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ABSTRACT. We present an algorithm discovered by Jost Bürgi around 1586, lost until
2013, and proven in 2015. Bürgi’s method needs only sums of integers and divisions by 2

to compute simultaneously and with any desired accuracy the sines of the nth parts of the
right angle. We explain why it works with a new proof using polygons and discrete Fourier
transforms.

FIGURE 1. Jost Bürgi
(ETH Library, Zurich)

Und1weil mir auß mangel der sprachen

die thür zu den authoribus nit alzeitt of-

fen gestanden, wie andern, hab jch etwas

mehr, als etwa die glehrte vnd belesene

meinen eigenen gedanckhen nachhengen

vnd newe wege suechen müessen.

Jost Bürgi, Einleitung zur Coss [13]

1. A LOST MANUSCRIPT

Menso Folkerts, now Emeritus Professor of history of sciences at the Ludwig-Maximi-
lian University in Munich, used to visit university libraries and search for interesting old
manuscripts. So did he in 1991 in Wrocław (Poland, former Breslau). After consulting the
hand-written catalog of the manuscripts’ collection, he ordered microfilms of several works
(personal communication). Folkerts looked as late as 2013 to one of those microfilms and
recognized that the autograph Fundamentum Astronomiæ [2], written in German by Jost
Bürgi, contained the author’s lost algorithm for computing sine tables (Figures 2 and 3)
[8, 9]:

Einen rechten Winckell in also viel theile theilenn alß man will, vnnd aus demselben den
Canonen Sinuum vermachenn.
Divide a right angle in as many parts as you want and construct herefrom the sine table.
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FIGURE 2. Fundamentum Astronomiæ (University Library, Wrocław [2])

FIGURE 3. Artificium (University Library, Wrocław [2])

Bürgi’s example of his skillful method, the Artificium, explains the calculation for the
multiples of 10◦, the ninth parts of the right angle. If we leave away zeros and column shifts
in Figure 3, write sexagesimal numbers in base ten (for example 1′′3′′′ = 1× 60+ 3 = 63
at the top of the next to rightmost column), and rotate the table by a quarter-turn, we obtain
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the following first three lines from the three rightmost columns Sinus 1 to Sinus 2:

(a) 2 4 6 7 8 9 10 11 12
(b) 63 61 57 51 44 36 27 17 6
(c) 63 124 181 232 276 312 339 356 362

The Bürgi step. (a) Start with a finite sequence, (b) halve the last entry and take the
cumulative sums from the right, and (c) from the left.

The example of Figure 3 consists of four iterated Bürgi steps and is produced by three
more. The initial and last lines of each step divided by their rightmost entry, which is the
circle radius, provide sine values for every 10◦ that converge to the correct values: the
errors are here smaller than 2.5× 10−7 after four steps and smaller than 1.9× 10−11 three
steps later. Only sums of integers and halving are involved before the final divisions and all
sine values are determined simultaneously. The Artificium and the whole autograph were
decrypted and edited by Dieter Launert [12, 9]. The first proof of convergence was given
by Andreas Thom using the Perron–Frobenius theorem [9]. Another proof with matrices
by Jörg Waldvogel is more elementary and determines the rate of convergence [30].

In this paper we present a new proof of convergence that encompasses a whole family
of related methods, in particular the following two.

The Darboux–Nicollier step. (a) Start with a finite sequence, (b) add to each entry the
left neighbor, if any, and (c) add to each entry the right neighbor, if any, and double the last
entry:

(a) 2 4 6 7 8 9 10 11 12
(b) 2 6 10 13 15 17 19 21 23
(c) 8 16 23 28 32 36 40 44 46

To get directly from (a) to (c), add the direct neighbors to twice each entry by considering
the left neighbor of the last entry also as its right neighbor.

The inverse Bürgi step. Replace in the Darboux–Nicollier step ‘add to’ with ‘subtract
from’ (example in Table 1).

Here is the main result.

Theorem 1. If one starts with any complex sequence (sj)1≤j≤n of length n ≥ 1 such that

∑n−1
j=1 sj sin

jπ
2n + 1

2sn 6= 0

(for example if the sj are real, nonnegative, and not all zero), the sequence obtained after

m Bürgi or Darboux–Nicollier steps and divided by its last entry converges for m → ∞
to the table (sin jπ

2n )1≤j≤n containing the sines of the right angle’s nth parts. The middle

line of the mth step divided by its first entry tends then to sec π
4n ·

(
cos (2j−1)π

4n

)
1≤j≤n

in

the Bürgi case and to csc π
4n ·

(
sin (2j−1)π

4n

)
1≤j≤n

in the Darboux–Nicollier case, which

are proportional to sine tables of the right angle’s intermediate (2n)th parts.

If the initial sequence fulfills

∑n−1
j=1 (−1)jsj sin

jπ
2n + (−1)n

2 sn 6= 0,

the last and middle lines of the mth inverse Bürgi step divided by their last entry converge

to
(
(−1)n+j sin jπ

2n

)
1≤j≤n

and sec π
4n ·

(
(−1)n+j sin (2j−1)π

4n

)
1≤j≤n

.
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As mentioned above, the convergence of the original Bürgi algorithm was already
proven in [9, 30]. The other assertions of Theorem 1 are new. Notice however that Launert
remarks without proof [12, pp. 55 and 57] that the middle line of the Bürgi step divided by
its first entry can be used to approximate the cosine values cos (2j−1)π

4n , but the necessary
factor sec π

4n is missing there! Our proof of Theorem 1, in Section 5, is matrix-free and
relies on polygons and discrete Fourier transformation. We will in fact consider this the-
orem as a special case of a more general result valid for any suitably normalized operator
that is diagonal in the Fourier basis, commutes with complex conjugation, and has for ex-
ample two simple dominating eigenvalues (Equation (3) and Theorem 2). We will further
improve the rate of convergence of the iterated Bürgi steps by choosing the initial sequence
appropriately (Section 6).

2. JOST BÜRGI

Jost Bürgi (1552–1632) was born in Lichtensteig (Toggenburg) near St. Gallen in Switz-
erland. (All historical informations are borrowed from [13, 4, 8, 12, 9, 28] and Kepler’s
collected works [11].) Bürgi’s life took place in religiously troubled times: Protestant
Reformation and Roman Inquisition—both impacting on astronomy by rejecting the helio-
centric model—and Thirty Years’ War (1618–1648). Europe was also suffering at that time
from epidemies and from increasingly cold weather and poor crops in connection with the
Little Ice Age. Bürgi became a clockmaker, but we do not know where he acquired his
skills: very little is ascertained about his life prior to 1579 when he began at the court of
Landgrave William IV (1532–1592) in Cassel, with a high salary, as clock and instrument
maker in the observatory. He stayed there until 1603 before moving to the imperial court
in Prague. Turning definitely back to Cassel in 1631, he died a few months later, survived
for two weeks by his second wife and without own children.

The young Bürgi built in Cassel his first celestial globe and developed precision instru-
ments (sextants, compasses, a clock working three months without winding). He invented
in 1584 the first clock with second precision and a hand for seconds as well as an acoustic
signal, which allowed Tycho Brahe (1546–1601), Bürgi himself, other astronomers, and
later Johannes Kepler (1571–1630) to improve their observations. Tycho Brahe, who had
close contacts with Cassel, used to avoid naming Bürgi in his correspondence and referred
to him disdainfully as the automatopœus (instrument maker).

Accurate sine tables were vital for astronomy. Moreover, before the introduction of log-
arithms, they enabled computing a product as a sum with the so-called prosthaphaeresis,
from πρόσθεσις (addition) and ༁φαίρεσις (subtraction), by using the formula

cosα cosβ =
cos(α+ β) + cos(α− β)

2

or an equivalent one. A sine table for every minute would give without interpolation

5.163× 6.281 ≈ 102 × cos 58◦55′ × cos 51◦5′ = 102 × cos 110◦ + cos 7◦50′

2
≈ 32.43.

A table of cosecants was needed for divisions. Bürgi, an autodidact mathematician, redis-
covered with others the prosthaphaeresis well-known to Indian and Arabic astronomers of
the Middle Ages. As Bürgi spoke neither Latin nor Greek (see the introductory citation),
he had a great handicap to publishing his mathematical discoveries.

Fundamentum Astronomiæ [2], Bürgi’s first work, is a treatise on sexagesimal arith-
metic and plane and spherical trigonometry of about two hundred pages (c. 19.5× 15 cm)
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FIGURE 4. Canon sinuum: double page from 0
◦ to 5

◦ (University Library, Wrocław [2])

written from c. 1586 onwards that contains a sine table. This Canon sinuum in sexagesi-
mal numbers for every minute of the right angle fills thirty-six pages (Figure 4). Although
novel procedures are described in the manuscript, it is not always clear to which extent
they were really used for the Canon’s computation and how much Bürgi worked with
Ptolemy’s classical method he also describes [12, 9, 24] ([24] contains references to other
reports by Denis Roegel). Probably, the sines of the degrees from 0◦ to 90◦ provided by
the Artificium served as pivots for the refinement. With the help of usual trigonometric
identities and an accurate value of sin 1′ obtained by correcting upwards the sixtieth part
of sin 1◦, Bürgi determined values of sin(d◦ + m′) for the first three minutes m′ of ev-
ery degree d◦. The sine function was then extended from the values for m = 0, 1, 2, 3
to the whole interval [d◦, (d + 1)◦] by a cubic polynomial extrapolation: the third dif-
ference computable from the known initial values was supposed constant for the rest of
the interval and used to fill in backwards the missing differences, from the second to the
zeroth order. The first differences were included in the sine table in order to facilitate
linear interpolation. Bürgi noticed that it suffices to compute the sine table from 0◦ to
30◦ to get [60◦, 90◦] with the Pythagorean trigonometric identity and then [30◦, 60◦] from
sinα = sin(60◦ + α) − sin(60◦ − α), but it is incertain whether he did so.

The existence of Bürgi’s sine algorithm was known from a cryptic mention by Nico-
laus Reimers Bær (Ursus, 1551–1600) in his Fundamentum astronomicum (1588): he had
promised to Bürgi, the friend and teacher he met when living in Cassel during 1586–87,
that he would keep the Artificium secret until publication, which never occurred! The
method was nevertheless probably in possession of Henry Briggs, whose name appears
together with a computed example (hand-written c. 1620 by an unknown reader) in an ex-
emplar of Ursus’ book now at the University of Leiden [12, 9]. The sine table for every 2′′,
presumably completed by Bürgi in 1598, is lost.
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FIGURE 5. Front page of Progreß Tabulen (University Library, Graz)

In 1592, Bürgi delivered a planetary globe of his own to the orderer, Holy Roman Em-
peror Rudolf II von Habsburg (1552–1612), who lived in Prague, and gave him as a present
the dedicated and unique exemplar of Fundamentum Astronomiæ.

Maybe already in 1588 and certainly before 1610, Bürgi computed the very first table of
logarithms (in fact a table of exponentials) [4]: he tabulated the natural powers of 1.0001,
multiplied by 108 and rounded to integers, until 1.000123027 ≈ 9.99999779 and computed
correctly by linear extrapolation

1.000123027.0022 < 10 < 1.000123027.0023.

But he published this table as late as 1620 in a very limited edition (Figure 5) after John
Napier’s table (1614, Napierian logarithms given by the power of 1 − 10−7 equal to the
sine of the angle) and Henry Briggs’ table (1617 and 1624, common logarithms). Only
two complete original exemplars of Bürgi’s Aritmetische und Geometrische Progreß Tab-

ulen are still extant: the printed logarithm table with separate hand-written instructions
for use. The front page of Figure 5 summarizes the results in a way very similar to a cir-
cular slide rule(!) with exponents printed in red and contains one misprint: it should be
‘5000 105126847’ since 108 × 1.00015000/10 ≈ 105126847. (The entry ‘230270 108’ is
correct if one considers the fact that 230270 and 0 occupy the same place.)

Intensive astronomic measurements, orbit computations, constructions of globes,
clocks, and instruments continued under William’s successor, his son Landgrave Moritz I.
About 1600, Bürgi was preparing his Arithmetica Bürgii, also called the Coss, as an in-
troduction to his 2′′ sine table. Kepler received—probably from Ursus, Rudolf’s imperial
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mathematician—a draft of this project, formulated it to a final text [13], promising to keep
it secret, and gave it back to Bürgi in 1603, who never published it. Coss, from the Italian
word cosa for ‘thing’, was the name of the unknown in an algebraic problem and denoted
by extension the theory of equations in early symbolic algebra.

Having been banished from Graz for refusing to convert to Catholicism, Kepler was
since 1601 imperial mathematician (and as such, astrological advisor) at the court of
Rudolf II (a Catholic!), replacing his dead predecessor and concurrent Tycho Brahe. He
was joined in 1603 by Bürgi, new imperial clockmaker one year later and third most-paid
employee of Rudolf. In De stella tertii honoris in Cygno from 1606 [11, Vol. I, p. 308],
Kepler praised his colleague in the highest tones.

Alter quem ego novi, est JVSTVS BYRGIVS, S. C. Majest. Automatopœus; qui licet expers
linguarum, rerum tamen Mathematicarum scientiâ et speculatione, multos earum Profes-
sores facilè superat. Praxin verò sic peculiariter sibi possidet; ut habitura sit posterior ætas,
quem in hoc genere Coryphæum celebret, non minorem quàm DVRERVM in pictoria, cujus
crescit occulto, velut arbor, ævo fama.
I also know Justus Byrgius, the imperial instrument maker. Although deprived of languages,

he easily surpasses many professors of mathematics in his knowledge and intense study of

this matter. He possesses a practical skill so peculiar, in fact, that a future generation will

celebrate him as a leader in this field as much as they celebrate Dürer in painting, whose

fame, like a tree, grows in a hidden way through the ages [from Horace, Carmina I.12, l. 45].

By contrast, Kepler was less friendly in 1627 in the introduction of Tabulæ Rudolphianæ

[11, Vol. X, p. 48].
[. . . ] qui etiam apices logistici JVSTO BYRGIO multis annis ante editionem Neperianam
viam præiverunt ad hos ipsissimos Logarithmos. Etsi homo cunctator et secretorum suorum
custos fœtum in partu destituit, non ad usus publicos educavit.
The logistic apices [that is, the indices ◦

,
′
,
′′
, . . . used in sexagesimal numbers] also

showed Jost Bürgi, many years before Napier’s edition, the way to even the same Loga-

rithms. But this lingerer and secretmonger abandoned his child at birth and did not educate

him for the public use.

Johannes Kepler being short-sighted with one eye’s cornea scarred as an aftereffect
of smallpox, Bürgi was his devoted observer, measurer, and provider of very accurate
instruments—for example during the discovery of Kepler’s Supernova in 1604—until Ke-
pler leaved Prague for Linz in 1612. Astronomia Nova de motibus stellæ Martis with
Kepler’s first two laws appeared in 1609.

The unique known portrait of Bürgi shows him in 1619, on the day of his 67th anniver-
sary (Figure 1).

3. A HYPOTHETICAL GENESIS OF THE ARTIFICIUM

We consider doubly infinite complex sequences (zj)j∈Z as discrete-time signals and
operators on these signals as filters that transform an input signal into an output. To deal
with the Bürgi filter and its inverse in our proof of the Artificium and its generalizations we
need the right and left difference filters

∂r : (zj)j 7→ (zj − zj+1)j and ∂ℓ : (zj)j 7→ (zj − zj−1)j

and the second difference filter

∂2 = ∂r ◦ ∂ℓ = ∂ℓ ◦ ∂r : (zj)j 7→ (2zj − zj−1 − zj+1)j .

(Note that the classical second central difference operator is −∂2.)
The Darboux filter relies on the right and left sum filters

σr(zj)j = (zj + zj+1)j and σℓ(zj)j = (zj + zj−1)j
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Position j = . . . −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 . . .

S = (sj)j = . . . −4 −2 0 2 4 6 7 8 9 10 11 12 11 10 . . .
↓ ∂ℓ ‖

∫
ℓ ↑

. . . . . . 2 2 2 2 2 1 1 1 1 1 1 −1 −1 . . .
↓ ∂r

×2↓
∫
r ↑

∂2S = . . . . . . 0 0 0 0 1 0 0 0 0 0 2 0 . . . . . .

TABLE 1. Second difference filter applied to a pseudo-sine of period 36

and the second sum filter

σ2 = σr ◦ σℓ = σℓ ◦ σr : (zj)j 7→ (2zj + zj−1 + zj+1)j .

(The mean filters σr/2, σℓ/2 would also do the job, see Figure 8!)
It is geometrically immediate that the signals (eij2ω)j are eigenfunctions of these filters

with corresponding eigenvalues

2 sinω · e±i(ω−π

2
) for ∂r and ∂ℓ, 4 sin2 ω for ∂2,

2 cosω · e±iω for σr and σℓ, 4 cos2 ω for σ2.
(1)

As the eigenvalues for ∂2 and σ2 are real and even, they are also eigenvalues belonging to
cos j2ω and sin j2ω, the real and imaginary parts of eij2ω . The corresponding trigonomet-
ric identities were well-known to Bürgi, for example

2 sin j2ω − sin(j − 1)2ω − sin(j + 1)2ω = 4 sin2 ω · sin j2ω.
Taking 2ω = π

18 , Bürgi thus knew that the 36-periodic sine sequence
(
sin jπ

18

)
j

is propor-
tional to its image under ∂2. And he probably wondered: “What happens if I start from
a sequence only approximatively proportional to this sine sequence? Let us try with the
pseudo-sine S = (sj)j given by (sj)1≤j≤9 = (2, 4, 6, 7, 8, 9, 10, 11, 12) and for the
rest odd with respect to index j = 0 and even with respect to j = 9.”

Definition 1 (Pseudo-sines and pseudo-cosines). A pseudo-sine of period 4n is a sequence
odd with respect to index j = 0 and even with respect to j = n, whereas a pseudo-cosine of
period 4n is even with respect to ‘index’ j = 1

2 and odd with respect to ‘index’ j = n+ 1
2 .

The core of a pseudo-sine or pseudo-cosine is the portion indexed from 1 to n.

The decomposition ∂2 = ∂r ◦∂ℓ applied to S leads to Table 1. Notice that ∂ℓ transforms
a pseudo-sine into a pseudo-cosine and ∂r a pseudo-cosine into a pseudo-sine. Let us
return to Bürgi’s hypothetical thoughts: “The pseudo-sine ∂2S is far less proportional to
the sine sequence than S! But proportionality is of course dramatically improved by the
inverse procedure from ∂2S to S. And what about the iterated inverse procedure applied
to S? Proportionality becomes better with every iteration step (Figure 3) and this is for
sure true in general!” After m steps, the Bürgi filter outputs thus a pseudo-sine given by
an iterated double integral

(∫
ℓ
◦
∫
r

)◦m
S of the initial pseudo-sine and these successive

outputs become purer and purer, so that they converge to a sine wave when normalized.
For a pseudo-sine input, the description of the Bürgi filter can be restricted to the cores
of the involved pseudo-sines and pseudo-cosine, due to their symmetries: this is the Bürgi
step! (We will extend the Bürgi filter to all polygons.)
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FIGURE 6. Fourier basis of C8

We in fact only need periodic signals. For an integer N ≥ 2, an N -periodic signal
(zj)j∈Z can be advantageously considered as an N -gon P in the complex plane given by
the finite sequence

P = (zj)0≤j≤N−1

of its vertices zj taken in order, representing the closed polygonal line

z0 → z1 → · · · → zN−1 → z0

starting at z0. The vertices are indexed modulo N . The polygon is central if the sum of its
vertices is zero.

4. THE FOURIER DECOMPOSITION

The Fourier basis of CN (Figure 6) is constituted by the standard regular N -gons

Fk =
(
eijk2π/N

)
0≤j≤N−1

, k = 0, 1, . . . , N − 1.

After the starting vertex 1, each vertex of Fk is the kth next N th root of unity. F0 =
(1, 1, . . . , 1) is a trivial polygon and the other basis polygons are central with Fk = FN−k:
FN−k is Fk the other way around! When N is even, one has FN/2 = (1, −1, . . . , 1, −1).
The Fourier basis is a basis as it is orthonormal with respect to the inner product of CN

given by

〈P,Q〉 = 〈(zj), (wj)〉 =
1

N

N−1∑

j=0

zjwj .

The discrete Fourier transform or spectrum of P is the polygon P̂ = (ẑk)0≤k≤N−1 given
by the spectral decomposition of P in the Fourier basis:

P =

N−1∑

k=0

ẑkFk with ẑk = 〈P, Fk〉 , 0 ≤ k ≤ N − 1,

where each ẑkFk is the image of Fk under a spiral similarity about the origin (Figure 7).
The trivial polygon ẑ0F0 corresponds to the (vertex) centroid ẑ0 of P : it vanishes if and
only if P is central.

In other words, the discrete N -periodic oscillation P is the superposition of its pairwise
orthogonal affinely k-regular componentsAk given by the offset A0 = ẑ0F0 and the central
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b bc =
0

z0

P

b
bc

b
bc +
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+
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FIGURE 7. Spectral decomposition of a central octagon

harmonics Ak = ẑkFk + ẑN−kFN−k, 1 ≤ k < N/2, and AN/2 = ẑN/2FN/2 when N is
even, the first harmonic A1 being the fundamental and the higher harmonics the overtones

(Figure 7). Each harmonic has a circumellipse (Remark 1). When P is real, one has
ẑN−k = ẑk for all k and thus Ak = 2Re (ẑkFk) for 1 ≤ k < N/2: these are real
harmonic oscillations sampled at integer times.

The use of discrete Fourier transforms in the geometry of polygons goes back to Dar-
boux in 1878, who studied the iterated polygons constructed on the side midpoints [5].
This very powerful tool often leads to one-line proofs [1, 7, 10, 17, 18, 19, 20, 21, 22, 25,
26, 27, 29] (more references can be found in [17]).

5. OUR SPECTRAL PROOF OF THE ARTIFICIUM

The above difference and sum filters are linear and preserve sequence periodicity. By (1)
for ω = kπ

N , they are diagonal in the Fourier basis. The corresponding eigenvalues Hk =

gke
iηk are the frequency response(s) of the filter (its spectrum), their moduli gk being the

filter’s gain(s):

2 sin
kπ

N
· e±i( k

N
− 1

2
)π for ∂r and ∂ℓ, 4 sin2

kπ

N
for ∂2,

2 cos
kπ

N
· e±i kπ

N for σr and σℓ, 4 cos2
kπ

N
for σ2, 0 ≤ k ≤ N − 1.

(2)

Each pair ∂r, ∂ℓ and σr, σℓ consists of adjoint filters, that is, with complex conjugate
frequency responses. Moreover the four filters clearly commute with complex conjugation:
this means HN−k = Hk for all k.

The kernel of ∂r and ∂ℓ is the linear span of F0. Let
∫
r and

∫
ℓ be the adjoint filters whose

frequency responses are given by 0 for F0 and otherwise by the inverses of the frequency
responses (2) of ∂r and ∂ℓ, respectively: ∂r and ∂ℓ are invertible on the subspace of central
N -gons with inverses

∫
r and

∫
ℓ. If S and C are a pseudo-sine and a pseudo-cosine, hence
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central, the first and second transformations of the Bürgi step are reversed by ∂r and ∂ℓ,
respectively: the explicit transformations of S and C in the Bürgi step are thus indeed these
spectrally defined

∫
r
S and

∫
ℓ
C.

We want to unify the treatment of the Bürgi, Darboux, and inverse Bürgi filters. After
suitable normalization, they all can be lumped together into the following class of admis-
sible filters.

Definition 2 (Admissible filter). A filter ϕ defined on N -gons for some N ≥ 2 and
diagonal in the Fourier basis {Fk, 0 ≤ k ≤ N − 1} is called admissible if it commutes
with complex conjugation and the maximal gain 1 is attained for k ≤ ⌊N/2⌋ only once,
say by Fk1

. We denote the adjoint filter by ϕ∗ and set τ1 = ϕ, τ2 = ϕ∗ ◦ ϕ, and
τ2m = (ϕ∗ ◦ ϕ)◦m = τ◦m2 , τ2m+1 = ϕ ◦ (ϕ∗ ◦ ϕ)◦m = τ1 ◦ τ2m for all natural m.

We consider now an N -gon P = (zj)j =
∑⌊N/2⌋

k=0 Ak and an admissible filter ϕ with
frequency response Hk = gke

iηk , HN−k = Hk. The fact that the filter commutes with
complex conjugation implies that each harmonic and its image under ϕ share a common
circumellipse, as is shown in the following Remark 1.

Remark 1 (Circumellipses). As Ak = ẑkFk+ ẑN−kFk and ϕAk = ẑkHkFk+ ẑN−kHkFk

for 1 ≤ k < N/2, the real-linear complex transformation z 7→ ẑkz + ẑN−kz maps Fk to
Ak, HkFk to ϕAk, and HkFk to ϕ∗Ak: since the unit circle is mapped to an ellipse,
the corresponding harmonics ϕAk of ϕP and ϕ∗Ak of ϕ∗P have the same circumellipse
centered at 0, which has the same axes as the circumellipse of Ak (and this is also trivially
true for AN/2 and ϕAN/2 when N is even). As Hk1

= eiηk1 , Ak1
and ϕAk1

have a
common circumellipse centered at 0 and intertwined vertices, also when k1 = 0 (Figure 8).

As τ2Ak = g2kAk, the offset and all harmonics are eigenvectors of τ2, Ak1
is a fixed

point,
lim

m→∞
τ2mP = Ak1

, and lim
m→∞

τ2m+1P = ϕAk1
. (3)

In other words, the classical result (3) says that the offset or harmonic Ak1
in the eigen-

space of the dominant eigenvalue 1 of ϕ∗ ◦ ϕ and ϕAk1
can be asymptotically isolated

by iterating the transformation. Figure 8 illustrates the case where the admissible filter
ϕ kills F0 and has otherwise the spectral response of the normalized left midpoint filter
sec π

N · σℓ/2 given by (2).
Equation (3) is the key result. Theorem 1 follows now almost immediately from the fact

that the above Ak1
, if nonzero, is a multiple of the sine table ImFk1

when the polygon is a
pseudo-sine! Indeed, due to symmetries, the spectrum of a pseudo-sine S = (sj)0≤j≤N−1

of period N = 4n is given, as is simply verified, by

ŝ2k = 0, ŝ2k+1 =
1

in

n−1∑

j=1

sj sin
j(2k + 1)π

2n
+

1

2in
(−1)ksn,

ŝ4n−(2k+1) = −ŝ2k+1, 0 ≤ k ≤ 2n− 1.

(4)

A pseudo-sine is thus the sum of its odd-numbered harmonics and

A2k+1 = 2iŝ2k+1 ImF2k+1, 0 ≤ k ≤ 2n− 1 (5)

has collinear vertices and is proportional to the sine table

T2k+1 = ImF2k+1 =

(
sin

j(2k + 1)π

2n

)

0≤j≤4n−1

. (6)
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b bc = b

bc
+ b

bc

+ b

bc

+ b

bc

1

FIGURE 8. The Darboux filter: successive mean polygons of a central octagon
and their normalizations

The fundamental is in particular proportional to the sought table T1 =
(
sin jπ

2n

)
0≤j≤4n−1

and T2n−1 is T1 with alternating signs. The fundamental does not vanish if and only if
ŝ1 6= 0: this is for example ensured when the vertices s1 to sn are real, nonnegative, and
not all zero.

We can now formulate and prove our central result, Theorem 2, which is valid for any
admissible filter and contains as special cases the Bürgi algorithm and its companions of
Theorem 1.

Theorem 2. Let ϕ be an admissible filter defined on 4n-gons and S a pseudo-sine of

period N = 4n with nonzero Ak1
(Definitions 1 and 2). The sine table Tk1

= ImFk1

divided by any nonzero entry #j0 is the limit for m → ∞ of any nonzero multiple of τ2mS
divided by its vertex #j0. And the sine table Im

(
eiηk1Fk1

)
divided by any nonzero entry

#j0 is the limit of any nonzero multiple of τ2m+1S divided by its vertex #j0.

Proof. As Ak1
= 2iŝk1

Tk1
by (5), here with ŝk1

6= 0, one has by (3) limm→∞ τ2mS =
2iŝk1

Tk1
, which can be divided by its nonzero value at vertex #j0 to give

lim
m→∞

τ2mS

its vertex #j0
=

Tk1

its vertex #j0
.

As τ2m+1S = ϕ(τ2mS) tends to 2iŝk1
ϕTk1

= ŝk1
ϕ
(
Fk1

− Fk1

)
= 2iŝk1

Im (eηk1Fk1
),

the same argument completes the proof. �

In the Bürgi case, Theorem 1 follows at once from Theorem 2 by taking the admissible
filter ϕ = 2 sin π

N ·
∫
r, hence k1 = 1 and η1 = (2n−1)π

4n , and noting that
(∫

ℓ ◦
∫
r

)◦m
S

of the Bürgi steps is proportional to τ2mS. In the Darboux–Nicollier case, the filter is
ϕ = 1

2 sec
π
N · σ′

ℓ, where the frequency response of σ′
ℓ is given by 0 for F0 and by the

frequency response (2) of σℓ otherwise, so that σ′
ℓ and σℓ are identical on central polygons

as well as σ′∗
ℓ and σ∗

ℓ = σr; here k1 = 1 and η1 = − π
N (Figure 8 shows an initial octagon

that is not a pseudo-sine). In the inverse Bürgi case, we take ϕ = 1
2 csc

(2n−1)π
4n · ∂′

ℓ,
where the frequency response of ∂′

ℓ is that of ∂ℓ for the odd-numbered Fk and 0 for the
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even-numbered ones, so that ∂′
ℓ and ∂ℓ are identical on pseudo-sines as well as ∂′∗

ℓ and
∂∗
ℓ = ∂r on pseudo-cosines; here k1 = 2n− 1 and η1 = π

N . In all three cases, ϕ∗ ◦ ϕ is a
bijective transformation of the subspace of pseudo-sines and is there uniquely determined
by its restriction to the cores in the window 1 ≤ j ≤ n: these are the Bürgi, Darboux–
Nicollier, and inverse Bürgi steps, which describe the action of the corresponding filters on
pseudo-sines only.

By Theorem 1, the mth step gives twice as much approximate sine values as planned,
for all integer multiples of the angle π

4n instead of π
2n , if one considers both last lines. The

needed approximation of cos π
4n or sin π

4n , that is, of
√
1± cos π

2n

/√
2, can be retrieved

from the fact that, as limit for m → ∞,

cos
π

2n
≈

∣∣∣∣
next to last entry

last entry of the last line

∣∣∣∣ . (7)

By Remark 1, the harmonics Ak1
and ϕAk1

are the images of Fk1
and eiηk1Fk1

under
the same affinity, for any polygon P . In the Bürgi case, the vertices of A1 and ϕA1 on
the common circumellipse coincide thus as sets if and only if N ≡ 2 (mod 4), and the
2N vertices are images of the (2N)th roots of unity if and only if N is a multiple of 4. In
the Darboux case, the vertices of A1 and ϕA1 are images of the alternate (2N)th roots of
unity (Figure 8).

6. RATE OF CONVERGENCE

Theorem 3 describes for our particular case the well-known rate of convergence of
iterated linear diagonal operators with strictly dominating eigenvalue 1.

Theorem 3. If ϕ is admissible (Definition 2), either (ϕ∗ ◦ ϕ)◦m P reaches Ak1
in at most

one step or the rate of convergence is the maximal gain g2k2
of the nonzero harmonics of

P −Ak1
under ϕ∗ ◦ ϕ.

Proof. Either τ2P = Ak1
or the norm of the nonzero error polygon τ◦m2 P −Ak1

is asymp-
totically (or exactly) multiplied by g2k2

< 1 at each step τ2 = ϕ∗ ◦ ϕ. �

All even-numbered harmonics of a pseudo-sine S = (sj)0≤j≤4n−1 of period N = 4n
vanish by (4). For the Darboux and inverse Bürgi filters, the rate of convergence to A2n−1

and A1, respectively (see (3), (5), (6)), is poor in general since the difference between 1
and the next smaller gain is tiny (but it works nevertheless, see Figure 8!).

The situation is better for the Bürgi filter: if the first nonzero overtone of S is Ak2
, the

rate of convergence to A1 = 2iŝ1T1 is

g2k2
=

sin2 π
N

sin2 k2π
N

≈ 1

k22
,

which is at least about 1
9 . The convergence to T1 is faster as soon as the first odd-numbered

Fourier coefficients of S behind ŝ1 6= 0 are zero. Here are four such examples (a)–(d) with
nonnegative integer or quadratic integer initial pseudo-sine cores (sj)1≤j≤n, as is easily
verified by direct computation of the Fourier coefficients (4).

(a) For n = 3ν, the core Γ with unique nonzero vertices sν = 1 and sn = 2 achieves
k2 = 5, as does the core Γ′ with unique nonzero vertex s′2ν = 1. The core Γ +

√
3Γ′

reaches k2 = 11 as soon as ν ≥ 2.
(b) The Bürgi step applied to the preceding core Γ gives

(2, 4, 6, . . . , 2ν, 2ν + 1, 2ν + 2, . . . , 4ν) for n = 3ν.



14 GRÉGOIRE NICOLLIER

For n = 9, this is Bürgi’s original core (Table 1), which therefore also achieves k2 = 5
[30].
(c) For n = 15ν, the core with unique nonzero vertices s2ν = s10ν = s12ν = 1 achieves
k2 = 7.
(d) For n = 15ν, the core Γ with unique nonzero vertices sν = s11ν = 1 achieves k2 = 7
and ŝ9 = 0, as does the core Γ′ with unique nonzero vertices s′7ν = s′13ν = 1. As

sin 42◦ + sin 78◦

sin 6◦ + sin 66◦
is the golden ratio ρ =

1 +
√
5

2
= 2 cos 36◦,

the core Γ + ρΓ′ reaches k2 = 11. If fµ and fµ+1 are two fixed consecutive Fibonacci
numbers, the initial core fµΓ + fµ+1Γ

′ reaches only k2 = 7, but the norm of the error
polygon is divided by about 121 at each of the first steps as fµ+1/fµ approximates the
golden ratio.
Consider in particular n = 90, as in Bürgi’s sine table for all degrees, and the core Γ
with unique nonzero vertices s6 = s66 = 1. Five Bürgi steps with integer vertices and
a division of the final core by its last vertex, which is about 8.6 × 1015

(
< 609

)
, provide

approximate sine values for all degrees with a maximal deviation of 1.1× 10−8. The next
to last half Bürgi step gives the sines of the half degrees within 7.7 × 10−8 by using the
aforementioned estimation (7) of cos 0.5◦, which is too large by 10−11.

It is even possible to avoid final divisions by the last core vertex! For n = 90, the initial
core Γ̃ with unique nonzero vertices

s̃1 = 1526986833984733 and s̃90 = 21502961542631

leads after five Bürgi steps to a core (s̃5,j)1≤j≤90 with last vertex 298: the values sin ℓ◦,
1 ≤ ℓ ≤ 90, are approximated within 5 × 10−5 by this final core divided by 298 and the
computation in binary arithmetic requires only integer additions and bit shifts. How did
we choose Γ̃? When the only nonzero core vertices are s̃1 and s̃90, one finds for the last
vertex s̃5,90

4s̃5,90 = 591510389403645s̃1+ 16947527098590161s̃90

with coprime coefficients. The extended Euclidean algorithm leads then to the above pos-

itive integer solutions s̃1 and s̃90 of 4s̃5,90 = 2100.
In the same way, the core with unique nonzero vertices

s1 = 32529867920854824 and s90 = 1224853929315320

leads to s5,90 = 1031 (using only integers) and the division of the final core by 1031

provides approximations of sin ℓ◦, 1 ≤ ℓ ≤ 90, within 2.4× 10−5.

7. NAPOLEON’S THEOREM REVISITED

To further illustrate the efficiency of the spectral approach, we give a very short and
completely formula-free proof of two celebrated theorems: Napoleon’s theorem for trian-
gles [14, 26] and its generalization, the Petr–Douglas–Neumann theorem for planar poly-
gons [23, 6, 15, 16, 3, 26]. They provide in fact a geometric way of retrieving the spectral
decomposition of a polygon. Napoleon has nothing to do with his theorem and Jesse Dou-
glas (1897–1965) was one of the two first Fields medalists in 1936. We already presented
similar simple proofs in [17, 20] and found no other comparable references in the literature.

According to the Fourier decomposition, every triangle is the sum E+ + E− of a posi-
tively and a negatively oriented equilateral triangles (possibly trivial). If one erects on the
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FIGURE 9. Napoleon’s theorem

successive sides of a triangle right-hand isosceles ears with apex angle 2π
3 and takes the

triangle of their apices, E+ is simply rotated by π
3 about its center and E− killed (Fig-

ure 9a). The transformation with corresponding left-hand ears kills E+ and rotates E−

by −π
3 . Admit for the moment that these filters are linear (proof below) and Napoleon’s

theorem is established (Figure 9b)!

Theorem 4 (Napoleon’s). The centers of three right-hand and three left-hand equilateral

ears erected on the successive sides of any triangle are the vertices of a positively and a

negatively oriented equilateral triangle (possibly trivial), respectively.

Any central triangle is thus the sum ẑ1F1+ẑ2F2 of its positively and negatively oriented
Napoleon triangles rotated by −π

3 and π
3 about the origin.

Here is the generalization to N -gons. For 1 ≤ q ≤ N−1, define the filter εq as follows:
consider the triangle formed by an oriented side of Fq and the origin (Fq’s center) as third
vertex, erect ears directly similar to this triangle on the successive sides of any input N -gon
and take as output the polygon of the successive ear apices. Due to regularity of the Fourier
basis polygons, εq multiplies Fk by the first side’s ear apex, which is zero only for Fq . The
filter εq is linear as each ear apex is the image of the side endpoint under a spiral similarity
centered at the side’s starting point with constant dilation and rotation. This proves the
final Theorem 5.

Theorem 5 (Petr–Douglas–Neumann). For any polygon Fk 6= F0 of the Fourier basis,

let εk be the filter whose output’s vertices are the centers of the scaled and rotated copies

of Fk erected on the successive sides of the input N -gon. Successive filtering by all εk
but εq transforms any N -gon into an output directly similar to Fq or trivial; the result is

independent of the filtering order.

The frequency response of εq has a nice geometric interpretation. The ears of εq are
directly similar to the normalized ear (0, 1, aq) with aq = 1

2

(
1 + i cot qπ

N

)
. The frequency

response of εq , that is, the vertex of the ear erected on the first side 1 → eik
2π

N of Fk, is
thus

Hq,k = 1 + aq
(
eik

2π

N − 1
)
= aq + aqe

ik 2π

N , 0 ≤ k ≤ N − 1, 1 ≤ q ≤ N − 1.

Hence the frequency response polygon (Hq,k)0≤k≤N−1 of εq is the regular N -gon directly
similar to F1 with vertex #0 at 1 and vertex #q at 0 (and center aq = aN−q): for N = 4,
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these are the squares (1, 0, −i, 1 − i) for ε1,
(
1, 1+i

2 , 0, 1−i
2

)
for ε2, and (1, 1 + i, i, 0)

for ε3. If N is even, εN/2 is the midpoint filter σr/2 we already met (Figure 8).

As the product of all factors Hk,q , k 6= q, is ei(π−q 2π

N ) [17], the opposite of vertex
#1 in the output of Theorem 5 coincides, for a central input P = (zj)0≤j≤N−1, with the
initial vertex ẑq of ẑqFq , the orthogonal projection of P on Fq (Figure 7): ẑqFq can now
be retrieved.

8. CONCLUSION

Bürgi’s achievement really deserves its name Artificium, the skillful method! And the
Fourier decomposition provides a proof that is up to it and establishes its close relation to
Napoleon’s theorem: an asymptotic extraction of a harmonic versus an exact extraction of
Fourier components. If one transforms an initial polygon alternately with an admissible fil-
ter and its adjoint, the alternate outputs converge to the harmonic (or offset) corresponding
to the maximal gain 1 and to its image under the filter, both limits having the same circum-
ellipse. When the initial polygon is a pseudo-sine, these limits, if nonzero, are proportional
to sine tables. And the sine tables can be retrieved by normalizing the limits appropriately.
The study of the iterated inverse Darboux–Nicollier step is left to the reader!
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