kinetic maps with empirical parameters. (a) Average pixel intensity versus time
showing dynamic sequence of contrast and the three time points used to derive the images. The slope of
the wash-in and wash-out segments was used as the feature value. (b) Example kinetic maps of a patient
who has not achieved pCR and of a patient who has achieved pCR.

time. The empirical kinetic maps had three time points: the time
of contrast injection, the first postcontrast image or 110 s after
the contrast injection (whichever happened later), and the time
of the last image in the series (no more than 20 min after injec-
tion). As shown in Fig. 3, these time points captured the flow of
contrast into and out of the lesion. Before the feature extraction,
we applied a zero-center normalization technique to have zero
mean and unit variance in all the channels of the kinetic maps.

2.2 Feature Extraction

2.2.1 Combination of Riesz and first-order statistical
features

We propose characterizing the lesion texture from six distinct
pharmacokinetic maps using the responses of Riesz wavelets.?
The multiscale decomposition inherited from wavelets
allows the separation of fine from coarse texture properties.’!
The Riesz R filterbank of order N is defined as

R(n'.n*)f(w) =
of (n1 , nz) with n' 4 n* = N. For a 2-D image, the vector o is
composed of w;, corresponding to the frequencies in the

—

ol 2
nitn o) Goa)" £6)) for all combinations

n'tn?! “anHuZ

—

two image axes, and f(w) denotes the Fourier transform of
the image. For each scale, the Riesz transform decomposes
image directions according to the N’th order partial image
derivatives. For instance, the second-order Riesz transform
corresponds qualitatively to second-order partial derivatives,
ag & 0 )

presrens and P2 shown in Fig. 4.

The corresponding filterbank is steerable, which means that
all possible image directions can be encoded from linear com-
binations of the responses of all components of the filterbank

R(nl/,\nZ). This property enables rotation covariance of the
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proposed texture descriptors with infinitesimal angular preci-
sion. The second-order transform—a similar function as the
Hessian matrix—is known to be the most effective balance
between complexity of the filterbank and accuracy.>? The latter
was also shown to best model image profiles of vascular
structures.>> Moreover, even-order transforms detect ridges in the
image, where the pixel intensity peaks, which corresponds to the
values in the kinetic maps. Therefore, the filters obtained with
the second-order Riesz transform can quantify the presence of
tubular structures (e.g., vessels) at multiple scales in an image.

In this study, the second-order filterbanks were built at four
dyadic scales, creating a total of twelve overall filters. The con-
volution of the 12 filters with the image resulted in 12 subbands
(i.e., Riesz coefficients), which indicate the image’s response to
the filter (e.g., the presence of tubular structures at a particular
scale). With 12 filters, 12 coefficient matrices were generated.
We isolated the coefficients from the ROI, where the kinetic
map was generated. To combine the numerous Riesz measure-
ments into a single scalar value representing the feature value
for a particular filter, we measured the average energy of the

Fig. 4 The second-order Riesz filterbank. Filters in the bank were
combined with each other and convolved with the image to compute
Riesz features.
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coefficients in the ROI, defined by the sum of the squares of
the latter. This energy ultimately defines the scalar value of
the Riesz feature. In total, we computed 72 Riesz energy values
for each lesion image.

As with first-order statistics, we incorporated the average
intensity value over each of the six kinetic maps mentioned
above, as well as the area of the ROI. These measurements
may complement the texture features by providing information
about lesion size and global enhancement.

2.2.2 Combination of gray level co-occurrence matrices
and first-order statistical features

The GLCM texture features, which are the standard way to
characterize intratumor heterogeneity, have been investigated
to predict TNBC response in a previous study.”> To obtain
a fair comparison with the Riesz features, we chose to retain
the same configuration of GLCM computation as applied in
the earlier study, i.e., interpixel distance of 1 when using an
8-pixel connected neighborhood. Additionally, the analysis of
texture at such a low spatial level may be able to capture scalar
measures of the microtexture properties of a lesion. We quan-
tized the amplitudes of the kinetic maps into bins of eight gray
levels between the 1st and 99th percentiles of their full range and
resized them using the Lanczos-3 kernel 58 to a common res-
olution of 1.5 mm/pixel the coarsest resolution. Thus, GLCM
was performed on a fixed distance level to avoid bias introduced
by different imaging protocols used by distinct institutions.

Of the original 14 scalar GLCM features, we chose to
incorporate the four features: angular second moment (energy),
contrast, correlation, and inverse difference moment (homo-
geneity).?! The four GLCM features were computed for each of
the four directions (0, 45, 90, and 135 deg), and finally we
summarized each feature value by computing the average on
the four directions. With four different GLCM features and
six kinetic maps (three with empirical parameters and three
with pharmacokinetic parameters, specified in Sec. 2.1.2),
a total of 24 GLCM features were extracted for each lesion
image.

We combined the same first-order statistical features—
average intensity value over each of the six kinetic maps and
the area of the ROI, with the GLCM features.

2.2.3 Rich set of quantitative image features

We also studied a broad and overlapping range of features that
can capture not only texture but also diverse characteristics of
the lesion, and finally evaluated their performance in a discrimi-
native model. Among state-of-the-art imaging features, we
select a comprehensive set of quantitative imaging features
that are potentially relevant in delineating an exhaustive charac-
terization of a lesion and the surrounding normal tissue from
the perfusion image maps. Table 2 summarizes the quantitative
features that we computed in this study. The features are selected
in such a way that they are either capturing the characteristics
commonly visible to the human observers (e.g., intensity-based,
texture-based features), or they may contain some discriminative
signals for characterizing lesion properties (e.g., lesion shape).
In total, we extract 442-dimensional feature vectors from each
pharmacokinetic map separately. Finally, we concatenate the
feature vectors extracted from 6 maps into 2652-dimensional
feature vectors.
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Table 2 Quantitative image features included in this study.

Type Name (dimension) Represents

Intensity Intensity median inside lesion (1)  Quantify first-order
intensity distribution
Entropy inside lesion (1) within the tumor
Proportion of pixels with intensity

larger than predefined threshold (1)

Intensity different between lesion
and its peripheral zone (1)

No of pixels in different
Hist. bins, (20)
Texture Daubechies features (324) Capture occurrence
of gray level pattern
Haar wavelets Haar (1) within the tumor
Local binary pattern (12)

Describe the
morphology of
the tumor and
its boundary

Shape  Compactness (1)
Eccentricity (1)
Roughness (1)
Local area integral invariant (15)
Radial distance signatures (2)
Edge- Edge sharpness (60) Quantify edge

based sharpness along
features Histogram on edge—EdgeHist (1) the tumor boundary

2.3 Predictive Models

The next step is to design an efficient machine learning model
that can exploit the quantitative image descriptors for the pre-
diction of clinical outcomes. Our objective is to predict two
different clinical outcomes: (1) pCR, which is the absence of
residual lymph metastases and residual invasive breast tumors
after neoadjuvant therapy and (2) RT, which is the presence of
a residual tumor (RT) with/without lymp node metastases after
neoadjuvant therapy; these endpoints can be predicted sepa-
rately, as they are not perfect inverses of each other. These
responses are well-distributed among the patients in the cohort
(see Fig. 5). The pCR and RT statuses are determined based on
histopathology of the respected tumor bed after therapy.

Two supervised learning approaches are investigated:
(i) least absolute shrinkage and selection operator—Lasso**
({; norm) and (ii) support vector machine—SVM?>* (I, norm).
Our primary interest to test the performance of Lasso is to
make a valid comparison with the state-of-the-art study.?* But,
the consideration of Riesz features has significantly increased
the dimensionality of our feature vector, and when the dimen-
sionality of the feature vector p is much larger than the number
of training samples n, Lasso selects at most n variable before it
saturates.

Therefore, in addition to Lasso regression, we used SVM to
create an alternative predictive model, where the model com-
plexity is characterized by the number of support vectors, rather
than the dimension of the feature space. SVMs learn linear
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Positive Negative
pCR 20 21
mRT 19 22

Fig. 5 Distribution of pCR and RT responses in the cohort.

separating hyperplanes that maximize the margin between
cloud points from two opposed classes (i.e., responders versus
nonresponders). Using the kernel trick, SVMs are also capable
of creating a curved delineation between responders and nonres-
ponders by mapping the feature vectors in a higher dimensional
space using a nonlinear transform. For this study, we designed
a nonlinear classifier using SVM with the Gaussian radial basis
function kernel, which is a normalized polynomial kernel of
infinite degree. The parameters of the Gaussian kernel function
(i.e., size of the Gaussian kernel) were optimized using a grid
search with cross validation on the training set to maximize
the value of AUC. The regions of the grid yielding the best per-
formance were found to be consistent between the training and
testing set, which suggests that the trained models generalize
well and would likely provide consistent results for new, unseen
patients. Thus, the models were not over fit due to the range
of hyperparameters tested and the observed consistency in
the grids.

Both machine learning models are designed to make separate
predictions with same samples before and after completion of
treatment, as well as with the two time points combined. On
total, we created 90 predictive models using different combina-
tions of intensity and texture features, machine learning models,
and treatment time points. The models are able to not only
predict response using the prechemotherapy features but also
refine these predictions during the treatment process by includ-
ing the postchemotherapy features. Models involving the pre-
and postchemotherapy features did not include a percent change
or direct comparison of the two.

In addition to the texture-based models, we also built rich-
feature prediction models (pCR and RT) by considering the
large set of quantitative features (2652 dimensions) that include
not only texture but also shape, boundary, and other character-
izations of the lesion (see Table 2). For this kind of situation
where p > n, Lasso is not the ideal method because of the
nature of the convex optimization problem and it can only select
at most n variables out of p candidates.*® Elastic net,>” which is
a convex combination of the Lasso and ridge penalty, can deal
with a large feature vector, small sample size problem and gen-
erate a sparse model with good prediction accuracy. Thus, we
applied elastic net with the same cross-validation configuration
(10-folds and 20 Monte-Carlo repetition) for the high-dimen-
sional quantitative feature vector.
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3 Results

3.1 Model Performance

We applied 10-fold cross validation with 20 Monte-Carlo rep-
etitions (MCCV), and the results were averaged. As pointed out
in the literature,*® the MCCYV strategy is particularly well-suited
for small data sets, which simultaneously optimize the complex-
ity of models, decrease the risk of over fitting, and provide
a realistic estimation of prediction errors when the model is
applied to new cases. We evaluated the performance of the pre-
dictive models using the receiver operating characteristic curves,
indicating specificity as related to sensitivity. We show the per-
formance of first-order plus texture-based models and rich-fea-
ture models separately in two different tables. Table 3 presents
the accuracy of 90 models that are created by considering five
different combinations of intensity and texture features for each
time point. The performance of rich-feature models that con-
sider an extensive characterization of the lesion (see Table 2)
for each time point is summarized in Table 4. In Tables 3 and
4, the accuracy is reported in terms of the averaged AUC value
obtained from the Monte-Carlo repetitions.

In Table 3, RT indicates model performance in predicting
residual tumor outcome in patients, and pCR indicates model
performance in predicting pCR status of patients. To further con-
textualize the results, N-feature random model performance is
recorded in this table, along with textural model performance.
RM indicates the random model generated with N features,
where N is the number of features in each of the textural mea-
surements involved multiplied by the number of patients in the
incorporated time point. We consider N-feature random models
partially for over fitting, especially in the Riesz SVM models.
Because more features than patients were included in the mod-
els, over fitting is a risk. However, the lower performance of
the N-feature models (RM) suggests that over fitting was not
an issue for the learning.

Notably, the SVM analysis yielded a higher performance
than the Lasso regression for the majority of predictive models
tested, shown in Table 3. Moreover, the Riesz features-based
models outperformed the GLCM models (specially for pre-
and posttreatment), suggesting that the multiscale description
of texture by Riesz features correlates more closely with pCR
and RT status than GLCM features.

From the lower AUC value resulting from the rich-feature
model that applied the elastic net regularization on a comprehen-
sive set of quantitative features (see Table 4), we can see that
incorporation of higher order characterization of the lesion
deteriorates the model performance in this case study. Moreover,
significant boosts in prediction accuracy of texture-based
models over the rich-feature models show that texture can be
considered the most discriminative feature to characterize treat-
ment response of the lesion from the kinetic maps.

The best model created in our study—a concatenation of
Riesz and first-order statistical features over pre- and post-
chemotherapy for predicting RT—can predict treatment out-
comes for more than four of every five patients, shown in
Table 3. This shows that Riesz multiscale rotation-covariant
texture analysis can be helpful in assessing midtreatment options
for TNBC patients. Though the best performing model includes
both pre- and posttreatment data for prediction, the posttreatment
data are at the very early posttreatment stage; thus, if the model
predicts that treatment will not work, there is still time to change
strategies, so the method is still potentially useful.
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Table 3 The performance of first-order and texture-based models in terms of averaged AUC value. The best performance for predicting RT and
pCR with scans from each time point is mentioned in bold font style.

Model name Lasso (RM) SVM (RM) Lasso (RT) SVM (RT) Lasso (pCR) SVM (pCR)
Prechemotherapy only
Only first order Failed 0.20 +0.08 0.21+£0.02 0.30 +0.03 0.27 +£0.04 0.34 +0.08
GLCM Failed 0.42 £0.01 0.27 £0.04 0.56 +0.03 0.64 +0.02 0.74 £ 0.01
GLCM + first order 0.57 +£0.03 0.51+0.05 0.24 +£0.05 0.63 +0.02 0.67 +0.04 0.73+0.07
Riesz Failed 0.48 +0.01 0.66 +0.03 0.64 +0.02 0.66 & 0.01 0.69 +0.02
Riesz + first order Failed 0.49 +0.03 0.66 + 0.03 0.61+0.02 0.69 +0.03 0.70 + 0.01
Postchemotherapy only
Only first order Failed 0.32+0.04 0.21+0.03 0.20 +0.04 0.20 +0.08 0.30 +0.04
GLCM Failed 0.61+0.03 0.70 £ 0.01 0.77 £ 0.04 0.64 £+ 0.01 0.71 £0.05
GLCM + first order Failed 0.57 £ 0.04 0.76 + 0.03 0.73 +£0.01 0.61 +£0.03 0.77 £ 0.04
Riesz Failed 0.50 +0.03 0.66 +0.03 0.70 +0.05 0.63+0.03 0.78 +0.03
Riesz + first order Failed 0.55 + 0.01 0.71 +£0.01 0.73+0.03 0.68 +0.03 0.80 + 0.01
Pre- and postchemotherapy
Only first order Failed 0.28 +0.02 0.31+0.02 0.42+0.05 0.25+0.03 0.34 +0.04
GLCM Failed 0.60 +0.04 0.63+0.03 0.71+0.03 0.70 +0.04 0.73+0.05
GLCM + first order 0.51 +£0.06 0.70+0.05 0.76 +0.05 0.80 + 0.01 0.69 +0.03 0.80+0.05
Riesz Failed 0.66 + 0.01 0.58 +0.03 0.80 +0.03 0.54 +0.05 0.82+0.03
Riesz + first order 0.58 +0.02 0.72+0.05 0.77 + 0.01 0.85+0.07 0.72 + 0.02 0.83 + 0.01

are a few instances where the GLCM models resulted in better
AUC values. Thus, we ran an automatic feature selection experi-
ment by taking into account both Riesz and GLCM features
computed from all six image sequences and incorporate them

Table 4 The performance (AUC values) of the models considering
a rich set of quantitative features (see Table 2).

Model name Elastic net (RT) _ Elastic net (pCR) into a single model. We chose not to consider the Lasso feature
Prechemotherapy only 0.2340.05 0.23+0.05 selection results because the pairwise correlation among the

GLCM group variables/Riesz group variables is quite high.
Postchemotherapy only 0.26 +0.04 0.24+£0.05 In that case, the Lasso tends to select only one variable from
Pre- and postchemotherapy 0.57 +0.04 0.46 + 0.04 the group and does not care which one is selected. Moreover,

for the comparison study, we have to incorporate the whole
set of feature vectors [GLCM (24) and Riesz (72)] for six differ-
ent kinetic maps, which increase the dimension rapidly, and,

The AUC of our highest performing model was 0.85, and
it predicted RT status, an improvement of ~13%. Also, the
best models using the postchemotherapy time point showed
an improvement of ~10% for predicting pCR status with
an AUC of 0.80 and ~4% for predicting RT status with an
AUC of 0.77. In addition, the estimated performance of the
Lasso regression used with GLCM and first-order features
was equivalent to, and thus validates, previous findings.?

3.2 Feature Selection

It can be seen from Table 3 that, in most cases, the model with
Riesz feature outperforms the GLCM models. However, there
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as mentioned before, elastic net”’ is particularly useful in this
situation and with select groups of correlated variables.
Figure 6 shows a digest version of the 10-fold cross validated
elastic net feature selection results separately for both pre- and
posttreatment datasets. Figures 6(a) and 6(c) show the coeffi-
cients values of the features against varying lambda values,
where the different colored lines represent different features.
Based on cross validation, the optimal solution is picked at
the minimum mean square error (MinMSE) and Figs. 6(b) and
6(d) represent group-wise coefficient values of quantitative
features at MinMSE, where the different colored bars represent
different features computed from different kinetic maps. For the
pretreatment dataset, the dominant features at MinMSE are
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Fig. 6 Elastic net feature selection outcome. (1) considering GLCM and Riesz features calculated
from pretreatment kinetic maps (a) trace plot of coefficient fit by elastic net, (b) bar plot represents
feature-group-wise coefficient values at MinMSE; (2) considering GLCM and Riesz features calculated
from posttreatment kinetic maps, (c) trace plot of coefficient fit by elastic net, and (d) bar plot represents

feature-group-wise coefficient values at MinMSE.

mostly selected from the Riesz feature group calculated from
wash-out, K", and k., maps. Only the GLCM feature group
of the K™ map has nonzero coefficient values [see Fig. 6(b)].
Similarly, for the posttreatment dataset, five Riesz feature
groups (AUC, wash-in, wash-out, K" and kep) and only two
GLCM feature groups (v, and k) are selected as the most
dominant features. In both cases, Riesz features mostly have
the higher coefficient values (). Again, the feature selection
results for both the pre- and posttreatment datasets prove that,
for all parametric images, Riesz features are more dominant
than GLCM, even when they are combined to build the model.

4 Discussion

4.1 Contribution

In this exploratory study, our main research contribution is
twofold. First, the performance of the Riesz texture analysis
framework is thoroughly compared with traditional GLCM to
determine if the multiscale rotation-covariant characterization
of DCE-MRI-derived lesion kinematic maps can improve the
prediction of treatment response in early stage TNBC patients.
To build an efficient prediction model, nonlinear (SVM with
Gaussian kernel) and logistic (Lasso) regression methods have
been tested in parallel with the same set of predictors. Second,
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rather than assuming texture is the only informative characteri-
zation, we also extracted a wide variety of quantitative image
features from the kinematic maps to facilitate higher order
characterization of the TNBC lesion and evaluate their com-
bined performance in the prediction of treatment response.
Among all the characterizations that we studied, our experi-
ments demonstrate that the combination of Riesz texture and
first-order statistical feature vectors used in an optimized SVM
model (with Gaussian kernel) can most efficiently predict
the treatment response. The optimized models achieved 0.85
AUC for RT prediction and 0.83 AUC for pCR prediction,
and the improvement over the results in previous studies with
GLCM? is at most 13% (see Sec. 4).

4.2 Significance

The results of this study suggest that quantitative analysis of
kinetic imaging using Riesz wavelets can be useful for predict-
ing whether the patient will respond to NAC (specifically,
PARP inhibitor therapy). The main strength of our work is
that we statistically evaluated a large set of predictive models
(~96) incorporating distinct combinations of quantitative lesion
characterization at different time points of the treatment, and
some AUC values we reported are above 0.8. Generally, the
models that included Riesz features performed better, as
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evidenced by higher AUC values. This improved performance
suggests that the use of Riesz features can provide better pre-
diction for TNBC treatment response than traditional GLCM
texture features as well as other popular quantitative image
features. Moreover, our study incorporated assessment both
before and after chemotherapy, which had better model perfor-
mance than those without both time points. Therefore, the com-
bination of the different types of image features and time points
appear to provide complementary information for predicting
treatment response. SVMSs generally yielded models with
greater performance than Lasso regression. This may be because
SVMs use the Gaussian kernel, which allows for a nonlinear
decision boundary. On the other hand, there is a risk of
overfitting, and, though we evaluated our models using cross
validation, future studies to confirm our results in large indepen-
dent datasets will be needed.

4.3 Limitations and Future Work

There are several limitations in our work. One limitation is that
the clinical trial from which patient data were obtained for our
study were obtained from different centers that used a variety of
imaging protocols or varied scan parameters. Despite these
variations in imaging technique, the prediction results of our
models were good, though their performance would be expected
to be better if centers adopt standard procedures in DCE-MRI
imaging. In addition, the breast coils that are used during the
acquisitions are heterogeneous, and reproducibility of images
could be a confounding factor. This was beyond the scope of
our study, but it is a factor that would be worthwhile investigat-
ing in future studies. Moreover, another future study could be
performed using the empirical parameters and the pharmacoki-
netic parameters extracted from a single center (or standardized)
multiphasic contrast-enhanced MRI.

Another limitation is that our best result was using models
that included both pre- and posttreatment data. The need for
posttreatment data limits the utility of our method for predicting
the best treatment prior to commencing that treatment. It is pos-
sible that including additional pretreatment imaging time points
could provide additional information about the biology of the
cancer that could improve the performance of our prediction
models, though a limited number of pretreatment scans are
generally obtained. Alternatively, incorporating the postchemo-
therapy time point in between the treatment cycles can be useful
for refining predictions and monitoring patient response.
Expanding our texture analysis methods to a three-dimensional
(3-D) assessment of intra- and intertumoral heterogeneity
could allow for more comprehensive characterizations of cancer
lesions. However, the MRIs were not isotropic; thus, operating
in 3-D would be challenging due to the poor Z-resolution.

A final limitation of our work is that the number of patients
studied was small, though all patients were enrolled on a
prospective clinical trial and received the same combination
therapy. In the future, we will study our methods on a larger
cohort of patients receiving other types of NAC treatment.
Moreover, we did not include a rule to exclude patients pre-
dicted to have achieved pCR from those predicted to have an
RT. Patients with pCR status by definition have no RT, so adding
such a rule would relate the predictions of the two models. We
hope to implement this functionality in the future and expect it
will improve model performance. In the future, we will also
explore the inclusion of features from complementary imaging
modalities, such as mammography, to see if quantitative analysis
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of information from those modalities improves prediction
performance.
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