

© ACM, 2009. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The

definitive version was published in ISEC’09 : proceedings of the 2009 India Software Engineering Conference, Pune, India, February 23-26, 2009.

ISBN : 978-1-60558-426-3 http://doi.acm.org/10.1145/1506216.1506228

Computing Dynamic Clusters

Philippe Dugerdil, Sebastien Jossi
Dept. of Information Systems

HEG-Univ. of Applied Sciences of Western Switzerland
7 route de Drize, CH-1227 Geneva, Switzerland

+41 22 388 17 00

philippe.dugerdil@hesge.ch, sebastien.jossi@hesge.ch

ABSTRACT
When trying to reverse engineer software, execution trace analysis

is increasingly used. Though, by using this technique we are quickly

faced with an enormous amount of data that we must process. While

many solutions have been proposed that consist of summarizing,

filtering or compressing the trace, the lossless techniques are

seldom able to cope with millions of events. Then, we developed a

dynamic clustering technique, based on the segmentation of the

execution trace that can losslessly process such a large quantity of

data. In order to compute the clusters of classes we use a maximal

clique computing algorithm. After having presented our technology

we show experimental results highlighting that it is robust with

respect to the segmentation parameters. Finally we present the tool

we developed to compute dynamic clusters from execution traces.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement - Restructuring, reverse engineering, and

reengineering.

General Terms: Design, Experimentation, Algorithm.

Keywords
Reverse-engineering, software architecture, software clustering,

dynamic analysis.

1. INTRODUCTION
To extend the life of a legacy system, to manage its complexity and

decrease its maintenance cost, one option is to reengineer it.

However, reengineering initiatives that do not target the

architectural level are more likely to fail [1]. Consequently, many

reengineering initiatives begin by reverse architecting the legacy

software. The trouble is that, usually, the source code does not

contain many clues on the high level components of the system [2].

However, it is known that to “understand” a large software system,

which is a critical task in reengineering, the structural aspects of the

software system i.e. its architecture are more important than any

single algorithmic component [3].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISEC’09, February 23–26, 2009, Pune, India.

Copyright 2009 ACM 978-1-60558-426-3/09/02...$5.00.

Therefore, a good architecture is one that allows the observer to

“understand” the software. To give a precise meaning to the word

“understanding” in the context of reverse-architecting, we borrow

the definition by Biggerstaff et al. [4]: “A person understands a

program when able to explain the program, its structure, its

behavior, its effects on its operational context, and its relationships

to its application domain in terms that are qualitatively different

from the tokens used to construct the source code of the program”.

The first step is therefore to recover the architecture of the software

and then try to explain this architecture in comparison to the

functionality of the code.

Many techniques have been proposed to recover the architecture of

legacy software by computing clusters of classes i.e. sets of classes

that are tightly coupled [16][18][19][21][23]. While most of the

published work rest on the static analysis of the code, we recently

proposed to focus on the execution trace to find clusters of

dynamically correlated classes [26]. These clusters represent the

classes that work closely together when executing a given scenario

associated to a use-case. Since the use-cases are associated to

business function, we have a way to associate the clusters of classes

to business functions. However, the execution trace files of all but

trivial programs are generally very large. For example, in one of our

experiments, we got a file with more than 7 millions of events

(method calls). Although many authors try to cope with the quantity

of information to process by compressing the trace using more or

less sophisticated techniques [25], we have developed another

technique: trace segmentation. In the latter, the trace is split into

contiguous segment of equal size and we observe the presence or

absence of each of the classes in each of the segments. A class is

said to be present in a segment if there is at least one call to one of

its methods in the segment. Let us define the number of segments in

the trace as Ns and the binary occurrence vector VC for a given class

C as a vector whose size is Ns and whose ith component indicates

the presence (1) or absence (0) of the class in the ith segment (figure

1). An occurrence vector can then be associated to each class of the

system and for each scenario. From the occurrence vectors of the

classes we can compute the dynamic correlation between the classes

of the system in the context of the executed scenario. In fact, if two

classes are simultaneously present or absent in the same segments,

then they are considered as correlated.

Figure 1: Trace segmentation and occurrence vector

http://doi.acm.org/10.1145/1506216.1506228

The correlation between any two classes C1, C2 is given by [26]:

Where V1, V2 are the occurrence vectors of the classes C1 and C2,

V1.V2 is the usual dot product for vectors and V1[i] V2[i] is the

Boolean OR operator between the corresponding components of

both vectors. Since the dot product as well as the operator

between vectors are symmetric, this correlation function is

symmetric: correlation(C1,C2) = correlation (C2,C1).

The value of the correlation is represented by an integer between 0

and 100. Two classes are considered strongly correlated if their

correlation is higher or equal to some predefined threshold T. Since

the scenarios are instances of use-cases that represent business

functions, the clusters represent sets of classes working closely

together to implement some business function. In this paper we first

present a detailed account of our technique and the algorithm used

to identify the functional components in legacy software. Then we

present an assessment of the robustness of our technique through

several experiments. This paper is organized the following way.

Section 2 presents our definition of a component and the correlation

graph. Section 3 presents the maximal clique computation algorithm

that we use to compute the clusters from the execution trace. Section

4 presents the result of its application on a large execution trace,

analyzes the robustness of our technique and discusses its

performance. Section 5 presents the trace analysis tool we

developed in Java and shows examples of use. Section 6 concludes

the paper and gives some hints on future work. Section 7 discusses

the related work.

2. CORRELATIONS GRAPH

Definition: component.

Let C be a set of classes and correlation: C x C → [0..100] be our

correlation function between two classes. A component is a maximal

subset K of C such that all classes in K are mutually strongly

coupled. In other words a component K must satisfy the following

two constraints:

1. x,y K, correlation(x,y) T

2. z C \K | x K correlation(x,z) T

Where T is a predefined correlation threshold corresponding to a

high correlation between classes.

Corollary: starting with a correlation function and a correlation

threshold T the computation of the components is unique.

Proof: trivial by definition, since one computes the maximal subsets

of C.

Definition: a functional component is a component computed from

an execution trace, or a set of execution traces, corresponding to the

execution of use-case scenarios.

The component is called functional because it is involved in the

implementation of well defined business function (as represented by

the use-case [28]). Besides, the classes implementing a functional

component should be highly cohesive and strongly coupled.

Following the execution of a use-case, we can compute the

correlation matrix of the classes. In such a matrix, each cell

represents the correlation between the classes represented by the

row and column headers. This matrix is obviously symmetric.

Figure 2 presents such a matrix where the highly correlated classes

(i.e. whose mutual correlation value is higher or equal to a given

threshold T) are highlighted. Besides, in all our experiments, we saw

that some classes occurred in almost all the segments of the

execution trace. These classes are therefore not specific to any step

in the scenario and perform some utility work. They are similar to

the utility classes in the work of Hamou-Lhadj and Lethbridge [29].

Since we need to discover the components that implement specific

business functions these classes, that we call “temporally

omnipresent classes”, are filtered out before proceeding with the

computation of the clusters [26].

Figure 2. Classes correlation matrix

Let us define G = (C,R) a weighted graph whose set of nodes C is the

set of classes identified in an execution trace and whose edges are

defined by the correlation R between these classes (figure3).

Figure 3. Correlation graph

The weight of an edge is the strength of the correlation between the

connected nodes. The computation of a component is then

equivalent to the computation of a maximal clique in the partial

subgraph G’ of G whose edges’ weight is greater or equal to the

threshold T. Depending on T, G’ may take the form of a set of

separated connected component as presented in figure 4.

100x

]i[V]i[V

V.V
)C,C(ncorrelatio

Ns

1i

21

21
21

Figure 4. Connected subgraphs of G and components

Since a given class can be part of several maximal cliques, it can be

part of several components. In figure 4 we surrounded the classes

forming components with a dotted line.

3. CLUSTERING ALGORITHM
Let us have:

 C the set of classes whose methods are invoked in the

execution trace.

 correlation: C x C [0..100] the correlation function

 G the corresponding correlation graph.

The computation of all the clusters in C amounts to finding all the

maximal subgraphs whose nodes are mutually strongly connected

(whose edge’s weight is T). In other words, if one creates a new

graph G’ by removing all edges whose weight is T from G, then the

search for the clusters is similar to finding the largest complete

subgraphs (maximal cliques) in G’. However G’ is usually not

connected (see for example the situation depicted in figure 4).

Therefore, to speed up the search for clusters, one will work on the

separate connected components of G’.

Definition: following [5] we define (n) as the neighborhood of a

node n in G’ (i.e. all the nodes adjacent to n in G’).

Since G’ is not connected, the cluster finding algorithm can be

applied separately to all connected components. A standard

algorithm to find all the maximal cliques of a graph G of order n is

presented in [5] :

Clique(C, i) {

if (i > n)

 then { recordClique(C) }

 else {

 if (C (i) = C)

 then { Clique(C { i }, i+1) }

 else {

 Clique(C , i+1)

 if(C (i) { i } is maximal in Gi)

 then Clique(C (i) { i } , i+1)

 }

 }

}

In this algorithm the nodes are numbered 1..n and Gi is the

subgraph of G containing the nodes 1 to i. The function

recordClique(C) records C as a new maximal clique of G. The

algorithm is launched with: Clique({ 1 } , 1).

This recursive algorithm records all maximal cliques of Gi at least

once. Its space complexity is polynomial according to the size of Gi

[5].

4. RESULTS & ROBUSTNESS ANALYSIS

4.1 Example of clustering
To evaluate the quality of our clustering technique we need to define

a benchmark. Then, we decided to apply our clustering technique to

a recently written, well architected software system written in Java.

This system holds more than 600 classes. By interacting with its

developers, we knew these packages to represent well defined

functional components. Therefore, if our technique was able to

discover the functional components of the system, then there would

be a strong match between the recovered component and the

package structure. Ideally, the recovered clusters should then each

be located in a single package. Therefore when faced with an

unknown legacy system, we could apply the technique to recover its

functional architecture: we would know that the computed clusters

would be functional components. Figure 5 represents the concept of

cluster span. The situation on the top present a cluster with 4 classes

that spans 2 packages. The situation on the bottom represents two

clusters located in single packages (i.e. they are called “single-

package” clusters).

Figure 5. Cluster span

The packages of the chosen benchmark application represent entities

in the domain. Structurally, they are all located at the same level,

just below the root package of the application. Empirically, we

determined that the number of segments of an execution trace

should be set according to the number n of classes occurring in the

trace [10]. In this example, we performed the clustering on an

execution trace with 600’000 events, using Ns = 32*n and T = 90%.

These are the parameters we empirically found to provide the best

clustering results [10]. In other words, the best clustering is obtained

with the number of segment equal 32 times the number of classes

and with a coupling between classes of 90%. We then uncovered 35

independent clusters among which 31 were located in single

packages and only 4 span two entity packages. The result is

presented in figure 6 that contains all the packages representing

entities in the software. The 15 darkened packages are the one

containing “single package” clusters. Obviously some packages

contain more than one cluster. In other words, in this experiment,

89% of the identified clusters matched the packages.

Figure 6. Packages containing single-package clusters

In figure 7 we present in different colors the packages that contain

the clusters spanning 2 packages. It is worth noting that our

technique will not cluster all the classes of the execution trace, since

we are looking for strongly correlated classes. But we expect the

clustered classes to represent functional components. In this

experiment we were able to cluster 67% of the classes found in the

execution trace. Among them, 89% matched functional components.

This is a very encouraging result if one takes into account the

simplicity of the technique.

Figure 7. Packages containing 2-packages clusters

4.2 Segment boundary sensitivity
To rely on this clustering technique, we must evaluate the

robustness of the match between the clusters and the packages with

respect to the segmentation parameters. In fact, since the technique

is to split the trace into contiguous segments and check the binary

occurrence of the classes in each segment, we may think that the

location of the boundary of the segments plays an important role in

the result of the clustering, as shown conceptually in figure 8. In the

left part of the figure, the boundaries of the segments are located in

between blocks of calls to the same classes. In the right part, the

boundaries are shifted one event to the left. This has an important

impact on the binary occurrence of the classes in each segment

hence the corresponding occurrence vectors. Therefore, the

correlation between Class1 and Class2 would be 0 in the situation

represented on the left but 66% on the right. Since we cannot

guarantee to generate exactly the same sequence of events each time

the execution trace of a given scenario is recorded, we may think

that the result of the clustering would be very sensitive to the

sequence. Therefore we must perform a sensitivity analysis of our

technique.

 V1: 1 0 1 V1: 1 1 1

 V2: 0 1 0 V2: 0 1 1

Figure 8. Sensitivity to the segment’s boundaries

4.3 Sensitivity study workflow
Starting from the source code, it is first instrumented to be able to

generate the execution trace. The result is compiled and executed on

the target platform and the execution trace file is generated. This file

is then analyzed to identify the clusters. The set of clusters is finally

matched against the packages found in the source code and some

matching metrics are computed (figure 9).

Figure 9. Workflow to assess the quality of the match

In order to determine the robustness of our dynamic clustering

technique we performed several computations of the clusters by

shifting the boundaries of the segments and observing the impact on

the results of the clustering. As for the number of segments Ns and

the correlation threshold T, we used again the settings that worked

best according to our empirical assessment: Ns = 32*n and T =

90%, where n is the number of classes occurring in the execution

trace. [10]. The robustness analysis has been performed on 2

execution trace corresponding to two scenarios from two different

use-cases. The first trace, corresponding to the first use-case (UC1),

contains 7 million of events and the second trace, corresponding to

the second use-case (UC2), contains 600’000 events. For each

execution trace, we first computed the clustering using the standard

technique. Next we performed the same computation after having

shifted the start of the segmentation by 1, 5, 10, 20 and 50% of the

segment size as represented conceptually in figure 10.

Figure 10. Shifting the segment boundaries

Then the result of the clustering was compared with the original one

using different metrics. The first and foremost metric is the number

of packages the cluster span. In fact, the goal is to have a maximum

of clusters located in a single package since these represent

functional components. Tables 1 and 2 show the number of clusters

and the span for each execution trace. The row header represents the

number of packages the clusters span.

Table 1. Clusters for the trace from the first use-case

span Orig. 1% 5% 10% 20% 50%

1 17 16 16 15 15 16

2 9 6 6 5 4 4

3 2 5 4 4 3 3

>3 4 2 2 2 3 3

Table 2. Clusters for the trace from the second use-case

span Orig. 1% 5% 10% 20% 50%

1 31 35 34 31 31 32

2 4 4 4 4 6 6

For example, the second row represents the number of cluster that

span 2 packages. The column with header “Orig.” represents the

number of clusters for the original segmentation. The column with

header “1%” represents the number of clusters in each category for

the segmentation with a shift of 1% of the segment start and so on.

However, since the classes are heavily interacting to implement the

use-cases we expect some inter-packages coupling. This is why we

cannot hope all the clusters to span only one package. The first

observation we can make for both traces is that the shift of

segmentation start barely impacts the result of the clustering,

especially if we focus on the “single-package” clusters. These are

the most interesting ones since they exactly correspond to functional

components. Another important metric to assess the quality of the

clustering is the coverage of the classes present in the trace by the

clusters. We then compute the ratio of the classes that have been

clusterized to the total number of classes in the trace. We then

compare this coverage ratio among the experiments with the

different segmentation starting points. These are shown in figure 11.

(UC1 represents the execution trace from the first use-case and UC2

the execution trace from the second use-case). We observed that the

class coverage is rather insensitive to the shift of segmentation start

since the difference in results stayed within 3 percent. Normally the

more the coverage the better, provided that the clusters hold a

“significant” number of classes. In other words, we would not be

happy with a large coverage by “atomic” clusters of minimal size.

This is why we also checked the average and the standard deviation

of the number of classes per cluster.

Figure 11. Coverage ratio

The comparison of these metrics is presented in figures 12 and 13

respectively. We clearly see that the impact of the start of the

segmentation to the results of the metrics is even smaller than for the

previous ones. The last metric we computed is the number of

“functional components” identified using our segmentation

technique.

Figure 12. Average classes per cluster

Figure 13. Standard deviation classes per cluster

These are the packages that contain “single-package” clusters (fig.

14). Out of the 26 packages contained in the application, we

identified 12 packages containing “single-package” clusters for the

trace from UC1 and between 14 and 15 for the trace from UC2. In

fact, whatever the segmentation starting point, the results were

almost always the same. Furthermore, not only was the number of

packages equal, but also the packages themselves were exactly the

same. The only missing one for UC2 in the experiment with 1% to

20% shift was also the same.

Figure 14. Number of packages in clusters of 1 package

4.4 Performance
Our clustering technique is efficient even with very large execution

traces. For example, the preprocessing of the largest trace (7

millions of events) and its loading into an Oracle database table

takes about 30 min on a standard PC (3Ghz, 2Gb). The clustering

itself takes about 20 seconds. So far, we have not found in the

literature other dynamic clustering techniques that can cope with

traces as big as that. Usually, the research papers show results based

on traces containing a few tens of thousands of events, rarely

beyond 100’000. Our technique can easily cope with hundred times

more. As far a trace generation is concerned, we use an

instrumentation technique that can be applied to whatever

programming language, provided that is has a well defined and

unambiguous BNF grammar (i.e. can be parsed using the JavaCC

(YACC) technology). The source codes of the programs to analyze

are then modified to insert trace generation information. Depending

on the programming language and the architecture of the legacy

system, the performance penalty can be more or less large. In our

experiment with Java, the instrumented code was on the order of 2

times slower than the original one. When we applied our technology

to a large client-server application written in Visual Basic, the

impact was on the order of 50 times! However, it is clear that the

trace generation performance impact would apply to whatever

dynamic clustering technique.

5. CLUSTER ANALYSIS TOOL

5.1 Introduction
To analyze an execution trace and compute dynamic clusters we

developed a trace analysis tool in Java under Eclipse. As a first step,

the trace file must be preprocessed and loaded into the database. In

this step we rebuild the call tree and also correct the missing

information. The trace file contains sequences of method call and

ends of calls (represented by the keyword END). A rough example

of the trace file together with the corresponding call tree is presented

in figure 15. Fi() represents the signature of the method called. END

Fi() represents the end of the execution of method Fi(). Due to the

recording of the end of method execution, we can unambiguously

reconstruct the call tree (in single-threaded application).

F1()

F2()

F3()

END F3()

F4()

F5()

END F5()

END F4()

END F2()

END F1()

Figure 15. Trace file and corresponding call tree

In the instrumented code, the method call writing statement is the

first statement executed when the method is entered. Unless there is

an IO exception while writing to the file, the calls will always be

recorded. However, there is one situation where a method call will

not be recorded: when the call happened before we started to record

the trace. Therefore there will be an end of execution without the

corresponding call higher in the trace file. Here is an example:

F1()

F2()

END F2()

F3()

END F3()

END F1()

END F0() // not matched by a call.

Moreover it might also be the case that the end of a method

execution is missing. In fact, the end of execution writing statement

must be the last executed in a method. But there are many ways to

exit a method. In particular, in the case of un-catched Java

exception, the control returns to the calling method directly. The

remaining statements in the called method are not executed.

Therefore, our trace reading mechanism must deal with missing

calls and missing end of execution and be able to recover the proper

call tree. Once the trace is loaded into the database we can proceed

with the computation of clusters. Moreover, based on the call tree,

we can perform many kinds of analysis including the dynamic Fan-

in and Fan-out of classes in a similar way to what is done using

static techniques [29].

5.2 Tool interface
When using the tool, one first selects the trace to analyze among

those available in the database. Figure 16 presents the main screen

of our trace analysis tool. In this example we selected a very small

trace (26085 events). Most of the analysis techniques, but cluster

identification, can be applied to the whole trace or to a specific

subpart of it, called the analysis window. The analysis window is

positioned using the two sliders displayed in the middle of the

interface: one can select its width (in number of events) and its

position. The top text pane presents the classes found in the trace file

and the bottom text pane the result of the currently selected analysis.

In figure 16 we present the dynamic Fan-out: the classes that are

called by the selected class as well as the number of calls. Next we

can display the occurrence vector of selected classes. Then, we must

select the number of segments in the trace file. This is done using

the upper slider (in this case the lower slider is disabled). If one

F3

F1

F2

F5

F1

F3 F4

F2

selects more than one class, the result pane displays the correlation

factor between the classes as shown in figure 17.

Figure 16. Trace analysis tool

The occurrence vector is represented by a sequence of vertical bars

“|” meaning class presence (1) and dots “.” meaning class absence

(0) for the corresponding segment of the trace.

Figure 17. Occurrence vectors and dynamic correlation

The correlation is displayed as a sequence of vertical bars (meaning

simultaneous presence), dots (meaning simultaneous absence) and

crosses (meaning mismatch). Finally, we can compute the clusters

among the selected classes. Again, the number of segment must be

selected using the upper slider. The result is presented in figure 18.

We can see that there are 5 clusters among all the classes identified

in the trace file, when using 94 segments.

Figure 18. Cluster computing

The result of whatever analysis can be displayed graphically, thanks

to the dot tool from the open source graph visualization software

Graphviz [30]. Figure 19 presents the result of the computation of

clusters as graphs.

Figure 19. Clusters presented graphically

6. CONCLUSION
In this paper we presented the dynamic clustering technique that we

use to recover the architecture of a legacy system from the analysis

of the execution traces. First we presented the way we compute the

clusters of classes that are likely to represent functional components,

together with associated algorithm. In this context, a functional

component is a maximal clique in the correlation graph representing

the dynamic correlation between classes. We then use a standard

maximal clique computation algorithm from graph theory. To show

that our clustering technique is robust we performed a sensitivity

analysis to study the influence of the shift of the segmentation start

to the result of the clustering. We presented the workflow of this

analysis together with the metrics used. This analysis has shown that

the resulting “single-package” clusters (functional components) are

largely independent from the start of the segmentation; even with a

shift of 50% with respect to the segment size. This seems to suggest

that the statistical properties of the class occurrences and the class

correlation are stable throughout the trace file. Although we

expected a good stability of the technique with respect to small

changes (<10%) in the position of the segments in the trace, we have

been surprised to see that even a large shift would still produce

comparable results. This finding is very encouraging. A second and

important result we can bring out is that our clustering technique is

efficient even with very large execution traces. Finally, it is worth

mentioning that our approach has been successfully applied to the

reverse engineering of industrial software [27].

As further work, we will extend our statistical processing of the

class occurrence in the trace. In fact the data analysis today is very

limited: it amounts to observing the presence or absence of a class in

each segment. Therefore, a class occurrence of 1000 or 1 in a given

segment is considered the same. We will then expand our technique

to compute class occurrences statistics within the segments. We

expect this to bring us new insights to the architecture of the legacy

system and that even more precise functional component

identification could be performed.

7. RELATED WORK
In the literature, many techniques have been proposed to recover the

structure of a system by splitting it into components. They range

from document indexing techniques [11], slicing [12] to the more

recent “concept analysis” technique [13] or even mixed techniques

[14][14]. All these techniques are static i.e. they try to partition the

set of source code statements and program elements into subsets that

will hopefully help to rebuild the architecture of the system. But the

key problem is to choose the relevant set of criteria (or similarity

metrics) [16] with which the “natural” boundaries of components

can be found. In the reverse-engineering literature, the similarity

metrics range from the interconnection strength of Rigi [17] to the

sophisticated information-theory based measurement of Andritsos

and Tzerpos [18][19], the information retrieval technique such as

Latent Semantic Indexing [11] or the kind of variables accessed in

formal concept analysis [13][20]. Then, based on such a similarity

metric, an algorithm decides what element should be part of the

same cluster [21]. In their work, Xiao and Tzerpos compared several

clustering algorithms based on dynamic dependencies. In particular

they focused on the clustering based on the global frequency of calls

between classes [23]. This approach does not discriminate between

situations where the calls happen in different locations in the trace.

This is to be contrasted with our approach that analyzes where the

calls happen in the trace. Very few authors have worked on

sampling or segmentation techniques for trace analysis. One

pioneering work is the one of Chan et al. [24] to visualize long

sequence of low-level Java execution traces in the AVID system

(including memory event and call stack events). But their approach

is quite different from ours. It selectively picks information from the

source (the call stack for example) to limit the quantity of

information to process.

The problem to process very large execution traces is now

beginning to be dealt with in the literature. For example, Zaidman

and Demeyer proposed to manage the volume of the trace by

searching for common global frequency patterns [22]. In fact, they

analyzed consecutive samples of the trace to identify recurring

patterns of events having the same global frequencies. In other

words they search locally for events with similar global frequency.

It is then quite different from our approach that analyzes class

distribution throughout the trace. Another technique is to restrict the

set of classes to “trace” like in the work of Meyer and Wendehals

[6]. In fact, their trace generator takes as input a list of classes,

interfaces and methods that have to be monitored during the

execution of the program under analysis. Similarly, the tool

developed by Vasconcelos, Cepêda and Werner [8] allows the

selection of the packages and classes to be monitored for trace

collection. In this work, the trace is sliced by use-case scenarios and

message depth level and it is then possible to study the trace per

slice and depth level. Another technique developed by Hamou-

Lhadj [7] uses text summarization algorithms, which takes an

execution trace as input and returns a summary of its main contents

as output. Sartipi and Safyallah [9] use a patterns search and

discovery tool to separate, in the trace, the patterns that correspond

to common features from the ones that correspond to specific

features. Although the literature is abundant in clustering and

architecture recovery techniques, we have had a hard time finding

any research work whose results would actually be benchmarked

against some reference architecture, but the notable exception of

Mitchell [21] who uses static techniques. Our approach seems

original also to this respect.

8. ACKNOWLEDGEMENTS
This work has been done with the support of HESSO Grant N°

15989 from the Swiss Confederation, which is gratefully

acknowledged. The authors would also like to thank the computing

center (CTI) of the State of Geneva for their support.

9. REFERENCES
[1] Bergey J., Smith D., Weiderman N., Woods S. 1999. Options

Analysis for Reengineering (OAR): Issues and Conceptual

Approach. Software Engineering Institute, Tech. Note

CMU/SEI-99-TN-014, 1999.

[2] Kazman R., O’Brien L., Verhoef C. 2003. Architecture

Reconstruction Guidelines, 3rd edition. Software Engineering

Institute, Tech. Report CMU/SEI-2002-TR-034, 2003.

[3] Tilley S.R., Santanu P., Smith D.B. 1996. Toward a

Framework for Program Understanding. Proc. IEEE Int.

Workshop on Program Comprehension, 1996.

[4] Biggerstaff T. J., Mitbander B.G., Webster D.E. 1994.

Program Understanding and the Concept Assignment

Problem. Communicaitons of the ACM, CACM 37(5), 1994.

[5] Gély, A. 2005. Algorithmique Combinatoire: Cliques,

Bicycles et Systèmes Implicatifs. PhD thesis. Univ. de

Clermont-Ferrand II, 2005.

[6] Meyer M., Wendehals L. 2005. Selective Tracing for

Dynamic Analyses. Proceedings of the 1st International

Workshop on Program Comprehension through Dynamic

Analysis (PCODA’05).

[7] Hamou-Lhadj A. 2005. The Concept of Trace Summarization.

Proceedings of the 1st International Workshop on Program

Comprehension through Dynamic Analysis (PCODA’05).

[8] Vasconcelos A., Cepêda R., Werner C. 2005. An Approach to

Program Comprehension through Reverse Engineering of

Complementary Software Views. Proceedings of the 1st

International Workshop on Program Comprehension through

Dynamic Analysis (PCODA’05).

[9] Sartipi K., Safyallah H. 2006. An Environment for Pattern

based Dynamic Analysis of Software Systems. Proceedings of

the 2nd International Workshop on Program Comprehension

through Dynamic Analysis (PCODA’06).

[10] Dugerdil Ph., Jossi S. 2008. Empirical Assessment of

Execution Trace Segmentation in Reverse-Engineering.

ICSOFT 2008.

[11] Marcus A. 2004. Semantic Driven Program Analysis. Proc

IEEE Int. Conference on Software Maintenance (ICSM’04).

[12] Verbaere M. 2003. Program Slicing for Refactoring. MS

Thesis, Oxford University. 2003

[13] Siff M., Reps T. 1999. Identifying Modules via Concept

Analysis. IEEE Trans. On Software Engineering 25(6). 1999

[14] Harman M., Gold N., Hierons R., Binkeley D. 2002. Code

Extraction Algorithms which Unify Slicing and Concept

Assignment. Proc IEEE Working Conference on Reverse

Engineering (WCRE’02).

[15] Tonella P. 2003. Using a Concept Lattice of Decomposition

Slices for Program Understanding and Impact Analysis. IEEE

Trans. On Software Engineering. 29(6), 2003

[16] Wiggerts T.A. 1997. Using Clustering Algorithms in Legacy

Systems Remodularization. Proc IEEE Working Conference

on Reverse Engineering (WCRE '97),

[17] Müller H.A., Orgun M.A., Tilley S., Uhl J.S. 1993. A Reverse

Engineering Approach To Subsystem Structure Identification.

Software Maintenance: Research and Practice 5(4), John

Wiley & Sons. 1993

[18] Andritsos P., Tzerpos V. 2003. Software Clustering based on

Information Loss Minimization. Proc. IEEE Working

Conference on Reverse engineering. 2003

[19] Andritsos P., Tzerpos V. 2005. Information Theoretic

Software Clustering. IEEE Trans. on Software Engineering

31(2). 2005

[20] Tonella P. 2001. Concept Analysis for Module Restructuring.

IEEE Trans. On Software Engineering, 27(4), 2001

[21] Mitchell B.S. 2003. A Heuristic Search Approach to Solving

the Software Clustering Problem. Proc IEEE Conf on

Software Maintenance. 2003

[22] Zaidman A., Demeyer S. 2004. Managing trace data volume

through a heuristical clustering process based on event

execution frequency. Proc. of the IEEE European Conference

on Software Maintenance and Reengineering (CSMR’2004).

[23] Xiao C., Tzerpos, V. 2005. Software Clustering basd on

Dynamic Dependencies. Proc. of the IEEE European

Conference on Software Maintenance and Reengineering

(CSMR’2005).

[24] Chan A., Holmes R., Murphy G.C., Ying A.T.T. 2003.

Scaling an Object-oriented System Execution Visualizer

through Sampling. Proc. of the 11th IEEE International

Workshop on Program Comprehension (ICPC'03).

[25] Hamou-Lhadj A., Lethbridge T.C 2002. Compression

Techniques to Simplify the Analysis of Large Execution

Traces. Proc. of the IEEE Workshop on Program

Comprehension (IWPC), 2002.

[26] Dugerdil Ph. 2007. Using trace sampling techniques to

identify dynamic clusters of classes. Proc. of the IBM CAS

Software and Systems Engineering Symposium (CASCON),

2007

[27] Dugerdil Ph., Jossi S. 2007. Role based clustering of software

modules: an industrial experiment. Proc. ICSOFT 2007.

[28] Jacobson I., Booch G., Rumbaugh J. 1999. The Unified

Software Development Process. Addison-Wesley Professional

1999.

[29] Hamou-Lhadj A. Lethbridge T. 2006. Summarizing the

Content of Large Traces to Facilitate the Understanding of the

Behavior of a Software System. Proc. of the IEEE Int.

Conference on Program Comprehension (ICPC’06), 2006.

[30] http://www.graphviz.org/

http://www.graphviz.org/

