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ABSTRACT 
When trying to reverse engineer software, execution trace analysis 

is increasingly used. Though, by using this technique we are quickly 

faced with an enormous amount of data that we must process. While 

many solutions have been proposed that consist of summarizing, 

filtering or compressing the trace, the lossless techniques are 

seldom able to cope with millions of events. Then, we developed a 

dynamic clustering technique, based on the segmentation of the 

execution trace that can losslessly process such a large quantity of 

data. In order to compute the clusters of classes we use a maximal 

clique computing algorithm. After having presented our technology 

we show experimental results highlighting that it is robust with 

respect to the segmentation parameters. Finally we present the tool 

we developed to compute dynamic clusters from execution traces. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 

Enhancement - Restructuring, reverse engineering, and 

reengineering. 

General Terms: Design, Experimentation, Algorithm. 

Keywords 
Reverse-engineering, software architecture, software clustering, 

dynamic analysis. 

1. INTRODUCTION 
To extend the life of a legacy system, to manage its complexity and 

decrease its maintenance cost, one option is to reengineer it. 

However, reengineering initiatives that do not target the 

architectural level are more likely to fail [1]. Consequently, many 

reengineering initiatives begin by reverse architecting the legacy 

software. The trouble is that, usually, the source code does not 

contain many clues on the high level components of the system [2]. 

However, it is known that to “understand” a large software system, 

which is a critical task in reengineering, the structural aspects of the 

software system i.e. its architecture are more important than any 

single algorithmic component [3]. 
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Therefore, a good architecture is one that allows the observer to 

“understand” the software. To give a precise meaning to the word 

“understanding” in the context of reverse-architecting, we borrow 

the definition by Biggerstaff et al. [4]: “A person understands a 

program when able to explain the program, its structure, its 

behavior, its effects on its operational context, and its relationships 

to its application domain in terms that are qualitatively different 

from the tokens used to construct the source code of the program”. 

The first step is therefore to recover the architecture of the software 

and then try to explain this architecture in comparison to the 

functionality of the code. 

Many techniques have been proposed to recover the architecture of 

legacy software by computing clusters of classes i.e. sets of classes 

that are tightly coupled [16][18][19][21][23]. While most of the 

published work rest on the static analysis of the code, we recently 

proposed to focus on the execution trace to find clusters of 

dynamically correlated classes [26]. These clusters represent the 

classes that work closely together when executing a given scenario 

associated to a use-case. Since the use-cases are associated to 

business function, we have a way to associate the clusters of classes 

to business functions. However, the execution trace files of all but 

trivial programs are generally very large. For example, in one of our 

experiments, we got a file with more than 7 millions of events 

(method calls). Although many authors try to cope with the quantity 

of information to process by compressing the trace using more or 

less sophisticated techniques [25], we have developed another 

technique: trace segmentation. In the latter, the trace is split into 

contiguous segment of equal size and we observe the presence or 

absence of each of the classes in each of the segments.  A class is 

said to be present in a segment if there is at least one call to one of 

its methods in the segment. Let us define the number of segments in 

the trace as Ns and the binary occurrence vector VC for a given class 

C as a vector whose size is Ns and whose ith component indicates 

the presence (1) or absence (0) of the class in the ith segment (figure 

1). An occurrence vector can then be associated to each class of the 

system and for each scenario. From the occurrence vectors of the 

classes we can compute the dynamic correlation between the classes 

of the system in the context of the executed scenario. In fact, if two 

classes are simultaneously present or absent in the same segments, 

then they are considered as correlated. 

 

Figure 1: Trace segmentation and occurrence vector 
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The correlation between any two classes C1, C2 is given by [26]: 

 

 

 

Where V1, V2 are the occurrence vectors of the classes C1 and C2, 

V1.V2 is the usual dot product for vectors and V1[i]  V2[i] is the 

Boolean OR operator between the corresponding components of 

both vectors. Since the dot product as well as the  operator 

between vectors are symmetric, this correlation function is 

symmetric: correlation(C1,C2) = correlation (C2,C1). 

The value of the correlation is represented by an integer between 0 

and 100. Two classes are considered strongly correlated if their 

correlation is higher or equal to some predefined threshold T. Since 

the scenarios are instances of use-cases that represent business 

functions, the clusters represent sets of classes working closely 

together to implement some business function. In this paper we first 

present a detailed account of our technique and the algorithm used 

to identify the functional components in legacy software. Then we 

present an assessment of the robustness of our technique through 

several experiments. This paper is organized the following way. 

Section 2 presents our definition of a component and the correlation 

graph. Section 3 presents the maximal clique computation algorithm 

that we use to compute the clusters from the execution trace. Section 

4 presents the result of its application on a large execution trace, 

analyzes the robustness of our technique and discusses its 

performance. Section 5 presents the trace analysis tool we 

developed in Java and shows examples of use. Section 6 concludes 

the paper and gives some hints on future work. Section 7 discusses 

the related work. 

2. CORRELATIONS GRAPH 
 

Definition: component.  

Let C be a set of classes and correlation: C x C → [0..100] be our 

correlation function between two classes. A component is a maximal 

subset K of C such that all classes in K are mutually strongly 

coupled. In other words a component K must satisfy the following 

two constraints: 

1. x,y  K, correlation(x,y)  T 

2. z  C \K | x  K correlation(x,z)  T 

Where T is a predefined correlation threshold corresponding to a 

high correlation between classes. 

Corollary: starting with a correlation function and a correlation 

threshold T the computation of the components is unique. 

Proof: trivial by definition, since one computes the maximal subsets 

of C. 

Definition: a functional component is a component computed from 

an execution trace, or a set of execution traces, corresponding to the 

execution of use-case scenarios. 

The component is called functional because it is involved in the 

implementation of well defined business function (as represented by 

the use-case [28]). Besides, the classes implementing a functional 

component should be highly cohesive and strongly coupled. 

Following the execution of a use-case, we can compute the 

correlation matrix of the classes. In such a matrix, each cell 

represents the correlation between the classes represented by the 

row and column headers. This matrix is obviously symmetric. 

Figure 2 presents such a matrix where the highly correlated classes 

(i.e. whose mutual correlation value is higher or equal to a given 

threshold T) are highlighted. Besides, in all our experiments, we saw 

that some classes occurred in almost all the segments of the 

execution trace. These classes are therefore not specific to any step 

in the scenario and perform some utility work. They are similar to 

the utility classes in the work of Hamou-Lhadj and Lethbridge [29]. 

Since we need to discover the components that implement specific 

business functions these classes, that we call “temporally 

omnipresent classes”, are filtered out before proceeding with the 

computation of the clusters [26].  

 

 

Figure 2. Classes correlation matrix 

 

Let us define G = (C,R) a weighted graph whose set of nodes C is the 

set of classes identified in an execution trace and whose edges are 

defined by the correlation R between these classes (figure3).  

 

 

Figure 3. Correlation graph 

 

The weight of an edge is the strength of the correlation between the 

connected nodes. The computation of a component is then 

equivalent to the computation of a maximal clique  in the partial 

subgraph G’ of G whose edges’ weight is greater or equal to the 

threshold T. Depending on T, G’ may take the form of a set of 

separated connected component as presented in figure 4. 
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Figure 4. Connected subgraphs of G and components 

 

Since a given class can be part of several maximal cliques, it can be 

part of several components. In figure 4 we surrounded the classes 

forming components with a dotted line. 

3. CLUSTERING ALGORITHM 
Let us have: 

 C the set of classes whose methods are invoked in the 

execution trace.  

 correlation: C x C  [0..100] the correlation function  

 G the corresponding correlation graph.  

The computation of all the clusters in C amounts to finding all the 

maximal subgraphs whose nodes are mutually strongly connected 

(whose edge’s weight is  T). In other words, if one creates a new 

graph G’ by removing all edges whose weight is  T from G, then the 

search for the clusters is similar to finding the largest complete 

subgraphs (maximal cliques) in G’. However G’ is usually not 

connected (see for example the situation depicted in figure 4). 

Therefore, to speed up the search for clusters, one will work on the 

separate connected components of G’. 

Definition: following [5] we define (n) as the neighborhood of a 

node n in G’ (i.e. all the nodes adjacent to n in G’).  

Since G’ is not connected, the cluster finding algorithm can be 

applied separately to all connected components. A standard 

algorithm to find all the maximal cliques of a graph G of order n is 

presented in [5] : 

Clique(C, i) { 

if ( i > n )  

    then { recordClique(C) } 

    else { 

        if ( C  (i) = C ) 

            then { Clique( C  { i }, i+1) } 

            else  {  

                Clique( C , i+1) 

                if( C  (i)  { i } is maximal in Gi ) 

                    then Clique(C  (i)  { i } , i+1)  

                } 

        } 

} 

 

In this algorithm the nodes are numbered 1..n  and Gi is the 

subgraph of G containing the nodes 1 to i. The function 

recordClique(C) records C as a new maximal clique of G. The 

algorithm is launched with: Clique( { 1 } , 1 ).  

This recursive algorithm records all maximal cliques of Gi at least 

once. Its space complexity is polynomial according to the size of Gi 

[5].  

4. RESULTS & ROBUSTNESS ANALYSIS 

4.1 Example of clustering 
To evaluate the quality of our clustering technique we need to define 

a benchmark. Then, we decided to apply our clustering technique to 

a recently written, well architected software system written in Java. 

This system holds more than 600 classes. By interacting with its 

developers, we knew these packages to represent well defined 

functional components. Therefore, if our technique was able to 

discover the functional components of the system, then there would 

be a strong match between the recovered component and the 

package structure. Ideally, the recovered clusters should then each 

be located in a single package. Therefore when faced with an 

unknown legacy system, we could apply the technique to recover its 

functional architecture: we would know that the computed clusters 

would be functional components. Figure 5 represents the concept of 

cluster span. The situation on the top present a cluster with 4 classes 

that spans 2 packages. The situation on the bottom represents two 

clusters located in single packages (i.e. they are called “single-

package” clusters).   

 

 

Figure 5. Cluster span 

 

The packages of the chosen benchmark application represent entities 

in the domain.  Structurally, they are all located at the same level, 

just below the root package of the application. Empirically, we 

determined that the number of segments of an execution trace 

should be set according to the number n of classes occurring in the 

trace [10]. In this example, we performed the clustering on an 

execution trace with 600’000 events, using Ns = 32*n and T = 90%. 

These are the parameters we empirically found to provide the best 

clustering results [10]. In other words, the best clustering is obtained 

with the number of segment equal 32 times the number of classes 

and with a coupling between classes of 90%. We then uncovered 35 

independent clusters among which 31 were located in single 

packages and only 4 span two entity packages. The result is 

presented in figure 6 that contains all the packages representing 

entities in the software. The 15 darkened packages are the one 

containing “single package” clusters. Obviously some packages 

contain more than one cluster. In other words, in this experiment, 

89% of the identified clusters matched the packages. 

 



 

 

Figure 6. Packages containing single-package clusters 

 

In figure 7 we present in different colors the packages that contain 

the clusters spanning 2 packages. It is worth noting that our 

technique will not cluster all the classes of the execution trace, since 

we are looking for strongly correlated classes. But we expect the 

clustered classes to represent functional components. In this 

experiment we were able to cluster 67% of the classes found in the 

execution trace. Among them, 89% matched functional components.  

This is a very encouraging result if one takes into account the 

simplicity of the technique. 

 

 

Figure 7. Packages containing 2-packages clusters 

 

4.2 Segment boundary sensitivity 
To rely on this clustering technique, we must evaluate the 

robustness of the match between the clusters and the packages with 

respect to the segmentation parameters. In fact, since the technique 

is to split the trace into contiguous segments and check the binary 

occurrence of the classes in each segment, we may think that the 

location of the boundary of the segments plays an important role in 

the result of the clustering, as shown conceptually in figure 8. In the 

left part of the figure, the boundaries of the segments are located in 

between blocks of calls to the same classes. In the right part, the 

boundaries are shifted one event to the left. This has an important 

impact on the binary occurrence of the classes in each segment 

hence the corresponding occurrence vectors. Therefore, the 

correlation between Class1 and Class2 would be 0 in the situation 

represented on the left but 66% on the right. Since we cannot 

guarantee to generate exactly the same sequence of events each time 

the execution trace of a given scenario is recorded, we may think 

that the result of the clustering would be very sensitive to the 

sequence. Therefore we must perform a sensitivity analysis of our 

technique. 

 

 

  V1: 1            0              1                 V1: 1           1             1 

  V2: 0            1              0                 V2: 0           1             1   

Figure 8. Sensitivity to the segment’s boundaries 

 

4.3 Sensitivity study workflow 
Starting from the source code, it is first instrumented to be able to 

generate the execution trace. The result is compiled and executed on 

the target platform and the execution trace file is generated. This file 

is then analyzed to identify the clusters. The set of clusters is finally 

matched against the packages found in the source code and some 

matching metrics are computed (figure 9).  

 

 

Figure 9. Workflow to assess the quality of the match 

 

In order to determine the robustness of our dynamic clustering 

technique we performed several computations of the clusters by 

shifting the boundaries of the segments and observing the impact on 

the results of the clustering. As for the number of segments Ns and 

the correlation threshold T, we used again the settings that worked 

best according to our empirical assessment: Ns = 32*n and T = 

90%, where n is the number of classes occurring in the execution 

trace. [10]. The robustness analysis has been performed on 2 

execution trace corresponding to two scenarios from two different 

use-cases. The first trace, corresponding to the first use-case (UC1), 

contains 7 million of events and the second trace, corresponding to 

the second use-case (UC2), contains 600’000 events. For each 

execution trace, we first computed the clustering using the standard 

technique. Next we performed the same computation after having 



 

shifted the start of the segmentation by 1, 5, 10, 20 and 50% of the 

segment size as represented conceptually in figure 10. 

 

 

Figure 10. Shifting the segment boundaries 

 

Then the result of the clustering was compared with the original one 

using different metrics. The first and foremost metric is the number 

of packages the cluster span. In fact, the goal is to have a maximum 

of clusters located in a single package since these represent 

functional components. Tables 1 and 2 show the number of clusters 

and the span for each execution trace. The row header represents the 

number of packages the clusters span.  

 

Table 1. Clusters for the trace from the first use-case 

span Orig. 1% 5% 10% 20% 50% 

1 17 16 16 15 15 16 

2 9 6 6 5 4 4 

3 2 5 4 4 3 3 

>3 4 2 2 2 3 3 

 

Table 2. Clusters for the trace from the second use-case 

span Orig. 1% 5% 10% 20% 50% 

1 31 35 34 31 31 32 

2 4 4 4 4 6 6 

 

For example, the second row represents the number of cluster that 

span 2 packages.  The column with header “Orig.” represents the 

number of clusters for the original segmentation. The column with 

header “1%” represents the number of clusters in each category for 

the segmentation with a shift of 1% of the segment start and so on. 

However, since the classes are heavily interacting to implement the 

use-cases we expect some inter-packages coupling. This is why we 

cannot hope all the clusters to span only one package. The first 

observation we can make for both traces is that the shift of 

segmentation start barely impacts the result of the clustering, 

especially if we focus on the “single-package” clusters. These are 

the most interesting ones since they exactly correspond to functional 

components. Another important metric to assess the quality of the 

clustering is the coverage of the classes present in the trace by the 

clusters. We then compute the ratio of the classes that have been 

clusterized to the total number of classes in the trace. We then 

compare this coverage ratio among the experiments with the 

different segmentation starting points. These are shown in figure 11. 

(UC1 represents the execution trace from the first use-case and UC2 

the execution trace from the second use-case). We observed that the 

class coverage is rather insensitive to the shift of segmentation start 

since the difference in results stayed within 3 percent. Normally the 

more the coverage the better, provided that the clusters hold a 

“significant” number of classes. In other words, we would not be 

happy with a large coverage by “atomic” clusters of minimal size. 

This is why we also checked the average and the standard deviation 

of the number of classes per cluster. 

 

 

Figure 11. Coverage ratio 

 

The comparison of these metrics is presented in figures 12 and 13 

respectively. We clearly see that the impact of the start of the 

segmentation to the results of the metrics is even smaller than for the 

previous ones. The last metric we computed is the number of 

“functional components” identified using our segmentation 

technique.  

 

 

Figure 12. Average classes per cluster 

 

 

 

Figure 13. Standard deviation classes per cluster 

 

These are the packages that contain “single-package” clusters (fig. 

14). Out of the 26 packages contained in the application, we 



 

identified 12 packages containing “single-package” clusters for the 

trace from UC1 and between 14 and 15 for the trace from UC2. In 

fact, whatever the segmentation starting point, the results were 

almost always the same. Furthermore, not only was the number of 

packages equal, but also the packages themselves were exactly the 

same. The only missing one for UC2 in the experiment with 1% to 

20% shift was also the same. 

 

 

Figure 14. Number of packages in clusters of 1 package 

 

4.4 Performance 
Our clustering technique is efficient even with very large execution 

traces. For example, the preprocessing of the largest trace (7 

millions of events) and its loading into an Oracle database table 

takes about 30 min on a standard PC (3Ghz, 2Gb). The clustering 

itself takes about 20 seconds. So far, we have not found in the 

literature other dynamic clustering techniques that can cope with 

traces as big as that. Usually, the research papers show results based 

on traces containing a few tens of thousands of events, rarely 

beyond 100’000. Our technique can easily cope with hundred times 

more. As far a trace generation is concerned, we use an 

instrumentation technique that can be applied to whatever 

programming language, provided that is has a well defined and 

unambiguous BNF grammar (i.e. can be parsed using the JavaCC 

(YACC) technology). The source codes of the programs to analyze 

are then modified to insert trace generation information. Depending 

on the programming language and the architecture of the legacy 

system, the performance penalty can be more or less large. In our 

experiment with Java, the instrumented code was on the order of 2 

times slower than the original one. When we applied our technology 

to a large client-server application written in Visual Basic, the 

impact was on the order of 50 times! However, it is clear that the 

trace generation performance impact would apply to whatever 

dynamic clustering technique. 

5. CLUSTER ANALYSIS TOOL 

5.1 Introduction 
To analyze an execution trace and compute dynamic clusters we 

developed a trace analysis tool in Java under Eclipse. As a first step, 

the trace file must be preprocessed and loaded into the database. In 

this step we rebuild the call tree and also correct the missing 

information. The trace file contains sequences of method call and 

ends of calls (represented by the keyword END). A rough example 

of the trace file together with the corresponding call tree is presented 

in figure 15. Fi() represents the signature of the method called. END 

Fi() represents the end of the execution of method Fi(). Due to the 

recording of the end of method execution, we can unambiguously 

reconstruct the call tree (in single-threaded application). 

F1() 

F2() 

F3() 

END F3() 

F4() 

F5() 

END F5() 

END F4() 

END F2() 

END F1() 

 

Figure 15. Trace file and corresponding call tree 

 

In the instrumented code, the method call writing statement is the 

first statement executed when the method is entered. Unless there is 

an IO exception while writing to the file, the calls will always be 

recorded. However, there is one situation where a method call will 

not be recorded: when the call happened before we started to record 

the trace. Therefore there will be an end of execution without the 

corresponding call higher in the trace file. Here is an example: 

F1() 

F2() 

END F2() 

F3() 

END F3()   

END F1()   

END F0() // not matched by a call. 

 

Moreover it might also be the case that the end of a method 

execution is missing. In fact, the end of execution writing statement 

must be the last executed in a method. But there are many ways to 

exit a method. In particular, in the case of un-catched Java 

exception, the control returns to the calling method directly. The 

remaining statements in the called method are not executed. 

Therefore, our trace reading mechanism must deal with missing 

calls and missing end of execution and be able to recover the proper 

call tree. Once the trace is loaded into the database we can proceed 

with the computation of clusters. Moreover, based on the call tree, 

we can perform many kinds of analysis including the dynamic Fan-

in and Fan-out of classes in a similar way to what is done using 

static techniques [29].  

5.2 Tool interface 
When using the tool, one first selects the trace to analyze among 

those available in the database. Figure 16 presents the main screen 

of our trace analysis tool. In this example we selected a very small 

trace (26085 events). Most of the analysis techniques, but cluster 

identification, can be applied to the whole trace or to a specific 

subpart of it, called the analysis window. The analysis window is 

positioned using the two sliders displayed in the middle of the 

interface: one can select its width (in number of events) and its 

position. The top text pane presents the classes found in the trace file 

and the bottom text pane the result of the currently selected analysis. 

In figure 16 we present the dynamic Fan-out: the classes that are 

called by the selected class as well as the number of calls. Next we 

can display the occurrence vector of selected classes. Then, we must 

select the number of segments in the trace file. This is done using 

the upper slider (in this case the lower slider is disabled). If one 

F3 

F1 

F2 

F5 

F1 

F3 F4 

F2 



 

selects more than one class, the result pane displays the correlation 

factor between the classes as shown in figure 17. 

 

 

Figure 16. Trace analysis tool 

 

The occurrence vector is represented by a sequence of vertical bars 

“|” meaning class presence (1) and dots “.” meaning class absence 

(0) for the corresponding segment of the trace.  

 

 

Figure 17. Occurrence vectors and dynamic correlation 

 

The correlation is displayed as a sequence of vertical bars (meaning 

simultaneous presence), dots (meaning simultaneous absence) and 

crosses (meaning mismatch). Finally, we can compute the clusters 

among the selected classes. Again, the number of segment must be 

selected using the upper slider. The result is presented in figure 18. 

We can see that there are 5 clusters among all the classes identified 

in the trace file, when using 94 segments. 

 

 

Figure 18. Cluster computing 

 

The result of whatever analysis can be displayed graphically, thanks 

to the dot tool from the open source graph visualization software 

Graphviz [30]. Figure 19 presents the result of the computation of 

clusters as graphs. 

 

 

Figure 19. Clusters presented graphically 

 

6. CONCLUSION 
In this paper we presented the dynamic clustering technique that we 

use to recover the architecture of a legacy system from the analysis 

of the execution traces. First we presented the way we compute the 

clusters of classes that are likely to represent functional components, 

together with associated algorithm. In this context, a functional 

component is a maximal clique in the correlation graph representing 



 

the dynamic correlation between classes. We then use a standard 

maximal clique computation algorithm from graph theory. To show 

that our clustering technique is robust we performed a sensitivity 

analysis to study the influence of the shift of the segmentation start 

to the result of the clustering. We presented the workflow of this 

analysis together with the metrics used. This analysis has shown that 

the resulting “single-package” clusters (functional components) are 

largely independent from the start of the segmentation; even with a 

shift of 50% with respect to the segment size. This seems to suggest 

that the statistical properties of the class occurrences and the class 

correlation are stable throughout the trace file. Although we 

expected a good stability of the technique with respect to small 

changes (<10%) in the position of the segments in the trace, we have 

been surprised to see that even a large shift would still produce 

comparable results. This finding is very encouraging. A second and 

important result we can bring out is that our clustering technique is 

efficient even with very large execution traces. Finally, it is worth 

mentioning that our approach has been successfully applied to the 

reverse engineering of industrial software [27]. 

As further work, we will extend our statistical processing of the 

class occurrence in the trace. In fact the data analysis today is very 

limited: it amounts to observing the presence or absence of a class in 

each segment. Therefore, a class occurrence of 1000 or 1 in a given 

segment is considered the same. We will then expand our technique 

to compute class occurrences statistics within the segments. We 

expect this to bring us new insights to the architecture of the legacy 

system and that even more precise functional component 

identification could be performed.  

7. RELATED WORK 
In the literature, many techniques have been proposed to recover the 

structure of a system by splitting it into components. They range 

from document indexing techniques [11], slicing [12] to the more 

recent “concept analysis” technique [13] or even mixed techniques 

[14][14]. All these techniques are static i.e. they try to partition the 

set of source code statements and program elements into subsets that 

will hopefully help to rebuild the architecture of the system. But the 

key problem is to choose the relevant set of criteria (or similarity 

metrics) [16] with which the “natural” boundaries of components 

can be found. In the reverse-engineering literature, the similarity 

metrics range from the interconnection strength of Rigi [17] to the 

sophisticated information-theory based measurement of Andritsos 

and Tzerpos [18][19], the information retrieval technique such as 

Latent Semantic Indexing [11] or the kind of variables accessed in 

formal concept analysis [13][20]. Then, based on such a similarity 

metric, an algorithm decides what element should be part of the 

same cluster [21]. In their work, Xiao and Tzerpos compared several 

clustering algorithms based on dynamic dependencies. In particular 

they focused on the clustering based on the global frequency of calls 

between classes [23]. This approach does not discriminate between 

situations where the calls happen in different locations in the trace. 

This is to be contrasted with our approach that analyzes where the 

calls happen in the trace. Very few authors have worked on 

sampling or segmentation techniques for trace analysis. One 

pioneering work is the one of Chan et al. [24] to visualize long 

sequence of low-level Java execution traces in the AVID system 

(including memory event and call stack events). But their approach 

is quite different from ours. It selectively picks information from the 

source (the call stack for example) to limit the quantity of 

information to process. 

The problem to process very large execution traces is now 

beginning to be dealt with in the literature. For example, Zaidman 

and Demeyer proposed to manage the volume of the trace by 

searching for common global frequency patterns [22]. In fact, they 

analyzed consecutive samples of the trace to identify recurring 

patterns of events having the same global frequencies. In other 

words they search locally for events with similar global frequency. 

It is then quite different from our approach that analyzes class 

distribution throughout the trace. Another technique is to restrict the 

set of classes to “trace” like in the work of Meyer and Wendehals 

[6]. In fact, their trace generator takes as input a list of classes, 

interfaces and methods that have to be monitored during the 

execution of the program under analysis. Similarly, the tool 

developed by Vasconcelos, Cepêda and Werner [8] allows the 

selection of the packages and classes to be monitored for trace 

collection. In this work, the trace is sliced by use-case scenarios and 

message depth level and it is then possible to study the trace per 

slice and depth level. Another technique developed by Hamou-

Lhadj [7] uses text summarization algorithms, which takes an 

execution trace as input and returns a summary of its main contents 

as output. Sartipi and Safyallah [9] use a patterns search and 

discovery tool to separate, in the trace, the patterns that correspond 

to common features from the ones that correspond to specific 

features. Although the literature is abundant in clustering and 

architecture recovery techniques, we have had a hard time finding 

any research work whose results would actually be benchmarked 

against some reference architecture, but the notable exception of 

Mitchell [21] who uses static techniques. Our approach seems 

original also to this respect.  
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