
Large-scale Nonlinear Variable Selection via
Kernel Random Features

Magda Gregorová1,2, Jason Ramapuram1,2, Alexandros Kalousis1,2, and
Stéphane Marchand-Maillet2

1 Geneva School of Business Administration, HES-SO, Switzerland
2 University of Geneva, Switzerland

Abstract. We propose a new method for input variable selection in
nonlinear regression. The method is embedded into a kernel regression
machine that can model general nonlinear functions, not being a priori
limited to additive models. This is the first kernel-based variable selec-
tion method applicable to large datasets. It sidesteps the typical poor
scaling properties of kernel methods by mapping the inputs into a rela-
tively low-dimensional space of random features. The algorithm discovers
the variables relevant for the regression task together with learning the
prediction model through learning the appropriate nonlinear random fea-
ture maps. We demonstrate the outstanding performance of our method
on a set of large-scale synthetic and real datasets.

1 Introduction

It has been long appreciated in the machine learning community that learn-
ing sparse models can bring multiple benefits such as better interpretability,
improved accuracy by reducing the curse of dimensionality, computational effi-
ciency at prediction times, reduced costs for gathering and storing measurements,
etc. A plethora of sparse learning methods has been proposed for linear models
[16]. However, developing similar methods in the nonlinear setting proves to be
a challenging task.

Generalized additive models [15] can use similar sparse techniques as their
linear counterparts. However, the function class of linear combinations of non-
linear transformations is too limited to represent general nonlinear functions.
Kernel methods [29] have for long been the workhorse of nonlinear modelling.
Recently, a substantial effort has been invested into developing kernel methods
with feature selection capabilities [5]. The most successful approaches within the
filter methods are based on mapping distributions into the reproducing kernel
Hilbert spaces (RKHS) [23]. Amongst the embedded methods, multiple algo-
rithms use the feature-scaling weights proposed in [32]. The authors in [28] follow
an alternative strategy based on the function and kernel partial derivatives.

All the kernel-based approaches above suffer from a common problem: they
do not scale well for large data sets. The kernel methods allow for nonlinear
modelling by applying high dimensional (possibly infinite-dimensional) nonlin-
ear transformations φ : X → H to the input data. Due to what is known as

Published in "Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKKD)",
2018, 10-14 September, Dublin, Ireland, which should be cited to refer to this
work.

the kernel trick, these transformations do not need to be explicitly evaluated.
Instead, the kernel methods operate only over the inner products between pairs
of data points that can be calculated quickly by the use of positive definite kernel
functions k : X×X → R, k(x, x̃) = 〈φ(x), φ(x̃)〉. Given that these inner products
need to be calculated for all data-point pairs, the kernel methods are generally
costly for datasets with a large number n of training points both in terms of
computation and memory. This is further exacerbated for the kernel variable
selection methods, which typically need to perform the O(n2) kernel evaluations
multiple times (per each input dimension, or with each iterative update).

In this work we propose a novel kernel-based method for input variable se-
lection in nonlinear regression that can scale to datasets with large numbers
of training points. The method builds on the idea of approximating the kernel
evaluations by Fourier random features [24]. Instead of fixing the distributions
generating the random features a priori, it learns them together with the predic-
tive model such that they degenerate for the irrelevant input dimensions. The
method falls into the category of embedded approaches that seek to improve
predictive accuracy of the learned models through sparsity [18]. This is the first
kernel-based variable selection method for general nonlinear functions that can
scale to large datasets of tens of thousands of training data.

2 Background

We formulate the problem of nonlinear regression as follows: given a training set
of n input-output pairs Sn = {(xi, yi) ∈ (X × Y) : X ⊆ Rd,Y ⊆ R, i ∈ Nn}
sampled i.i.d. according to some unknown probability measure ρ, our task is to
estimate the regression function f : X → Y, f(x) = E(y|x) that minimizes the

expected squared error loss L(f) = E (y − f(x))
2

=
∫

(y − f(x))
2
dρ(x, y).

In the variable selection setting, we assume that the regression function does
not depend on all the d input variables. Instead, it depends only on a subset I
of these of size l < d, so that f(x) = f(x̃) if xs = x̃s for all dimensions s ∈ I.

We follow the standard theory of regularised kernel learning and estimate
the regression function as the solution to the following problem

f̂ = arg min
f∈H

L̂(f) + λ||f ||2H . (1)

Here the function hypothesis space H is a reproducing kernel Hilbert space
(RKHS), ||f ||H is the norm induced by the inner product in that space, and

L̂(f) = 1
n

∑n
i (yi − f(xi))

2
is the empirical loss replacing the intractable ex-

pected loss above.
From the standard properties of the RKHS, the classical result (e.g. [29])

states that the evaluation of the minimizing function f̂ at any point x̃ ∈ X
can be represented as a linear combination of the kernel functions k over the n
training points

f̂(x̃) =

n∑
i

ci k(xi, x̃) . (2)

The parameters c are obtained by solving the linear problem

(K + λIn) c = y , (3)

where K is the n × n kernel matrix with the elements Kij = k(xi,xj) for all
xi,xj ∈ Sn.

2.1 Random Fourier Features

Equations (2) and (3) point clearly to the scaling bottlenecks of the kernel re-
gression. In principal, at training it needs to construct and keep in memory the
(n× n) kernel matrix and solve an n dimensional linear system (∝ O(n3)). Fur-
thermore, the whole training set Sn needs to be stored and accessed at test time
so that the predictions are of the order O(n).

To address these scaling issues, the authors in [24] proposed to map the data
into a low-dimensional Euclidean space z : X → RD so that the inner products
in this space are close approximations of the corresponding kernel evaluation
〈z(x), z(x̃)〉RD ≈ 〈φ(x), φ(x̃)〉H = k(x, x̃). Using the nonlinear features z(x) ∈
RD the evaluations of the minimising function can be approximated by

f̂(x̃) ≈ 〈z(x̃),a〉RD , (4)

where the coefficients a are obtained from solving the linear system

(ZTZ + λID)a = ZTy , (5)

where Z is the (n×D) matrix of the random features for all the data points. The
above approximation requires the construction of the Z matrix and solving the
D-dimensional linear problem, hence significantly reducing the training costs if
D � n. Moreover, access to training points is no longer needed at test time and
the predictions are of the order O(D)� O(n).

To construct well-approximating features, the authors in [24] called upon
Bochner’s theorem which states that a continuous function g : Rd → R with
g(0) = 1 is positive definite if and only if it is a Fourier transform of some
probability measure on Rd. For translation-invariant positive definite kernels we
thus have

k(x, x̃) = g(x− x̃) = g(λλλ) =

∫
Rd

eiωωω
Tλλλ dµ(ωωω) , (6)

where µ(ωωω) is the probability measure on Rd. In the above, g is the characteristic
function of the multivariate random variable ωωω defined by the expectation g(λλλ) =

Eωωω(eiωωω
Tλλλ) = Eωωω(eiωωω

T (x−x̃)) = Eωωω(eiωωω
Txe−iωωω

T x̃) = k(x, x̃).
It is straightforward to show that the expectation over the complex exponen-

tial can be decomposed into an expectation over an inner product Eωωω(eiωωω
T (x−x̃)) =

Eωωω〈ψωωω(x), ψωωω(x̃)〉 where the nonlinear mappings are defined as ψωωω : X → R2,
ψωωω(x) = [cos(ωωωTx) sin(ωωωTx)]T . In [24] the authors proposed an even lower-
dimensional transformation ϕωωω,b(x) : X → R

ϕωωω,b(x) =
√

2 cos(ωωωTx + b) , (7)

where b is sampled uniformly from [0, 2π] and that satisfies the expectation

equality Eωωω(eiωωω
T (x−x̃)) = Eωωω,b〈ϕωωω,b(x), ϕωωω,b(x̃)〉. We chose to work with the

mapping ϕ (dropping the subscripts ωωω, b when there is no risk of confusion) in
the remainder of the text. The approximating nonlinear feature z(x) for each
data-point x is obtained by concatenating D instances of the random mappings
z(x) = [ϕ1(x), . . . , ϕD(x)]T with ωωω and b sampled according to their probability
distribution so that the expectation is approximated by the sample sum.

2.2 Variable Selection Methods

In this section we position our research with respect to other nonlinear methods
for variable selection with an emphasis on kernel methods.

In the class of generalized additive models, lessons learned from the linear
models can be reused to construct sparse linear combinations of the nonlinear
functions of each variable or, taking into account also possible interactions, of all
possible pairs, triplets, etc., e.g. [26, 34, 20, 31]. Closely related to these are the
multiple kernel learning methods that seek to learn a sparse linear combination
of kernel bases, e.g. [2, 3, 19]. While these methods have shown some encouraging
results, their simplifying additive assumption and the fast increasing complexity
when higher-order interactions shall be considered (potentially 2d additive terms
for d input variables) clearly present a serious limitation.

Recognising these shortcomings, multiple alternative approaches for general
nonlinear functions were explored in the literature. They can broadly be grouped
into three categories [18]: filters, wrappers and embedded methods.

The filter methods consider the variable selection as a preprocessing step that
is then followed by an independent algorithm for learning the predictive model.
Many traditional methods based on information-theoric or statistical measures of
dependency (e.g. information gain, Fisher-score, etc.) fall into this category [6].
More recently, significant advancement has been achieved in formulating criteria
more appropriate for non-trivial nonlinear dependencies [12, 30, 9, 33, 27, 8].
These are based on the use of (conditional) cross-covariance operators arising
from embedding probability measures into the reproducing kernel Hilbert spaces
(RKHS) [23]. However, they are still largely disconnected from the predictive
model learning procedure and oblivious of the effects the variable selection has
on the final predictive performance.

The wrapper methods perform variable selection on top of the learning algo-
rithm treating it as a black box. These are practical heuristics (such as greedy
forward or backward elimination) for the search in the 2d space of all possi-
ble subsets of the d input variables [18]. Classical example in this category is
the SVM with Recursive Feature Elimination [14]. The wrappers are universal
methods that can be used on top of any learning algorithm but they can be-
come expensive for large dimensionalities d, especially if the complexity of the
underlying algorithm is high.

Finally, the embedded methods link the variable selection to the training of
the predictive model with the view to achieve higher predictive accuracy stem-
ming from the learned sparsity. Our method falls into this category. There are

essentially just two branches of kernel-based methods here: methods based on
feature rescaling [10, 32, 25, 21, 1], and derivative-based methods [28, 11]. We
discuss the feature rescaling methods in more detail in section 3.2. The deriva-
tive based methods use regularizers over the partial derivatives of the function
and exploit the derivative reproducing property [36] to arrive at an alternative
finite-dimensional representation of the function. Though theoretically intrigu-
ing, these methods scale rather badly as in addition to the (n×n) kernel matrix
they construct also the (nd×n) and (nd×nd) matrices of first and second order
partial kernel derivatives and use their concatenations to formulate the sparsity
constrained optimisation problem.

There exist two other large groups of sparse nonlinear methods. These ad-
dress the sparsity in either the latent feature representation, e.g. [13], or in the
data instances, e.g. [7]. While their motivation partly overlaps with ours (con-
trol of overfitting, lower computational costs at prediction), their focus is on a
different notion of sparsity that is out of the scope of our discussion.

3 Towards Sparsity in Input Dimensions

As stated above, our objective in this paper is learning a regression function
that is sparse with respect to the input variables. Stated differently, the function
shall be insensitive to the values of the inputs in the d− l large complement set
Ic of the irrelevant dimensions so that f(x) = f(x̃) if xs = x̃s for all s ∈ I.

From equation (4) we observe that the function evaluation is a linear com-
bination of the D random features ϕ. The random features (7) are in turn con-
structed from the input x through the inner product ωωωTx. Intuitively, if the
function f̂ is insensitive to an input dimension s, the value of the corresponding
input xs shall not enter the inner product ωωωTx generating the D random fea-
tures. Formally, we require ωsxs = 0 for all s ∈ Ic which is obviously achieved by
ωs = 0. We therefore identify the problem of learning sparse predictive models
with sparsity in vectors ωωω.

3.1 Learning Through Random Sampling

Though in equation (7) ωωω appears as a parameter of the nonlinear transformation
ϕ, it cannot be learned directly as it is the result of random sampling from the
probability distribution µ(ωωω). In order to ensure the same sparse pattern in the
D random samples of ωωω, we use a procedure similar to what is known as the
reparametrization trick in the context of variational auto-encoders [17].

We begin by expanding equation (6) of the Bochner’s theorem into the
marginals across the d dimensions3

g(λλλ) =

∫
Rd

eiωωω
Tλλλ dµ(ωωω) =

∫
R
ei ω

1λ1

dµ(ω1) . . .

∫
R
ei ω

dλd

dµ(ωd) . (8)

3 This is possible due to the independence of the d dimensions of the r.v. ωωω.

To ensure that ωs = 0 when s ∈ Ic in all the D random samples, the correspond-
ing probability measure (distribution) µ(ωs) needs to degenerate to δ(ωs). The
distribution δ(ωs) has all its mass concentrated at the point ωs = 0, and has the
property

∫
X h(ωs) dδ(ωs) = h(0). In particular for h the complex exponential we

have
∫
X e

i ωsλs

dδ(ωs) = 1 so that the value of λs has no impact on the product
in equation (8), and therefore no impact on g(λλλ).4

Reparametrization trick To ensure that all the D random samples of ωωω have
the same sparse pattern we need to be able to optimise through its random
sampling. For each element ω of the vector ωωω, we parametrize the sampling
distributions µγ(ω) by its scale γ so that limγ→0 µγ(ω) = δ(ω). We next express
each of the univariate random variables ω as a deterministic transformation of
the form ω = qγ(ε) = γε (scaling) of an auxiliary random variable ε with a fixed
probability distribution µ1(ε) with the scale parameter γ = 1. For example,
for the Gaussian and Laplace kernels the auxiliary distribution µ1(ε) are the
standard Gaussian and Cauchy respectively.

By the above reparametrization of the random variable ωωω we disconnect the
sampling operation over εεε from the rescaling operation ωωω = qγγγ(εεε) = εεε � γγγ with
a deterministic parameter vector γγγ. Sparsity in ωωω (and therefore the learned
model) can now be achieved by learning sparse parameter vector γγγ.

Though in principle it would be possible to learn the sparsity in the sampled
ωωω’s directly, this would mean sparsifying instead of one vector γγγ the D sampled
vectors ωωω. Moreover, the procedure would need to cater for the additional con-
straint that all the samples have the same sparse pattern. While theoretically
possible, we find our reparametrization approach more elegant and practical.

3.2 Link to Feature Scaling

In the previous section we have built our strategy for sparse learning using the
inverse Fourier transform of the kernels and the degeneracy of the associated
probability measures. When we plug the rescaling operation into the random
feature mapping (7)

ϕ(x) =
√

2 cos(ωωωTx+ b) =
√

2 cos((εεε�γγγ)Tx+ b) =
√

2 cos(εεεT (γγγ�x) + b) , (9)

we see that the parameters γγγ can be interpreted as weights scaling the input vari-
ables x. This makes a link to the variable selection methods based on feature
scaling. These are rather straightforward when the kernel is simply linear, or
when the nonlinear transformations φ(x) can be evaluated explicitly (e.g. poly-
nomial) [10, 32]. In essence, instead of applying the weights to the input features,
they are applied to the associated model parameters and suitably constrained
to approximate the zero-norm problem.

More complex kernels, for which the nonlinear features φ(x) cannot be di-
rectly evaluated (may be infinite dimensional), are considered in [25, 21, 1]. Here

4 And from (6) and (4) it neither impacts the kernel and regression function evaluation.

the scaling is applied within the kernel function k(γγγ � x, γγγ � x̃). The methods
typically apply a two-step iterative procedure: they fix the rescaling parameters
γγγ and learn the corresponding n-long model parameters vector c (equation (2));
fix c and learn the d-long rescaling vector γγγ under some suitable zero-norm ap-
proximating constraint. The naive formulation for γγγ is a nonconvex problem that
requires calculating derivatives of the kernel functions with respect to γγγ (which
depending on the kernel function may become rather expensive). In [1], the au-
thor proposed a convex relaxation based on linearization of the kernel function.
Nevertheless, all the existing methods applying the feature scaling within the
kernel functions scale badly with the number of instances as they need to re-
calculate the (n × n) kernel matrix and solve the corresponding optimisation
(typically O(n3)) with every update of the weights γγγ.

4 Sparse Random Fourier Features Algorithm

In this section we present our algorithm for learning with Sparse Random Fourier
Features (SRFF).

Input : training data (X,y); hyper-parameters λ,D, size of ∆ simplex
Output : model parameters a, scale vector γγγ
Initialise : γγγ evenly on simplex ∆, εεεj ∼ µI(εεε) and bj ∼ U [0, 2π], ∀j ∈ ND
Objective: J(a, γγγ) = ||y − Za||22 + λ||a||22
repeat // Alternating descent

begin Step 1: Solve for a
rescalings ωωωj = γγγ � εεεj , ∀j ∈ ND
random features z(x) = [ϕ1(x), . . . , ϕD(x)], ∀x ∈ Sn // equation (9)
a← arg mina ||y − Za||22 + λ||a||22 // equation (5)

end
begin Step 2: Solve for γγγ

γγγ ← arg minγγγ∈∆ ||y − Za||22 // projected gradient descent

end

until objective convergence;

Algorithm 1: Sparse Random Fourier Features (SRFF) algorithm

Similarly to the feature scaling methods we propose a two-step alternative
procedure to learn the model parameters a and the distribution scalings γγγ. For a
fixed γγγ we generate the random features for all the input training points O(nD),
and solve the linear problem (5) O(D3) to get the D-long model parameters a.
Given that in our large-sample settings we assume D � n, this step is signifi-
cantly cheaper than the corresponding step for learning the c parameters in the
existing kernel feature scaling methods described in section 3.2.

In the second step, we fix the model parameters a and learn the d-long
vector of the distribution scalings γγγ. We formulate the optimisation problem as

the minimisation of the empirical squared error loss with γγγ constrained on the
probability simplex ∆ to encourage the sparsity.

arg min
γγγ∈∆

J(γγγ), J(γγγ) := ||y − Za||22 (10)

Here the (n×D) matrix Z is constructed by concatenating the D random features
ϕ with the γγγ rescaling (9).

We solve problem (10) by the projected gradient method with accelerated
FISTA line search [4]. The gradient can be constructed from the partial deriva-
tives as follows

∂J(γγγ)

γs
= −(y − Za)T

∂Z

∂γs
a ∀s ∈ Nd

∂Zij
∂γs

= −
√

2 sin(εεεT (γγγ � x) + b) εsxs, εs = ωs/γs .

(11)

Unlike in the other kernel feature scaling methods, the form of the gradient
(11) is always the same irrespective of the choice of the kernel. The particular
kernel choice is reflected only in the probability distribution from which the
auxiliary variable εεε is sampled and has no impact on the gradient computations.
In our implementation (https://bitbucket.org/dmmlgeneva/srff_pytorch),
we leverage the automatic differentiation functionality of pytorch in order to
obtain the gradient values directly from the objective formulation.

5 Empirical Evaluation

We implemented our algorithm in pytorch and made it executable optionally on
CPUs or GPUs. All of our experiments were conducted on GPUs (single p100).
The code including the settings of our experiments amenable for replication is
publicly available at https://bitbucket.org/dmmlgeneva/srff_pytorch.

In our empirical evaluation we compare to multiple baseline methods. We
included the nonsparse random Fourier features method (RFF) of [24] in our
main SRFF code as a call option. For the naive mean and ridge regression we
use our own matlab implementation. For the linear lasso we use the matlab
PASPAL package [22]. For the nonlinear Sparse Aditive Model (SPAM) [26]
we use the R implementation of [35]. For the Hilberth-Schmidt Independece
Criterion lasso method (HSIC) [33], and the derivative-based embedded method
of [28] (Denovas) we use the authors’ matlab implementation.

Except SPAM, all of the baseline sparse learning methods use a two step
procedure for arriving at the final model. They first learn the sparsity using
either predictive-model-dependent criteria (lasso, Denovas) or in a completely
disconnected fashion (HSIC). In the second step (sometimes referred to as de-
biasing [28]), they use a base non-sparse learning method (ridge, or kernel ridge)
to learn a model over the selected variables (including hyper-parameter search
and cross-validation). For HSIC, which is a filter method that does not natively
predict the regression outputs, we use as the second step our implementation of

https://bitbucket.org/dmmlgeneva/srff_pytorch
https://bitbucket.org/dmmlgeneva/srff_pytorch

the RFF. It searches through the candidate sparsity patterns HSIC produces and
uses the validation mean square error as a criteria for the final model selection.
In contrast to these, our SRFF method is a single step procedure that does not
necessitate this extra re-learning phase.

Experimental Protocol In all our experiments we use the same protocol.
We randomly split the data into three independent subsets: train, validation
and test. We use the train subset for training the models, we use the validation
subset to perform the hyper-parameter search, and we use the test set to evaluate
the predictive performance. We repeat all the experiments 30 times, each with
a different random train/validation/test split.

We measure the predictive performance in terms of the root mean squared
error (RMSE) over the test samples, averaged over the 30 random replications
of the experiments. The regularization hyper-parameter λ (exists in ridge, lasso,
Denovas, HSIC, RFF and SRFF) is searched within a 50-long data-dependent
grid (automatically established by the methods). The smoothing parameter in
Denovas is fixed to 10 following the authors’ default [28]. We use the Gaussian
kernel for all the experiments with the width σ set as the median of the Euclidean
distances amongst the 20 nearest neighbour instances. We use the same kernel
in all the kernel methods and the corresponding scale parameter γ = 1/σ in
the random feature methods for comparability of results. We fix the number of
random features to D = 300 for all the experiments in both RFF and SRFF.

We provide the results of the baseline nonlinear sparse methods (SPAM,
HSIC, Denovas) only for the smallest experiments. As explained in the previous
sections, the motivation for our paper is to address the poor scaling properties of
the existing methods. Indeed, none of the baseline kernel sparse methods scales
to the problems we consider here. HSIC [33] creates a (n × n) kernel matrix
per each dimension d and solves a linear lasso problem over the concatenated
vectorization of these with memory requirements (n2×d) and complexity O(n4).
In our tests, it did not finish within 24hrs running on 20 CPUs (Dual Core Intel
Xeon E5-2680 v2 / 2.8GHz) for the smallest training size of 1000 instances in our
SE3 experiment.Within the same time span it did not arrive at a solution for any
of the experiments with n > 1000. Denovas constructs, stores in memory, and
operates over the (n×n), (nd×n) and (nd×nd) kernel matrix and the matrices
of the first and second order derivatives. In our tests the method finished with an
out-of-memory error (with 32GB RAM) for the SE1 with 5k training samples
and for SE2 problem already with 1k training instances. SPAM finished with
errors for most of the real-data experiments.

5.1 Synthetic Experiments

We begin our empirical evaluation by exploring the performance over a set of
synthetic experiments. The purpose of these is to validate our method under
controlled conditions when we understand the true sparsity of the generating
model. We also experiment with various nonlinear functions and increasing data
sizes in terms of both the sample numbers n and the dimensionality d.

Table 1: Summary of synthetic experiments

Exp Train Test Total Relevant Generative
code size size dims dims function

SE1 1k - 50k 1k 18 5 y = sin
(
(x1 + x3)2

)
sin(x7x8x9) +N(0, 0.1)

SE2 1k - 50k 1k 100 5 y = log
(
(
∑15
s=11 xs)

2
)

+N(0, 0.1)

SE3 1k - 50k 10k 1000 10 y = 10(z21 + z23)e−2(z21+z
2
3) +N(0, 0.01)

We use the same size for the test and validation samples. In all the experiments, the
data instances are generated from a standard normal distribution. In the functions,
subscripts are dimensions, superscripts are exponents. For more detailed description of
the generative function of SE3 see the appropriate section in the text.

SE1: The very first of our experiments is a rather small problem with only
d = 18 input dimensions of which only 5 are relevant for the regression function.
In Table 2 we compare our SRFF method to the baselines for the smallest sample
setting with n = 1000. Most of the methods (linear, additive or non-sparse) do
not succeed in learning a model for the complex nonlinear relationships between
the inputs and outputs and fall back to predicting simple mean.

The general nonlinear models with sparsity (HSIC, Denovas and SRFF) di-
vert from the simple mean prediction. They all discover and use in the predictive
model the same sparse pattern (see Fig. 1 for SRFF). Denovas and SRFF achieve
almost identical results which confirms that our method is competitive with the
state of the art methods in terms of predictive accuracy and variable selection.5

Table 2: SE1 - Test RMSE for n = 1000

Mean Ridge Lasso RFF SPAM HSIC Denovas SRFF

RMSE 0.287 0.287 0.287 0.287 0.0287 0.341 0.272 0.272
std 0.009 0.009 0.009 0.009 0.009 0.060 0.009 0.009

Predictive performance in terms of root mean squared error (RMSE) over independent
test sets for the SE1 dataset with training size n = 1000. The std line is the standard
deviation of the RMSE across the 30 resamples.

In Table 3 we document how the increasing training size contributes to im-
proving the predictive performance even in the case of several thousands in-
stances. The performance of the SRFF method for the largest 50k sample is by
about 6% better than for the 1k training size. For the other methods the problem

5 The low predictive performance of HSIC is the result of the 2nd model fitting step.
It could potentially be improved with an additional kernel learning step. However,
as we keep the kernel fixed for all the other methods, we do not perform the kernel
search for HSIC either.

remains out of their reach6 and they stick to the mean prediction even for higher
training sizes.7 We do not provide any comparisons with the nonlinear sparse
methods because, as explained above, they do not scale to the sample sizes we
consider here.

Table 3: SE1 - Test RMSE for increasing train size n

n Mean Ridge Lasso RFF SRFF

1k 0.287 (0.009) 0.287 (0.009) 0.287 (0.009) 0.287 (0.009) 0.272 (0.009)

5k 0.284 (0.011) 0.284 (0.011) 0.284 (0.011) 0.284 (0.011) 0.263 (0.010)

10k 0.285 (0.010) 0.285 (0.010) 0.285 (0.010) 0.286 (0.010) 0.261 (0.011)

50k 0.283 (0.010) 0.283 (0.010) 0.283 (0.010) 0.283 (0.010) 0.255 (0.009)

Predictive performance in terms of root mean squared error (RMSE) over independent
test sets for the SE1 dataset with increasing training size n. The standard deviation of
the RMSE across the 30 resamples is in the brackets.

The improved predictive performance for the larger training sizes goes hand
in hand with the variable selection, Figure 1. For the smallest 1k training sample,
SRFF identifies only the 7th, 8th and 9th relevant dimensions. They enter the
sine in the generative function in a product and therefore have a larger combined
effect on the function outcome than the squared sum of dimensions 1 and 3.
These two dimensions are picked up by the method from the larger training sets
and this contributes to the increase in the predictive performance.

d1 d3 d5 d7 d9 d11 d13 d15 d17 d18
0

0.5

1

SE1 - Learned sparsity by SRFF

1k 50k

Fig. 1: Learned sparsity pattern γγγ by the SRFF method for the 1k and 50k
training size in the SE1 experiment (the median of the 30 replications). The
other nonlinear sparse methods learn the same pattern for the 1k problem but
cannot solve the 50k problem.

6 The class of linear functions is too limited and the nonlinear function with all the
variables considered by RFF is too complex.

7 The small variations in the error stem from using different training sets to estimate
the mean.

SE2: In the second experiment we increase the dimensionality to d = 100 and
change the nonlinear function (see Table 1). The overall outcomes are rather
similar to the SE1 experiment. Again, it’s only the nonlinear sparse models that
predict something else than mean, SPAM marginally better, HSIC marginally
worse. Our SRFF method clearly outperforms all the other methods in the pre-
dictive accuracy. It also correctly discovers the 5 relevant variables with the
median value of γ for these dimensions between 0.92− 1.04 while the maximum
for all the irrelevant variables is 0.06.8 The advantage of SRFF over the baselines
for large sample sizes (Table 5) is even more striking than in the SE1 experiment.

Table 4: SE2 - Test RMSE for n = 1000

Mean Ridge Lasso RFF SPAM HSIC SRFF

RMSE 2.216 2.216 2.216 2.216 2.162 2.357 1.603
std 0.105 0.105 0.105 0.104 0.110 0.141 0.104

Predictive performance in terms of root mean squared error (RMSE) over independent
test sets for the SE2 dataset with training size n = 1000. The std line is the standard
deviation of the RMSE across the 30 resamples.

Table 5: SE2 - Test RMSE for increasing train size n

n Mean Ridge Lasso RFF SRFF

1k 2.216 (0.105) 2.216 (0.105) 2.216 (0.105) 2.216 (0.105) 1.603 (0.104)

5k 2.211 (0.079) 2.211 (0.079) 2.211 (0.079) 2.211 (0.079) 1.278 (0.076)

10k 2.224 (0.115) 2.224 (0.115) 2.224 (0.115) 2.224 (0.115) 1.272 (0.138)

50k 2.224 (0.082) 2.224 (0.082) 2.224 (0.082) 2.224 (0.082) 1.273 (0.080)

Predictive performance in terms of root mean squared error (RMSE) over independent
test sets for the SE2 dataset with increasing training size n. The standard deviation of
the RMSE across the 30 resamples is in the brackets.

SE3: In this final synthetic experiment we increase the dimensionality to d =
1000 to further stretch our SRFF method. There are only 10 relevant input
variables in this problem. The first 5 were generated as random perturbations
of the random variable z1, e.g. x1 = z1 + N(0, 0.1), the second 5 by the same
procedure from z2, e.g. x5 = z2 + N(0, 0.1). The remaining 990 input variables
were generated by the same process from the other 198 standard normal z’s.

8 SPAM and HSIC discover the correct patterns as well but it does not help their
predictive accuracy.

We summarise the results for the 1k and 50k training instances in Table 6. As
in the other synthetic experiments, the baseline methods are not able to capture
the nonlinear relationships of this extremely sparse problem and instead predict
a simple mean. Our SRFF method achieves significantly better accuracy for the
1k training set, and it further considerably improves with 50k samples to train
on. These predictive gains are possible due to SRFF correctly discovering the set
of relevant variables. In the 1k case, the medians across the 30 data resamples
of the learned γγγ parameters are between 0.37− 0.71 for the 10 relevant variables
and maximally 0.05 for the remaining 990 irrelevant variables. In the 50k case,
the differences are even more clearly demarcated: 1.19 − 1.64 for the relevant,
and 0.03 maximum for the irrelevant (bearing in mind that the total sum over
the vector γγγ is the same in both cases).

Table 6: SE3 - Test RMSE for increasing train size n

n Mean Ridge Lasso RFF SRFF

1k 0.676 (0.002) 0.676 (0.002) 0.676 (0.002) 0.676 (0.002) 0.478 (0.031)

50k 0.677 (0.002) 0.677 (0.002) 0.677 (0.002) 0.677 (0.002) 0.206 (0.004)

Predictive performance in terms of root mean squared error (RMSE) over independent
test sets for the SE3 dataset with increasing training size n. The standard deviation of
the RMSE across the 30 resamples is in the brackets.

5.2 Real Data Experiments

Table 7: Summary of real-data experiments

Data Dataset Exp Train Test Total
source name code size size dims

LIAC Computer Activity RCP 6k 1k 21
LIAC F16 elevators REL 6k 1k 17
LIAC F16 ailernos RAI 11k 1k 39
Kaggle Ore mining impurity RMN 50k 10k 21

We use the same size for the test and validation samples.

We experiment on four real datasets: three from the LIACC9 regression repos-
itory, and one Kaggle dataset10. The summary of these is presented in Table 8.
The RFF results illustrate the advantage nonlinear modelling has over simple

9 http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
10 https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process

linear models. Our sparse nonlinear SRFF method clearly outperforms all the
linear as well as the non-sparse nonlinear RFF method. Moreover, it is the only
nonlinear sparse learning method that can handle problems of these large-scale
datasets.

Table 8: Real-data experiments - Test RMSE for increasing train size n

n Mean Ridge Lasso RFF SRFF

RCP 18.518 (0.988) 9.686 (0.705) 9.689 (0.711) 8.194 (0.635) 2.516 (0.184)

REL 1.044 (0.050) 0.514 (0.210) 0.468 (0.178) 0.446 (0.036) 0.314 (0.032)

RAI 1.013 (0.034) 0.430 (0.018) 0.430 (0.017) 0.498 (0.038) 0.407 (0.022)

RMN 1.014 (0.006) 0.987 (0.006) 0.987 (0.006) 0.856 (0.009) 0.716 (0.008)

Predictive performance in terms of root mean squared error (RMSE) over independent
test sets for the real datasets. The standard deviation of the RMSE across the 30
resamples is in the brackets.

6 Summary and Conclusions

We present here a new kernel-based method for learning nonlinear regression
function with relevant variable subset selection. The method is unique amongst
the state of the art as it can scale to tens of thousands training instances, way
beyond what any of the existing kernel-based methods can handle. For example,
while none of the tested sparse method worked over datasets with more than 1k
instances, the CPU version of our SRFF finished the full validation search over
50 hyper-parameters λ in the 50k SE1 experiment within two hours on a laptop
with a Dual Intel Core i3 (2nd Gen) 2350M / 2.3 GHz and 16GB RAM.

We focus here on nonlinear regression but the extension to classification prob-
lems is straightforward by replacing appropriately the objective loss function. We
used the Gaussian kernel for our experiments as one of the most popular kernels
in practice. But the principals hold for other shift-invariant kernels as well, and
the method and the algorithm can be applied to them directly as soon as the
corresponding probability measure µ(ωωω) is recovered and the reparametrization
of ωωω explained in section 3.1 can be applied.

Acknowledgements This work was partially supported by the research projects
HSTS (ISNET) and RAWFIE #645220 (H2020). The computations were per-
formed at University of Geneva on the Baobab and Whales clusters. We specif-
ically wish to thank Yann Sagon, the Baobab administrator, for his excellent
work and continuous support.

Bibliography

[1] Allen, G.I.: Automatic Feature Selection via Weighted Kernels and Regu-
larization. Journal of Computational and Graphical Statistics (2013)

[2] Bach, F.: Consistency of the group lasso and multiple kernel learning. Jour-
nal of Machine Learning Research (2008)

[3] Bach, F.: High-Dimensional Non-Linear Variable Selection through Hierar-
chical Kernel Learning. ArXiv 0909.0844 (2009)

[4] Beck, A., Teboulle, M.: A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems. SIAM Journal on Imaging Sciences (2009)

[5] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of
feature selection methods on synthetic data. Knowledge and Information
Systems (2013)

[6] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Recent ad-
vances and emerging challenges of feature selection in the context of big
data. Knowledge-Based Systems (2015)

[7] Chan, A.B., Vasconcelos, N., Lanckriet, G.R.G.: Direct convex relaxations
of sparse SVM. In: International Conference on Machine Learning (2007)
(2007)

[8] Chen, J., Stern, M., Wainwright, M.J., Jordan, M.I.: Kernel Feature Selec-
tion via Conditional Covariance Minimization. Advances in Neural Infor-
mation Processing Systems (NIPS) (2017)

[9] Fukumizu, K., Leng, C.: Gradient-based kernel method for feature extrac-
tion and variable selection. In: Advances in Neural Information Processing
Systems (NIPS) (2012)

[10] Grandvalet, Y., Canu, S.: Adaptive scaling for feature selection in SVMs.
In: Advances in Neural Information Processing Systems (NIPS) (2002)

[11] Gregorová, M., Kalousis, A., Marchand-Maillet, S.: Structured nonlinear
variable selection. In: Conference on Uncertainty in Artificial Intelligence
(UAI) (2018)

[12] Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf, B., Smola, A.J.:
A kernel statistical test of independence. In: Advances in Neural Information
Processing Systems (NIPS) (2008)

[13] Gurram, P., Kwon, H.: Optimal sparse kernel learning in the empirical ker-
nel feature space for hyperspectral classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing (2014)

[14] Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer
Classification using Support Vector Machines. Machine Learning (2002)

[15] Hastie, T., Tibshirani, R.: Generalized additive models. Chapman and Hall
(1990)

[16] Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Spar-
sity: The Lasso and Generalizations. CRC Press (2015)

[17] Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: Interna-
tional Conference on Learning Representations (ICLR) (2014)

[18] Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial
Intelligence (1997)

[19] Koltchinskii, V., Yuan, M.: Sparsity in multiple kernel learning. Annals of
Statistics (2010)

[20] Lin, Y., Zhang, H.H.: Component selection and smoothing in multivariate
nonparametric regression. Annals of Statistics (2006)

[21] Maldonado, S., Weber, R., Basak, J.: Simultaneous feature selection and
classification using kernel-penalized support vector machines. Information
Sciences (2011)

[22] Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured
sparsity regularization with proximal methods. In: European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD) (2010)

[23] Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B.: Kernel
Mean Embedding of Distributions: A Review and Beyond. Foundations and
Trends in Machine Learning (2017)

[24] Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In:
Advances in Neural Information Processing Systems (NIPS) (2007)

[25] Rakotomamonjy, A.: Variable Selection Using SVM-based Criteria. Journal
ofMachine Learning Research (2003)

[26] Ravikumar, P., Liu, H., Lafferty, J., Wasserman, L.: Spam: Sparse additive
models. In: Advances in Neural Information Processing Systems (NIPS)
(2007)

[27] Ren, S., Huang, S., Onofrey, J.A., Papademetris, X., Qian, X.: A Scalable
Algorithm for Structured Kernel Feature Selection. Aistats (2015)

[28] Rosasco, L., Villa, S., Mosci, S.: Nonparametric sparsity and regularization.
Journal of Machine Learning Research (2013)

[29] Schölkopf, B., Smola, A.J.: Learning with kernels. The MIT Press (2002)
[30] Song, L., Smola, A., Gretton, A., Borgwardt, K.M., Bedo, J.: Supervised

feature selection via dependence estimation. Proceedings of the 24th inter-
national conference on Machine learning - ICML ’07 (2007)

[31] Tyagi, H., Krause, A., Eth, Z.: Efficient Sampling for Learning Sparse Ad-
ditive Models in High Dimensions. International Conference on Artificial
Intelligence and Statistics (AISTATS) (2016)

[32] Weston, J., Elisseeff, A., Scholkopf, B., Tipping, M.: Use of the Zero-Norm
with Linear Models and Kernel Methods. Journal of Machine Learning Re-
search (2003)

[33] Yamada, M., Jitkrittum, W., Sigal, L., Xing, E.P., Sugiyama, M.: High-
dimensional feature selection by feature-wise kernelized Lasso. Neural Com-
putation (2014)

[34] Yin, J., Chen, X., Xing, E.P.: Group Sparse Additive Models. In: Interna-
tional Conference on Machine Learning (ICML) (2012)

[35] Zhao, T., Li, X., Liu, H., Roeder, K.: CRAN - Package SAM (2014)
[36] Zhou, D.X.: Derivative reproducing properties for kernel methods in learn-

ing theory. Journal of Computational and Applied Mathematics (2008)

	Large-scale Nonlinear Variable Selection via Kernel Random Features

