
A LEGACY SYSTEMS USE CASE RECOVERY METHOD

Philippe Dugerdil, Sebastien Jossi
HEG, Univ. of Applied Sciences of Western Switzerland, 7 route de Drize CH-1227 Geneva, Switzerland

philippe.dugerdil@hesge.ch

Keywords: Reverse specification, dynamic analysis, static analysis, execution trace, branch condition analysis.

Abstract: During the development of a legacy system reverse engineering method we developed a technique to help
with the recovery of the system’s use-cases. In fact, our reverse-engineering method starts with the re-
documentation of the system’s use-case by observing its actual users. But these use-cases are never
complete and accurate. In particular, the many alternative flows are often overlooked by the users. This
paper presents our use-case recovery methodology as well as the techniques we implemented to identify all
the flows of the legacy system’s use-case. Starting from an initial use-case based on the observation of the
users, we gather the corresponding execution trace by running the system according to this use-case. The
analysis of this execution trace coupled with a static analysis of the source code lets us find the possible
alternative execution paths of the system. The execution conditions for these paths are analyzed to establish
the link to the use-case level. This lets us synthesize alternative flows for the use-case. Next we run the
system again following these alternative flows to uncover possible new alternative paths, until one
converges to a stable use-case model.

1 INTRODUCTION

Generally, legacy systems documentation is at best
obsolete and at worse non-existent. Often, the
developers are not available anymore to provide the
maintainers with information on these systems. In
such situations the only people that still have a good
perspective on the system are its users. In fact they
are usually well aware of the business context and
business relevance of the programs. In short, their
interactions with the system represent instances of
relevant use-case.
The iterative and incremental reverse-engineering
technique we developed starts from the recovery of
the use-cases of the system. Then, by incrementally
rebuilding the analysis models, we are able to re-
create the traceability links between the business
functions and the source code of the system. In
summary, this reverse-engineering method works
through the following steps:
1. Re-document the system use-cases;
2. Design the Unified Process’ robustness

(analysis) diagrams associated to these use-cases
(Jacobson et al. 1999);

3. Execute the system according to the use-cases
and record of the execution trace;

4. Analyze the execution trace and identify the
classes involved in the trace;

5. Map the classes in the trace to the stereotypes of
the robustness diagram.

6. Re-document the architecture of the system by
clustering the classes based on their role in the
implementation of the use-case.

The efficiency of this method has successfully been
tested on 2 large systems (Dugerdil&Jossi 2008,
Dugerdil&Jossi 2007). Since our approach rests
fundamentally on the recovered use-cases, their
quality and completeness are fundamental to the
performance of our reverse-engineering method.
However as we rely on system users to recover the
use-cases, the latter are never complete and accurate
especially regarding the alternative flows. Therefore
we developed a technique to recover complete use-
cases from the rough one given by the users.
The topic of this paper is to present our use-case
recovery approach. In contrast with other published
use-case recovering techniques based on the analysis
of the source code only (see for example (Li et al.
2007)) our approach rests on a first “draft” of the
use-case provided by users. This version is later
completed by analyzing the behavior of the program
as well as the source code of the classes involved in
the implementation of the use-case.
This position paper presents work in progress. It is
structured as follows. Section 2 discusses the
problem of recovering meaningful, i.e. relevant, use
case in a given domain. Section 3 presents the use-

case recovery process and section 4 gives some hints
on the implementation technique. Section 5
discusses the related work. Section 6 concludes that
paper and presents future work.

2 RECOVERING RELEVANT
USE-CASES

According to (Leffingwell&Widrig 2003) “A use
case describes sequences of actions a system
performs that yield an observable result of value to a
particular actor”. Furthermore, “It (the use-case)
focuses on the value that the customer wants from the
system, not on how we subdivide and structure the
functionality within the system” (Bittner 2001).
Therefore, when trying to reverse-engineer the use-
cases from a legacy system, the goal is not to
generate any arbitrary set of statements, but to
actually recover a relevant one. Since software
specification lies at the boundary between business
and engineering (i.e. expressing functional requests
based on business justifications), the recovered use-
cases must be relevant to, and consistent with, the
business tasks of the users. However in the vast
majority of situation, if not all, the software source
code does not contain any substantial structured
business information to justify the software in
business terms. In other words the business relevance
of a given piece of code is not to be found in the
source code itself but lies outside the code (in the
head of the software analyst). This situation bears
some similarity to the linguistic domain where it is
well known that the understanding of a text requires
pre-existing knowledge of the domain (Roche 2006).
Therefore, it is clear that any use-case recovery
technique that is based on the analysis of the source
code only is bound to fail. In particular the structure
of the use-case (business level) is very loosely linked
to the structure of the software (technical level)
implementing it. Of course, both structures are not
completely uncorrelated, but the correlation is much
too weak to link the technical structure to the use-
case structure. Again, this is because the software
engineering and technical principles that lead to the
program structure are orthogonal to the business
requirements. In particular, the structure of the code
is driven by quality attributes considerations like
maintainability or performance (Bass et al. 2003).

However, since the actual users of the system
have a good perspective on the business relevance of
the system, they are able to execute scenarios that are
relevant to the business. But we know that the latter
are not complete and accurate enough to be
considered good use-cases. We will therefore
complete them by selectively searching the source

code for variants of the scenario and then abstracting
the information to generate complete relevant use-
cases. To illustrate this technique, we call the initial
scenario the “backbone” of the use-case, to which we
incrementally attach extra information that we obtain
from searching the source code.

3 USE-CASE RECOVERY
PROCESS

First, the legacy system’s source code is
instrumented to generate an execution trace for any
scenario performed on the system. The instrumented
source code is then recompiled and installed on the
machine. Next, the scenario we recovered from the
user is played on the machine and the execution
trace is recorded. The latter then contains the
sequence of methods or functions executed while
performing the scenario. The format of the execution
trace is quite classical. Each method call, called an
“event”, has the following form:

[packageName][className][methodSignature][processId]

After having recorded the execution trace it is
analyzed to identify the methods executed. For each
method called, we look for conditional statements in
its source code. When such a statement is found, the
non-executed path represents a candidate for a
variant of the use-case. This is illustrated in Fig. 1.
The small squares symbolize the program statements
and the central broken line represents the sequence
of statements executions for the “backbone”. The
small horizontal arrows represent the search for
variants around the “backbone” statements. The
purpose is to find the statements that could possibly
be called but haven’t been. These may represent
extra steps in the main flow or steps of the
alternative flows.

Figure 1. Iteration 1 performed on the “backbone”

The next task is to link the conditional statements in
the code to the user interfaces involved in the
“backbone” scenario, to know if the alternative
statements could possibly be executed by
performing some extra user interactions. In other
words, we must answer the following question:
could the boolean condition of the branching
statement be changed by imputing some specific
value or selecting some extra option at the user
interface level? If yes, the corresponding user
interaction is added as an extra step to the scenario.
Then the users are asked to validate the relevance of
the new scenario (previous one + new interaction). If
it is OK, the new scenario is played and a new
execution trace is generated. This process is repeated
until we reach a stable set of variants. This
incremental process is symbolized in figure 2.

Figure 2. Extra iterations performed on the “backbone”

The new segments of the broken line represent
variant of the behavior of the system obtained via
the new user interaction determined by the static
analysis of the source code. In summary our
technique uses dynamic (i.e. execution trace) and
static (i.e. source code) analysis.

4 USE-CASE RECOVERY
TECHNIQUE

The implementation of our approach requires two
sources of information:
1. The execution trace of the scenarios;
2. The source code of the classes involved in

execution trace.
The whole process is illustrated in figure 3. First, a
rough use-case is rebuilt from the scenario recovered
from the users. Next the scenario is executed on the
instrumented system to get the execution trace. The
latter is then recorded and the methods corresponding

to each event is analyzed. If a conditional statement
is found in that code, this could lead to an alternative
behavior (C6 t() in the example) depending on the
boolean condition. Then the system tries to link this
boolean condition (the k variable in the example) to
the user interface of the use-case. This is to check if
some user interaction could lead to a change in the
boolean value of k. If yes, then the alternative path
(C6 t() instead of C5 t()) will be taken if this
action is taken. To identify the non-executed
conditional statements in the code, we rest on the
analysis of the execution trace again which is
represented by the corresponding call tree. Starting
from a node that represents an event, we check if the
method that could conditionally be executed is a
child node of the current node in the class tree. If not,
then this represents a potential alternative path and
the source code is backward sliced from the
condition to uncover alternative scenarios. Backward
slicing is a technique to identify all the statements in
a program that could possibly influence the value of
some variable at a specific step in the program
(called the slicing criteria (Binkley&Gallagher
1996)). Therefore, if a user interaction through a
control of the GUI could change the value of a
condition in the code, this means that the statements
associated to the control must be included in the
backward slide from the conditional statement.

In summary the algorithm to find alternatives is the
following:

For each event in the trace

Retrieve the conditional statements in its code.
For each conditional statement

If the corresponding method is not a child of
the current node

Then
1. Backward slice the source code of the

program from the condition.
2. Analyze the slice to find if there are

statements belonging of the scenario’s
GUI.

3. Check if the GUI statements are
associated to some user selectable control.

4. Deduce the value to be inputted/selected
through the GUI to change the condition.

endIf
endFor

endFor

Technically, the source code of each event (method)
is parsed to generate its AST. The latter is then
analyzed using the « Visitor » design pattern
(Gamma et al. 1995). Both the AST generator and its

parser have been kindly shared by Júlio Vilmar
Gesser (Java 1.5 Parser and AST 2010).
In most of the cases, the identification of the method
that is called in the trace is easy. However in some
cases the calls are ambiguous.

Let us see a simple example where method1()
would be declared in Class1:

void method1() {
…
if(condition1) then x.method2();
if(condition2) then y.method2();

…}

Figure 3. Workflow of our method

In the execution trace we may get the following
sequence of events:
package1 Class1 method1()[1]
package2 Class7 method2()[1]

We know from the source code of method1() that
method2() might be called. But what is the exact
code executed in this case? In other words was
conditon1 or condition2 true? The answer will be
known by identifying the class of the object

referenced by x and y. Now the problem comes back
to finding these classes. This represents a major
issue. The technique is to compute the type of the
variable at the location of the conditional statement.
Of course, the analysis of the static type (class) of the
variable is not enough since the program could assign
an instance of a subclass to the variable. We must
therefore analyze the assignments statements to the
corresponding variables up to the conditional
statement. The solution is to launch yet another

+

Use Case X
Main flow
1)---------------------
2)---------------------
3)---------------------
4)--------------------- Abstract Syntax

Tree (AST)

Use Case X
Main flow
1)---------------------
2)---------------------
3)---------------------
4)---------------------

Alternative flow
2a)-------------------
2a1)------------------
2a2)------------------
2a3)------------------

Execution Trace

P1 C3 m5() [1]
P1 C1 m10() [1]
P1 C5 t() [1]
P1 C1 m1() [1]
P1 C8 m9() [1]

Visitor (Gamma et al. 1995) to identify these
assignment statements. While the visitor searches the
code a dynamic type table is filled with the
conditions that correspond to each of the assignment
statements. Figure 4 presents the UML model of such
a table. This table helps us to relate the conditions
with each other in the code. In fact all the alternative
paths in the program are not independent. Many
paths will indeed be controlled by the same condition
or by a combination of known conditions. The
dynamic type table is then used to determine truly
independent paths in the program.

Figure 4. Dynamic type table

When the type of the variables is known, we can
disambiguate the call observed in the trace and
identify the alternative scenarios. So far we
implemented the first part of the method, up to the
identification of the conditional statements that could
lead to alternatives. The next step will be to
backward slice the code to find the alternative flow
steps. The conditional statement identification
mechanism has been applied on the “FastUML”
(FastUML 2010) open source software. First we
instrumented its source code and defined a rough use
case (“backbone”). Then we played it on the system,
got an execution trace and performed our trace
analysis technique to find alternative paths. This
allowed uncovering 10 alternative calls from the
“backbone”.

5 RELATED WORK

A technique that bears some similarity with ours
is the work of (Ko&Myers 2008). Their debugging
application technique is based on dynamic and static
analysis and generates a precise call graph by using
every invocation found in the source code. This tool
allows the user to run buggy functions to uncover the
code associated to that function. Moreover, the
application dynamically generates questions that the
user can ask about program behavior. But this work
does not aim at recovering the use-cases of the
system. On the topic of reverse specifications, (Li at
al. 2007) proposed a technique to rebuild a complete
use case diagram based on dynamic information
(execution trace). They start by retrieving methods
that are located at the root of the call trees build from
the execution trace. These root methods are supposed
to represent the root of the scenarios. But we think

this to represent too strong an hypothesis, because it
deeply depends on the structure of the code. For
instance a root method could implement a menu while
the real business function would be located at a much
deeper level. In order to rebuild the software behavior
model based on execution traces, researchers from the
University of Ottawa worked by filtering out utility
components to keep only high level elements
(Hamou-Lhadj et al. 2005). Their algorithm seems to
produce good results, but their technique is not
adapted to our problem. Since they are no guided by
any business level information, there is no guarantee
that the retrieved statement correspond to a relevant
use-case. (El-Ramly et al. 2002) have developed a
method to recover the use-cases from dynamic
information but again they work the other way around
by rebuilding the use-case without the guidance of
some user-level information. Therefore there is no
guarantee that the recovered use-case would be
relevant to the users. (Di Lucca&Fasolino&De Carlini
2000) also use a dynamic technique to recover the use
cases. However the problem here is the very
definition of what a use-case means (Leffingwell&
Widrig 2003). In fact, their technique is limited to
recording the statements between an input event and
the first output event. Therefore this cannot be
considered a real use-case since it is limited to
analyzing a single feature of the system, not a whole
scenario of business value. Finally, (Qin et al.2003)
presented a method to retrieve the use-cases of a
system by building a branch-reserving call graph.
From this graph they could rebuild sequences of user
interactions by hand. Although they claim to be able
to retrieve plain use-cases, the real question is: what is
the business value of the recovered use-cases? Again
the key idea is not to retrieve any arbitrary sequence
of user interactions but one that represents a real
business task. As far as slicing tools are concerned,
we explored a few open source tools. (JSlice 2009)
seemed at first to be a good candidate. However it
cannot work on user defined trace execution format. It
must use its own trace format. Therefore we cannot
insert it easily in our framework. But the key problem
is due to its JVM which is not a standard one but
(Kaffee 2009). The latter lacks compatibility with
current versions of Java. The (Wisconsin Program-
Slicing Project 2009) released an open source slicing
tool. But the latter is designed for C language only.
GrammaTech markets two slicing tools. The first one,
(Code Surfer 2009), is actually the commercial
version of Wisconsin Program Slicing Project. The
second, (Code Sonar 2009), is also designed for C
type languages. Finally, the best candidate we found
is (Indus 2009)0 developed at Kansas State Univ. It is
designed for Java code. This is the one we are
concentrating on presently.

6 CONCLUSION AND FUTURE
WORK

The fundamental claim of this paper is that it is not
possible to recover relevant use-cases of a system by
simply analyzing the source code of the system. This
is because use-cases represent system usage that
must bring a result of business value to the user
(Leffingwell&Widrig 2003) (Bittner 2001). Hence,
any set of user interactions with the machine does not
represent a use case. It is just a set of user
interactions, nothing more. For such a set of
interaction to represent a true use-case, all
interactions must be targeted at providing the user
some result of business value. This business value
lies outside of the system. It is in the head of the user
(and in some rare cases in the documented business
processes involving the IT system). Therefore, our
key idea to recover business-relevant use-case is
actually to start from an initial user-defined scenario
and to incrementally enhance this scenario to
converge to a complete use-case. Since we start form
a scenario of business value, the value of the use-case
resulting from our process is guaranteed. We called
the initial scenario the “backbone”, since this is a
relevant scenario of business value to the user that
will later be completed. To perform this completion,
we proposed to use dynamic as well as static analysis
techniques. The first one let us find the code that is
executed while running a scenario (i.e. the execution
trace). Then the executed code (the set of events) is
searched for alternative execution paths. Once such a
path is found, our technique tries to link the
condition of its execution to the scenario’s GUI. This
is to check if some alternative user interaction could
possibly lead to the execution of the alternative path.
If such a link is found the alternative interaction is
presented to the user for validation. If it is validated,
the system is run again with the alternative
interaction and the corresponding executed code
analyzed. This process is repeated until the scenarios
converge to a consistent use-case. As of today, the
first part of the use-case recovery method is
implemented, up to the identification of alternative
execution paths. The next step is to use a backward
slicing tool to retrieve the corresponding user
interactions. This is the work are concentrating on
presently. We hope to complete the work by the end
of the summer 2010.

ACKNOWLEDGEMENTS

This work has been done with the support of HESSO
Grant N°24245 from the Swiss Confederation, which
is gratefully acknowledged.

REFERENCES

Bass L., Clements P., Kazman R. 2003. Software Architecture in
Practice, 2nd edition. Adison-Wesley Inc..

Jacobson I., Booch G., Rumbaugh J. 1999. The Unified Software
Development Process. Addison-Wesley Professional.

Roche Ch. 2006. How Words Map Concepts . Proc. 10th IEEE
EDOCW.

Binkley D.W., Gallagher K.B. 1996. Program Slicing. in:
Advances in Computers, vol 43, Academic Press.

Gamma E., Helm R., Johnson R., Vlissides J. 1005. Design
Patterns. Elements of Reusable Object Oriented Software.
Addison-Wesley Inc.

Ko A., Myers B 2008. Debugging reinvented: asking and
answering why and why not questions about program
behavior, Proc. IEEE ICSE.

Li Q., Hu S., Chen P., Wu L., Chen W. 2007. Discovering and
Mining Use Case Model in Reverse Engineering, Proc. IEEE
FSKD.

Hamou-Lhadj A., Braun E., Amyot D., Lethbridge T. 2005.
Recovering Behavioral Design Models from Execution
Traces. Proc IEEE CSMR.

El-Ramly M., Stroulia E., Sorenson P. 2002. Mining System-User
Interaction Traces for Use Case Models. Proc IEEE IWPC.

Di Lucca G. A., Fasolino A. R., De Carlini U. 2000. Recovering
Use Case models from Object-Oriented Code : a Thread-
based Approach. Proc IEEE WCRE

Qin T., Zhang L., Zhou Z., Hao D., Sun J. 2003. Discovering Use
Cases from Source Code using the Branch-Reserving Call
Graph. Proc. IEEE APSEC.

Wisconsin Program-Slicing Project. 2009 www.cs.wisc.edu/
wpis/html/

JSlice 2009. jslice.sourceforge.net/
Kaffee 2009 www.kaffe.org/
Indus 2009 indus.projects.cis.ksu.edu/
CodeSonar 2009. www.grammatech.com/products/codesonar/

overview.html
CodeSurfer 2009. www.grammatech.com/products/codesurfer/

overview.html
Leffingwell D, Widrig D. 2003 Managing software requirements,

Addison Wesley.
Bittner K. 2001. Why use cases are not “functions” - The Rational

Edge.
Dugerdil Ph., Jossi S. 2008. Empirical Assessment of Execution

Trace Segmentation in Reverse Engineering. Proc ICSOFT
Dugerdil Ph., Jossi S. 2007 Reverse-Engineering of an Industrial

Software Using The Unified Process: An Experiment. Proc
IASTED SEA.

Javacc 2010 https://javacc.dev.java.net/
Java 1.5 Parser and AST 2010 javacc.dev.java.net/servlets/

ProjectDocumentView?documentID=44514&showInfo=true
FastUML 2010 - sourceforge.net/projects/fastuml/

