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1. INTRODUCTION

The issue of how the presence of multiple risks modify individual behaviour in the
face of another risk has been leading to a prolific literature during the last decades.1

Most of these studies use monetary measures to analyze behaviour towards risk, the most
well-known being the Arrow-Pratt risk premium2 and the willingness to pay (Pratt, 1988).
More recently, a few papers have used non-monetary measures to provide new behavioural
results in the face of risks. In particular, the concept of utility premium originally intro-
duced by Friedman and Savage (1948) has regained interest. For instance, Eeckhoudt and
Schlesinger (2006) rely on the utility premium to propose a unified approach explaining
the meaning of the signs of the successive derivatives of the utility function. Eeckhoudt
and Schlesinger (2009) also reexamine the properties of the utility premium and explain
the relevance of this tool for decision-making. Menegatti (2011) examines the relationship
between the risk premium and the utility premium and showed that both measures do not
overlap: the risk premium can be a mistaken measure of the reduction in utility caused
by risk. Starting from the utility premium, Crainich and Eeckhoudt (2008) and Courbage
and Rey (2010) turn to higher orders by introducing non-monetary measures of prudence
and temperance. Such non-monetary measures not only offer alternative tools to analyze
the individual loss of welfare due to the presence of risks, but also allow for much simpler
conditions on individual preferences to predict behaviour towards risks.3

An issue of great importance when dealing with measures of risks is how these measures
react to a riskier environment. In particular, knowing how welfare losses of facing increases
in risk change as a function of the number of risk exposures offers crucial knowledge on
how individuals react to riskier environment. Our objective is to address these issues,
starting from very general definitions of increases in risk and of loss of welfare. For this
reason, the paper defines the “nth-order utility premium”as a measure of pain associated
with facing the passage from one risk to a worse one, with changes in risk expressed
through the concept of stochastic dominance of order n.
Our nth-order utility premium is not new. It was used before, without being given a

name, in Eeckhoudt et al. (2009) in their proof of Theorem 3 and in Ebert et al. (2017)

1See Eeckhoudt and Gollier (2013) for a review.
2Arrow (1970), Pratt (1964).
3Note, however, that a well-known deficiency of the utility premium compared to the risk premium

is its inadequacy for interpersonal comparisons. This is due to the fact that the utility premium is not
unique under linear transformations of the utility function. To circumvent this diffi culty, Crainich and
Eeckhoudt (2008) introduced the monetary utility premium —the utility premium divided by the marginal
utility. Li and Liu (2014) and Huang and Stapleton (2015) have used the monetary utility premium to
derive comparative risk aversion results. In this paper we do not address interpersonal comparisons of
loss of welfare.
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in their proof of Theorem 2. But we define it here explicitly and our main objective in
this paper is to derive some of its key properties.
Motivated by the work of Eeckhoudt and Gollier (2001) on the properties of monetary

measures for risk, we first address the issue of whether the pain for facing multiple risk
changes is greater or less than the sum of the pains for facing each risk change indepen-
dently. This issue should not be confused with the concept of mutual aggravation of risk
changes developed in Ebert et al. (2017). In their work, an individual faces two risks that
are deteriorating and the issue is whether facing the two changes in risk simultaneously
is more painful than the sum of the pains for facing each change in risk one by one (see
their equation (1)). They obtain that this is indeed the case. There is mutual aggravation
of risk changes (Theorem 2), and even greater mutual aggravation when the risk changes
are more severe (Theorem 3). In our case, we want to focus on a mathematical property
of our nth-order utility premium and we consider two different situations where an indi-
vidual exposed to one risk faces an aggravation of this risk. The question arises: is the
non-monetary measure of the two risk changes together greater or less than the sum of the
monetary measures of each individual risk change4? In economic life, this question arises
when the benefits obtained for merging independent entities (or firms) are considered.
More specifically, we examine the following question: knowing that separate entities will
be subject to high-order risk increases, is it beneficial for the owner of these entities to
merge them or not? It turns out that mixed risk aversion, as defined by Caballé and
Pomansky (1996), is key to the answer.5

This question is addressed in two steps. In the first step, the entities are considered as
entirely separated, i.e. managed independently, with the consequence that each of them
is unaffected by the risk level of the other. In this case, it turns out that merging the
changes in risk is not beneficial under mixed risk aversion. In a second step, we recognize
that the decision maker is the owner of both entities, which leads to introduce a link
between them. The risk of each entity is now a background risk for the other entity. We
obtain that, in this case, merging the risks may be beneficial if the risk situation of each
entity is transparent: the definition of background risk takes into account, for each entity,
the increase in risk for the other entity.
These results on risk merging under conditions of changes in risk are new. But they

may easily be related to other literature in the economics of risk. The result in the absence
of background risk implies a result for a related but different issue, the superadditivity or
subadditivity of the nth-order utility premium. A measure is said to be superadditive or
convex in the number of risks if the measured value of two risks is superior to the sum of the
values of each risk; the opposite holding for subadditivity. Superadditivity/subadditivity

4See our equation (16) below.
5This is not unexpected, given the role of mixed risk aversion in the link between expected utility and

nth-order stochastic dominance. See, e.g., Theorem 1 in Eeckhoudt et al. (2009). Mixed risk aversion is
also required to obtain the results of mutual aggravation in Ebert et al. (2017).
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sheds light on whether risks are self-aggravating for individuals. For instance, Eeckhoudt
and Gollier (2001) show that risk vulnerability (see Gollier and Pratt, 1996) is a suffi cient
condition for superadditivity of the risk premium. The concept of subadditivity of risk
measures has also become popular by the concept of coherent risk measures defined by
Artzner et al. (1999). A (monetary) measure is said to be coherent if it satisfies four
axioms, among which subadditivity. In our case, the paper shows that the nth-order
utility premium is superadditive under mixed risk aversion.
The results in presence of background risk bring us closer to the question examined

by Ebert et al. (2017). Indeed, starting from a different angle, we reproduce their result
of mutual aggravation. But not necessarily so. Depending on how background risk is
defined, one can obtain either mutual aggravation or mutual mitigation of risk changes.
The two results offer reinterpretations of the preference for combining “good”with “bad”
introduced by Eeckhoudt et al. (2009). In the same manner, we also rely on this latter
paper to show under which conditions the nth-order utility premium increases when the
decision-maker’s initial wealth becomes riskier. This result provides another reinterpre-
tation of the preference for combining “good”with “bad”, while generalizing Courbage
and Rey (2010).
The paper is organised as follows. Section 2 introduces the benchmark model for

non-monetary measures of risk and in particular the nth-order utility premium. Section
3 presents our main results. It addresses the conditions on individual preferences for wel-
fare changes due to risk merging. It also provides the answer to the question of whether
the nth-order utility premium is superadditive or subadditive. Section 4 investigates the
effects of background risk, first by examining the impact of a riskier initial wealth on the
nth-order utility premium, then by introducing background risk in the evaluation of risk
merging. Under appropriate conditions, it also provides the link with the work of Ebert
et al. (2017). Finally, Section 5 offers a short conclusion.

2. THE BENCHMARK MODEL

2.1. Non-monetary measures in the face of risks

Non-monetary measures in the face of risks stem from the work of Friedman and
Savage (1948) who used expected utility theory to define risk aversion and introduced
two ways for its measure. The two measures reflect the subjective cost of risk for a risk
averter.
Let an individual’s final wealth be represented by x + ε̃ where x (x > 0) denotes the

initial wealth of the individual and ε̃ is a zero-mean random variable.6 The first measure
of risk aversion in the face of the risk ε̃ at wealth level x is a monetary measure, the risk

6We assume that the support of ε̃ is defined such that x+ ε is in the domain of u.
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premium π(x, ε̃), and is such that:

E[u(x+ ε̃)] = u(x− π(x, ε̃)), (1)

where u denotes the individual’s von Neumann-Morgenstern utility function (with u′(x) ≥
0 ∀x) and E denotes the expectation operator. π(x, ε̃) is the amount of money that the
agent is ready to pay to get rid of the zero-mean risk ε̃. π(x, ε̃) ≥ 0 if and only if the
individual is risk-averse (u′′(x) ≤ 0 ∀x).
The second one is a non-monetary measure of risk aversion, the utility premium,

wA(x, ε̃):
wA(x, ε̃) = u(x)− E[u(x+ ε̃)]. (2)

wA(x, ε̃) measures the degree of “pain”associated with facing the risk ε̃, where pain is
measured by the loss in expected utility from adding the risk ε̃ to wealth x. From Jensen’s
inequality, wA(x) ≥ 0 if and only if u′′(x) ≤ 0 ∀x.7

More recently additional non-monetary measures were introduced, based on the defi-
nitions of higher-order risk attitudes, prudence and temperance. Prudence (u′′′ ≥ 0) first
introduced by Kimball (1990) in a saving context is also known as risk apportionment of
order 3 in the sense of Eeckhoudt and Schlesinger (2006). These authors show that for a
prudent individual:

1

2
u(x− l) + 1

2
E[u(x+ ε̃)] ≥ 1

2
u(x) +

1

2
E[u(x− l + ε̃)]. (3)

According to Eeckhoudt and Schlesinger’s terminology, a prudent individual prefers the
left-hand side term of Eq. (3) to the right-hand side term because the pains, the sure
loss −l (l > 0) and the zero-mean risk ε̃, are better apportioned in the left-hand side term
than in the right-hand side term. In the left-hand side term the pains are disaggregated
while they are aggregated (concentrated in a single state of nature) on the right hand side
term. The prudence utility premium as introduced by Crainich and Eeckhoudt (2008),
denoted wP (x, ε̃), measures the increase in pain of facing the risk ε̃ in the presence of a
sure loss l > 0. This is defined as follows:

wP (x, ε̃) = u(x− l)− E[u(x− l + ε̃)]− (u(x)− E[u(x+ ε̃)]), (4)

which is equivalent to:
wP (x, ε̃) = wA(x− l, ε̃)− wA(x, ε̃). (5)

Naturally, wP (x, ε̃) ≥ 0 if and only if u′′′ ≥ 0.
Temperance (u

′′′′ ≤ 0), first introduced by Kimball (1992) in a context of risk man-
agement in the presence of background risk, is known as risk apportionment of order 4 in

7We assume throughout this article that the utility function u is n-times differentiable. As usual, we
assume that the derivative of order k (∀k ≥ 1), denoted u(k)(x), has a constant sign in the domain of u:
u(k)(x) ≥ 0 or u(k)(x) ≤ 0 ∀x.
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the sense of Eeckhoudt and Schlesinger (2006). It reflects a preference for disaggregation
of two independent zero-mean risks θ̃ and ε̃. Eeckhoudt and Schlesinger (2006) show that
for a temperant individual:

1

2
E[u(x+ θ̃)] +

1

2
E[u(x+ ε̃)] ≥ 1

2
u(x) +

1

2
E[u(x− l + θ̃ + ε̃)] (6)

A temperant individual prefers the left-hand side term of Eq. (6) to the right-hand
side term because the pains are better apportioned. The temperance utility premium as
introduced by Courbage and Rey (2010), denoted wT (x, ε̃), measures the increase in pain
of facing the risk ε̃ in the presence of an independent zero-mean risk θ̃. It writes as follows:

wT (x, ε̃) = E[u(x+ θ̃)]− E[u(x+ θ̃ + ε̃)]− (u(x)− E[u(x+ ε̃)]), (7)

which is equivalent to:
wT (x, ε̃) = wA(x+ θ̃, ε̃)− wA(x, ε̃). (8)

wT (x, ε̃) ≥ 0 if and only if u(4) ≤ 0.
Courbage and Rey (2010) suggested an extension of these measures to higher orders

defining the utility premium by iteration following Eeckhoudt and Schlesinger (2006).
Denoting w(2)(x, ε̃) the Friedman and Savage (1948) utility premium of Eq. (2), we can
proceed from their remark by defining for all n even and n ≥ 2:

w(n+1)(x, ε̃) = w(n)(x− l, ε̃)− w(n)(x, ε̃)

with l > 0 and
w(n+2)(x, ε̃) = w(n)(x+ θ̃n, ε̃)− w(n)(x, ε̃),

where θ̃n is an independent random variable (i.e. random variables ε̃, θ̃2, θ̃4, θ̃6, etc,
are mutually independent) and such that E(θ̃n) = 0. As an illustration, when n = 2,
w(n+1)(x, ε̃) corresponds to the prudence utility premium, wP (x, ε̃), and w(n+2)(x, ε̃) cor-
responds to the temperance utility premium, wT (x, ε̃), as defined by Eqs. (4) and (7).

2.2. The nth-order utility premium

While Courbage and Rey (2010) suggested to define utility premia of higher orders
by iteration of the previous utility premia defined in a context of specific lotteries, our
objective in this paper is to introduce a very general way to define the utility premium at
higher orders and to disclose its properties. Our definition uses the concept of stochastic
dominance of order n.
Let’s consider two risky situations: a first situation represented by the random variable

Y and a second one represented by the random variable X. We assume that X and Y are
independent, and that Y dominates X via nth-order stochastic dominance (X �n−SD Y ).
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The concept of nth-order stochastic dominance is defined as follows.8 Consider Y
and X with F and G, respectively, their two cumulative distribution functions of wealth,
defined over a probability support contained within the interval [a, b]. Define F1 = F and
G1 = G. Now define Fk+1(z) =

∫ z
a
Fk(t)dt and Gk+1(z) =

∫ z
a
Gk(t)dt for k ≥ 1. The

variable Y dominates X via nth-order stochastic dominance (X �n−SD Y ) if Fn(z) ≤
Gn(z) for all z, and if Fk(b) ≤ Gk(b) for k = 1, 2, .., n.
When the n − 1 moments of X and Y are equal, nth-order stochastic dominance

coincides with Ekern’s (1980) concept of increase in nth-order risk (X �n Y ). Ekern’s
(1980) definition includes the case of mean-preserving increase in risk of Rothshild and
Stiglitz (1970) as well as the case of increase in downside risk defined by Menezes et al.
(1980). These cases represent, respectively, a second-degree and a third-degree increase
in risk.
We want to define the non-monetary measure of the cost of facing the risk transition,

i.e., the passage from Y to X where Y dominates X via nth-order stochastic dominance
(X �n−SD Y ). Let’s define the function w as follows:9

w(x;Y,X) = E[u(x+ Y )]− E[u(x+X)]. (9)

The function w(x;Y,X) measures the degree of pain associated with facing the passage
from the risk Y to the less favorable one, X, when the decision-maker’s initial wealth is
x. We formulate the following definition.

Definition. Given two independent risks, Y and X such that Y dominates X via
nth-order stochastic dominance (X �n−SD Y ), the function w defined as w(x;Y,X) =
E[u(x + Y )]− E[u(x +X)] is named the “nth-order utility premium”10. It measures the
degree of pain due to the aggravating nth-order stochastic dominance risk.

We first observe that, from Ingersoll (1987), w(x;Y,X) ≥ 0 for all x if and only if
(−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n. Note that (−1)(1+k)u(k) ≥ 0 ∀k ≥ 1 means that all odd
derivatives of u are positive and all even derivatives of u are negative. Following Brockett
and Golden (1987) and according to Caballé and Pomansky (1996), an individual with
such a utility function is said to be mixed risk averse. Hence, for all order n, the nth-order
utility premium of a mixed risk averse agent is always positive. In other words, such an
individual always incurs a pain when facing the passage from the risk Y to a less favorable

8See for example Jean (1980, 1984) or Ingersoll (1987).
9We assume throughout this article that the support of any random variable z̃ is defined such that

x+ z is in the domain of u.
10The nth-order utility premium was already used by Eeckhoudt et al. (2009) as well as by Ebert et

al. (2017) without being given a name. However, Harris Schlesinger referred to this utility premium as
the “comparative utility premium”during a presentation of an earlier version of Ebert et al. (2017) at
the 2013 EGRIE seminar in Paris.
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one X dominated via nth-order stochastic dominance. If the utility function u satisfies
(−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n, we will label u as mixed risk averse from order 1 to n.
An important particular case of the nth-order utility premium corresponds to the case

where, using the terminology introduced by Eeckhoudt et al. (2009), Y andX are lotteries
respectively combining: “good”with “bad”in both states; and “good with good”in one
state and “bad with bad” in the other state. Obviously, the terminology introduced by
Eeckhoudt et al. (2009) is very close to the concept of risk apportionment in Eeckhoudt
and Schlesinger (2006). Eeckhoudt and Schlesinger (2006) defined risk apportionment of
order n (n ≥ 1), by imposing preferences over simple lotteries11. Risk apportionment of
order n is equivalent to the condition sign{u(n)} = (−1)(n+1) which can be interpreted as a
preference for harms disaggregation at order n. These higher-order risk attitudes entail a
preference for combining relatively good outcomes with bad ones and can be interpreted
as a desire to disaggregate the harms of unavoidable risks and losses12. Eeckhoudt et
al. (2009) generalized Eeckhoudt and Schlesinger (2006) and established that a decision
maker exhibiting risk apportionment prefers not to group the two relatively “bad” lot-
teries in the same state, where “bad” is defined via higher-order stochastic dominance.
Such a decision maker prefers combining “good”with “bad”in each state of nature. They
derived in particular the following theorem:

Theorem [Eeckhoudt, Schlesinger and Tsetlin, 2009] Suppose that Yi dominates
Xi via nith-order stochastic dominance for i = 1, 2 and suppose that X1, X2, Y1, Y2 are
mutually independent risks. The 50-50 lottery [X1 + Y2, Y1 + X2] dominates the 50-50
lottery [X1 +X2, Y1 + Y2] via (n1 + n2)th-order stochastic dominance.

Thus, in their work, our Y and X above may be represented by the following 50-50
lotteries

Y = [X1 + Y2, Y1 +X2] and X = [X1 +X2, Y1 + Y2] (10)

where n1+ n2 = n. The basic idea is that a decision maker with a utility function u such
that (−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n will allocate the state-contingent risks in such a way
as not to group the two “bad”risks in the same state, where “bad”is defined via ith-order
stochastic dominance. Such an individual prefers the 50-50 lottery [X1 + Y2, Y1 +X2] to
the 50-50 lottery [X1 +X2, Y1 + Y2]:

1

2
E[u(X1 + Y2)] +

1

2
E[u(Y1 +X2)] ≥

1

2
E[u(X1 +X2)] +

1

2
E[u(Y1 + Y2)]. (11)

The passage from Y to X creates a loss of utility due to the aggregation of the harms.
In such a case, our nth-order utility premium measures the degree of pain due to the

11These lotteries were characterized by Roger (2011) who established that they only differ by their
moments of order greater than or equal to n. See also Ebert (2013).
12See also the experimental results obtained by Deck and Schlesinger (2010, 2014).
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passage from Y to X.
Other particular cases of the nth-order utility premium are the various premia defined

in the previous sub-section for which Y dominates X via nth-order Ekern’s dominance
(X �n Y ). Indeed, following Ekern (1980), if X �n Y then w(x;Y,X) ≥ 0 for all x if and
only if (−1)(1+n)u(n) ≥ 0. For instance, when Y = 0 andX is a zero-mean background risk,
X = ε̃ with E(ε̃) = 0, the function w writes as w(x; 0, ε̃) = u(x)−E[u(x+ ε̃)] = wA(x, ε̃).
This is the 2nd-order utility premium introduced by Friedman and Savage (1948) to
define the non-monetary risk aversion measure: w(x; 0, ε̃) ≥ 0 if and only if the individual
is risk averse (u′′ ≤ 0). When Y and X are defined as equiprobable lotteries, they are
particular cases of lotteries defined by Eq. (10). For instance, when Y and X are defined
as equiprobable lotteries describing an increase in downside risk (Menezes et al. (1980)):
Y = [−l, ε̃] and X = [0,−l + ε̃] i.e. Y1 = 0, Y2 = 0, X1 = −l and X2 = ε̃, the function w
writes as

w(x;Y,X) =
1

2
wP (x, ε̃), (12)

where wP (x, ε̃) is the prudence utility premium defined by Crainich and Eeckhoudt (2008).
Here w(x;Y,X) is the 3rd-order utility premium. It measures the degree of pain due to
the passage from Y to X with X �3 Y . When Y and X are defined as the following
equiprobable lotteries: Y = [θ̃, ε̃] and X = [0, θ̃ + ε̃] where θ̃ and ε̃ are independent and
zero mean random variables, i.e. , Y1 = 0, Y2 = 0, X1 = θ̃ and X2 = ε̃, the function w
writes as

w(x;Y,X) =
1

2
wT (x, ε̃), (13)

where wT (x, ε̃) is the temperance utility premium defined by Courbage and Rey (2010).
Here w(x;Y,X) is the 4th-order utility premium. It measures the degree of pain due to
the passage from Y to X with X �4 Y .

3. MERGING CHANGES IN RISKS AND THE SUPERADDITIVITY
OF THE nth-ORDER UTILITY PREMIUM

Ebert et al. (2017) offered a reinterpretation of Eeckhoudt et al.’s (2009) results
expressed in Eq. (11) by showing that mixed risk aversion ensures mutual aggravation
of risk changes i.e. the decision maker’s trait of perceiving two risk changes as mutually
aggravating. They rewrote Eq. (11) equivalently as:

E[u(Y1 + Y2)]− E[u(X1 +X2)] ≥
(
E[u(Y1 + Y2)]− E[u(X1 + Y2)]

)
+
(
E[u(Y1 + Y2)]− E[u(Y1 +X2)]

)
(14)

i.e., the utility from avoiding both risk changes at once is greater than the utility from
avoiding the first risk change (passage from Y1 to X1) plus the the utility from avoiding

9



the second risk change (passage from Y2 to X2). According to Ebert et al. (2017),
mutual aggravation means that experiencing risks increases one at a time is comparatively
better than having to face two risk increases at once. This is useful for risk management
applications, in particular, as shown in the web appendix to their paper. Using the
nth-order utility premium, Eq. (14) can be rewritten as13:

w(x;Y1 + Y2, X1 +X2) ≥ w(x;Y1 + Y2, X1 + Y2) + w(x;Y2 + Y1, X2 + Y1). (15)

In this section, we consider a related but different issue. We consider a change in the
risk environment of the decision-maker that corresponds to the process of merging changes
in risks. More specifically, we consider a change in risk defined as the passage from Y1 to
X1 and from Y2 to X2 with X1 �n1−SD Y1 and X2 �n2−SD Y2 where risks Y1, Y2, X1 and
X2 are mutually independent and where Y1 �2−SD 0 and Y2 �2−SD 0. We wonder under
which conditions on the utility function u the non-monetary cost of the total change in
risk (passage from (Y1 + Y2) to (X1 + X2)) is larger than the sum of the non-monetary
costs of each change in risk (passage from Y1 to X1 and independently passage from Y2

to X2). More formally, we wonder what properties of u ensure the following inequality:

w(x;Y1 + Y2, X1 +X2) ≥ w(x;Y1, X1) + w(x;Y2, X2). (16)

If Y1 and Y2 are both dominated by zero at order 2, the following proposition provides
conditions for such a comparison (see proof in the appendix).

Proposition 1. Consider mutually independent random variables X1, X2, Y1 and Y2,
such that X1 �n1−SD Y1, X2 �n2−SD Y2, Y1 �2−SD 0 and Y2 �2−SD 0. Then the nth-order
utility premium satisfies w(x;Y1+Y2, X1+X2) ≥ w(x;Y1, X1)+w(x;Y2, X2) for all mixed
risk-averse utility functions u from order 1 to n1 + n2, ∀n1 ≥ 2, ∀n2 ≥ 2.

Proposition 1 means that welfare is reduced by merging changes in risks instead of
facing them separately, i.e., the welfare loss of both increases in risks taken together is
larger than the sum of welfare losses from assuming each increase in risk separately.
A possible illustration of this result is given by the current changes in risk faced

by many financial institutions. They must take into account the entry into the market
of digitally-powered financial platforms developed by GAFA (Google, Apple, Facebook,
Amazon) and others. A bank with settlement in different regions faces a change in risk for
every local entity, with the changes in risk being specific to the competition environment
of each region. Is it beneficial for this bank to merge the different settlements in one single
entity to face the changes in risk? Proposition 1 tells us that this is not the case if the

13Note that both Theorem 2 in Ebert et al. (2017) and our Proposition 1 below assume mixed risk
aversion. But their theorem uses Liu’s (2014) theorem, a more general condition, while we use stochastic
dominance. We also assume that Y1 and Y2 are dominated by zero at order 2.
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decision process of the bank may be represented by the preferences of a mixed risk-averse
decision maker.
Proposition 1 also implies the superadditivity of the nth-order utility premium.14 From

the risk theory literature (see for example Bühlmann (1985) or Gerber and Goovaerts
(1981)), it is well-known that financial risks are very often self-aggravating. This would
suggest that the cost of risk for two independent risks should be greater than the sum
of costs of the two risks taken in isolation. If it were the case, the cost of risk would be
superadditive. The definition of superadditivity is the following. A real-valued function
f is superadditive if f(z1 + z2) is larger than f(z1) + f(z2) for all z1 > 0 and z2 > 0. The
opposite inequality holding true for subadditivity.
Here, we address the issue of superadditivity when the cost of risk is defined in non-

monetary terms through the concept of the nth-order utility premium. We consider the
passage from a risky situation Y to a less favorable one Xi (i = 1, 2). The superadditivity
of the nth-order utility premium writes as

w(x;Y,X1 +X2) ≥ w(x;Y,X1) + w(x;Y,X2), (17)

where Y , X1 and X2 are mutually independent random variables. Subadditivity of the
nth-order utility premium corresponds naturally to the opposite inequality. Starting from
Proposition 1 we obtain the following result (see proof in the appendix).

Corollary 1.Consider mutually independent random variables X1, X2 and Y, such that
X1 �n1−SD Y, X2 �n2−SD Y, with Y �2−SD 0. Then the nth-order utility premium is
superadditive (i.e. w(x;Y,X1+X2) ≥ w(x;Y,X1)+w(x;Y,X2)) for all mixed risk-averse
utility functions u from order 1 to n1 + n2, ∀n1 ≥ 2, ∀n2 ≥ 2.

According to Corollary 1, the pain of facing a change in two risks simultaneously is
higher than the sum of the pains of facing the two changes in risk separately for all mixed
risk-averse decision makers.
In the specific case of the Friedman-Savage utility premium, with X1 and X2 indepen-

dent zero-mean risks, Corollary 1 means that the pain of facing two risks simultaneously
is higher than the sum of the pains of facing each risk separately for a risk-averse and
temperant individual. Eeckhoudt and Gollier (2001) examine this issue when the cost of
risk is defined in terms of risk premium. They show that the risk premium is superad-
ditive if risk preferences are risk vulnerable.15 Hence, while risk vulnerability is required
for monetary measures of risk to be superadditive, for which temperance is only a nec-

14We thank a referee for pointing out the link between the two properties.
15Risk vulnerability means that risk aversion increases with the presence of an independent background

risk (Gollier and Pratt, 1996). Suffi cient and necessary conditions on the utility function to have risk
vulnerability are quite complex. A necessary condition for risk vulnerability is u(4) ≤ 0.
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essary condition, temperance here is suffi cient to obtain superaditivity in the case of the
Friedman-Savage utility premium.
We can illustrate the result of Corollary 1 in the spirit of Samuelson (1963) who points

out that risk averters prefer to subdivide risks instead of facing them in one shot.
Let’s consider three periods, period 1, period 2 and period 3. In period 1, the agent

faces a risk Y. He knows that in the two other periods, instead of facing Y, he will face
two other risks, X1 and X2, respectively which are both more severe than Y. For example,
X1 reflects the risk of a heavy medical treatment and X2 represents the risk of a new job,
while Y is the status quo. The agent can decide in which period he will face the changes
in risk. He can decide to face them one by one, in two consecutive periods, or to face
them simultaneously in period 3 while maintaining the status quo in period 2.
Ignoring the discount factor, the intertemporal expected utility writes in case 1 as

Eu(x + Y ) + Eu(x + X1) + Eu(x + X2) and in case 2 as Eu(x + Y ) + Eu(x + Y ) +

Eu(x+X1 +X2). Saying that the intertemporal expected utility in case 2 is lower than
the intertemporal expected utility in case 1 is equivalent to Eq. (17). Therefore mixed
risk aversion ensures that the agent prefers to face the changes in risk one by one in
consecutive periods 2 and 3.

4. OTHER PROPERTIES OF THE nth-ORDER UTILITY PREMIUM

In this section we consider the impact of background risk on the level of the nth-
order utility premium. The introduction of background risk means that the analysis is
transposed to a multiple risk setting. Thus, we enter into the domain of issues addressed
by Eeckhoudt et al. (2009) and Ebert et al. (2017). All our results are expressed as
corollaries of the main theorem in Eeckhoudt et al. (2009). The novelty is that they are
formulated as properties of the nth-order utility premium. In addition, we also obtain
that mutual mitigation of risks is possible, instead of mutual aggravation, depending on
how background risk is introduced.

4.1. The nth-order utility premium and increases in background risk

Following Courbage and Rey (2010), we can investigate, in the more general context
of the nth-order utility premium, how this measure reacts to the introduction on wealth
of a sure loss (−l with l > 0) or a zero-mean background risk (ε̃ with E(ε̃) = 0). As
intuition suggests, the pain increases in both cases under usual conditions on the signs of
higher-order derivatives of the utility function. Indeed, considering the impact of a sure
loss and a background risk on the nth-order utility premium, we obtain:

w(x− l;Y,X)− w(x;Y,X) ≥ 0⇔ (−1)(k+1)u(k) ≥ 0 ∀k = 1, . . . , n+ 1. (18)
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w(x+ ε̃;Y,X)− w(x;Y,X) ≥ 0⇔ (−1)(k+1)u(k) ≥ 0 ∀k = 1, . . . , n+ 2. (19)

These results are obtained by expanding the two inequalities and using Eeckhoudt et al.
(2009), as explicitly demonstrated in Ebert et al. (2017). Eqs. (18) and (19) have intuitive
explanations. If we consider a decision maker with a mixed risk-averse utility function
from order 1 to n+2, Eq. (18) means that the Nth-order utility premium (∀N ≤ n+1) is
vulnerable to a sure loss in the sense that it increases with the introduction of a sure loss.
Similarly, Eq. (19) means that the Nth-order utility premium (∀N ≤ n) is vulnerable
to a zero-mean background risk, i.e., it increases with the introduction of a zero-mean
background risk.
Such analysis can be extended to a more general context by investigating the degree of

pain associated with facing the passage from Y toX when the wealth level becomes riskier.
A riskier wealth corresponds to the random wealth level, initially equal to x+Y2, becoming
x+X2 where Y2 dominates X2 via n2th-order stochastic dominance (X2 �n2−SD Y2 with
X2 and Y2 being independent random variables). The degree of pain associated with
facing the passage from Y to X when the wealth level becomes riskier is defined by the
following expression:

w(x+X2;Y,X)− w(x+ Y2;Y,X). (20)

A positive sign of (20) means that the pain of facing the passage from Y to X increases
when the wealth level becomes riskier. We obtain the following result as a corollary of
Eeckhoudt et al’s (2009) theorem (see proof in the appendix).

Corollary 2. Consider mutually independent random variables X, Y, X2, and Y2, such
that X �n1−SD Y and X2 �n2−SD Y2. Then w(x+X2;Y,X)−w(x+Y2;Y,X) ≥ 0 for all
mixed risk-averse utility functions u from order 1 to n1 + n2.

Corollary 2 can be interpreted in a similar way as Eqs. (18) and (19). If we consider a
decision maker with a mixed risk-averse utility function from order 1 to n+ n2, it means
that the Nth-order utility premium (∀N ≤ n− n2) is vulnerable to a detrimental change
of order n2 in the background risk. Corollary 2 generalizes results in Courbage and Rey
(2010) using results on stochastic dominance and offers a reinterpretation of Eeckhoudt
et al.’s (2009) result.
If we restrict our attention to the special case of Ekern dominance as often done in the

literature, then, according to Ekern (1980), w(x;Y,X) ≥ 0 if and only if (−1)(1+n)u(n) ≥ 0,
i.e., risk apportionment of order n holds16. From Corollary 2, we can then extrapolate
that the pain due to misaportionment of order (n − n2) is vulnerable to an increase in
16Note, however, that if risk apportionment of order n holds, recent work by Menegatti (2015) shows

that risk apportionment of order j will hold, for j = 2, ..., n − 1, under very general conditions on the
utility function. We are thus brought back to the condition of Corollary 2, even when Ekern increases in
risk of order n are considered, instead of stochastic dominance of order n.
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risk of order n2. This offers an alternative interpretation of the sign of the nth-order
derivative of the utility function (u(n)) which can be easily understood and remembered,
without reference to any specific decision problem. For instance, in the case of the utility
premium for which Y = 0 and X = ε̃ (X �2 Y ), the degree of pain of facing the risk ε̃
increases when initial wealth becomes risky (i.e., when any zero-mean risk X2 is added to
initial wealth) for a temperant individual. In the same way, in the case of the prudence
premium, for which X represents an increase in downside risk over Y (X �3 Y ), the de-
gree of pain of facing an increase in downside risk increases when initial wealth becomes
risky for an individual featuring edginess17.

4.2. Merging changes in risk under background risk

In the context described by Proposition 1, the two risks sets (Y1, X1) and (Y2, X2)

are considered in isolation. Nevertheless, these two risk sets are present in the decision-
maker’s environment. A change of perspective arises if we take this fact into account,
and if we consider that risk 2 (X2 or Y2), is a background risk for the management of
risk 1 (X1 or Y1), and vice-versa. More specifically, we wonder under which conditions
on the utility function u the non-monetary cost of the total change in risk (passage from
(Y1 + Y2) to (X1 +X2)) is larger than the sum of the non-monetary costs of each change
in risk taking account the global decision maker’s environment, i.e., the passage from Y1

to X1 considering that risk 2 is a background risk for the management of risk 1, and
the passage from Y2 to X2 considering that risk 1 is a background risk for the manage-
ment of risk 2. Interestingly, it turns out that this change of perspective can reverse the
results. We obtain the following result as a corollary of Eeckhoudt et al.’s (2009) theorem.

Corollary 3. Consider mutually independent random variables X1, X2, Y1, and Y2 such
that X1 �n1−SD Y1 and X2 �n2−SD Y2. Then the two following items (a) and (b) hold for
all mixed risk-averse utility functions u from order 1 to n1 + n2:
(a) w(x;Y1 + Y2, X1 +X2) ≥ w(x+ Y2;Y1, X1) + w(x+ Y1;Y2, X2)

(b) w(x;Y1 + Y2, X1 +X2) ≤ w(x+X2;Y1, X1) + w(x+X1;Y2, X2).

The difference between items (a) and (b) arises from background risk considerations
on the right-hand side. In item (b), the background risks taken into account are the
worse risks X1 and X2 while they are the better ones Y1 and Y2 in item (a). In item (b),
the decision maker is aware that risk Y2 will be replaced by risk X2 when she feels the
loss of welfare from facing the risk X1 instead of Y1. In item (a), the decision maker is
blind to this risk substitution. She feels a reduced loss from the sum of individual risk
17The concept of edginess, i.e. u(5) ≥ 0, was introduced by Lajeri-Chaherli (2004) to explain the effects

of background risks on precautionary savings.
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substitutions because she ignores that risk Y2 will be replaced by risk X2 when dealing
with risk 1, and she ignores that risk Y1 will be replaced by risk X1 when dealing with
risk 2. In this sense, item (b) reflects a kind of rational expectations, whereas item (a)

reflects blindness.
It should also be stressed that following Ebert et al. (2017), item (a) of Corollary 3

can have another interpretation in terms of mutual aggravation of risks changes. Using
the perspective of these authors, we show that item (b) can also be interpreted in terms
of mutual mitigation of risks changes. To reach such conclusion, we have to consider the
following property of the nth-order utility premium. Assume three mutually independent
risks, X, Y and Z, then w(x + Z;Y,X) = w(x;Y + Z,X + Z)18. Using this property,
Corollary 3 can be equivalently rewritten as follows.

Corollary 4. Consider mutually independent random variables X1, X2, Y1, and Y2 such
that X1 �n1−SD Y1 and X2 �n2−SD Y2. Then the two following items (a) and (b) hold for
all mixed risk-averse utility functions u from order 1 to n1 + n2:
(a) w(x;Y1 + Y2, X1 +X2) ≥ w(x;Y1 + Y2, X1 + Y2) + w(x;Y2 + Y1, X2 + Y1)

(b) w(x;Y1 + Y2, X1 +X2) ≤ w(x;Y1 +X2, X1 +X2) + w(x;Y2 +X1, X2 +X1).

Item (a) was already provided by Ebert et al. (2017) and corresponds to Eq. (15).
Item (b) can also be interpreted in the same spirit as Ebert et al. (2017) but in terms of
mutual mitigation instead of mutual aggravation as follows: the pain due to the two risk
changes at once (passage from (Y1+Y2) to (X1+X2)) is smaller than the pain due to the
aggravation of the first risk plus the pain due to the aggravation of the second risk.
The difference between the two results —mutual mitigation in item (b) of Corollary 4,

mutual aggravation in item (a) —is explained by the comparison of the right-hand sides
(RHS) in each item. On the RHS of item (a), the decision maker switches twice from
a low-risk to a mixed-risk situation. On the RHS of item (b), she switches twice from a
mixed-risk to a high-risk situation. This is more painful. This leads therefore to interpret
the difference as the outcome of an increasing utility cost of changes in risk. Moving from
low-risk to mixed-risk situations is less painful than moving from mixed-risk to high-risk
situations.

5. CONCLUSION

The paper provides a generalization of non-monetary measures of risk by introducing
the concept of nth-order utility premium. This measure reflects the degree of pain due to
18Indeed, it is easy to verify that w(x+Z;Y,X) and w(x;Y +Z,X +Z) both writes as: E[u(x+Z +

Y )]− E[u(x+ Z +X)].
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facing the transition from one risk to a more severe one, with changes in risk expressed
through the concept of stochastic dominance of order n. The measure is not quite new,
since it was used in particular by Eeckhoudt et al. (2009) and by Ebert et al. (2017),
without being formally defined. Our objective is to put explicitly the focus on this concept
and to analyze systematically some of its key properties. Other non-monetary measures
of risk previously defined in the literature, such as the prudence utility premium and the
temperance utility premium are special cases of our nth-order utility premium.
We first address the issue of deciding whether it is beneficial to merge changes in risk

or not when the nth-order utility premium is used as the decision tool. Our results show
that a decision maker whose preferences are mixed risk-averse will feel more pain from
merging increases in risk than from facing them in separate entities and we provide an
example. We also show that this result implies the property of superadditivity of the
nth-order utility premium. We present an illustration in the spirit of Samuelson (1963)
who pointed out that risk-averters prefer to subdivide risks instead of facing them in one
shot. This holds here for increases in risk and for mixed risk-averse decision makers.
We then turn to analyzing the impact of changes in risk when other risks are in the

background and are also subject to changes. This brings us closer to recent contributions
in Ebert et al. (2017) emphasizing mutual aggravation of multiple risk changes. Similarly,
we use a seminal result in Eeckhoudt et al. (2009) to show that the nth-order utility pre-
mium increases when the decision maker faces a riskier wealth under mixed risk aversion.
However, our last results emphasize that merging increases in risk may become beneficial
if risks in two separate entities are considered as background risks of each other, and if
the decision maker is aware that both risks will deteriorate. This means that mutual
mitigation of risks is also possible under some circumstances.
The results in this paper provide new interpretations of the alternating signs of higher

derivatives of the utility function. As all commonly-used utility functions in economic
theory, with the first derivative being positive and the second one being negative, exhibit
mixed risk aversion, our results then apply to most individuals facing a deterioration in
their risk environment.
Our focus on the properties of the nth-order utility premium represents a modest

step in our knowledge of the impact of multiple-risk deteriorations. In particular, we
limited our study to the case of additive risks. But not all risks are additive. For instance
the hazards to which a property is exposed and the random changes in its value are
multiplicative, not additive. The study of the utility premium under nth-order changes
of multiplicative risks remains to be addressed.
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APPENDIX

Proof of Proposition 1.
We have X2 �n2−SD Y2 and Y1 �2−SD 0. Applying Eeckhoudt et al. (2009), we know

that E[u(x + Y2)] + E[u(x +X2 + Y1)]− E[u(x +X2)]− E[u(x + Y1 + Y2)] ≤ 0 for all u
such that (−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n2 + 2.
Analogously, we have X1 �n1−SD Y1 and Y2 �2−SD 0. Applying Eeckhoudt et al.

(2009), we know that E[u(x+Y1)]+E[u(x+X1+Y2)]−E[u(x+X1)]−E[u(x+Y1+Y2)] ≤ 0
for all u such that (−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n1 + 2. However, from Eeckhoudt et al.
(2009) we get E[u(x+Y1+Y2)]+E[u(x+X1+X2)]−E[u(x+X1+Y2)]−E[u(x+Y1+X2)] ≤ 0
for all u such that (−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n1 + n2. Consequently, if u is such that
(−1)(1+k)u(k) ≥ 0 ∀k = 1, . . . , n1 + n2, ∀n1 ≥ 2, ∀n2 ≥ 2 then the following inequality
holds:

(
E[u(x+Y2)]+E[u(x+X2+Y1)]−E[u(x+X2)]−E[u(x+Y1+Y2)]

)
+
(
E[u(x+

Y1)]+E[u(x+X1+Y2)]−E[u(x+X1)]−E[u(x+Y1+Y2)]
)
+
(
E[u(x+Y1+Y2)]+E[u(x+

X1+X2)]−E[u(x+X1+Y2)]−E[u(x+Y1+X2)]
)
≤ 0. It rewrites equivalently as: E[u(x+

Y1)]−E[u(x+X1)]+E[u(x+Y2)]−E[u(x+X2)] ≤ E[u(x+Y1+Y2)]−E[u(x+X1+X2) that
is equivalent to w(x;Y1, X1)+w(x;Y2, X2) ≤ w(x;Y1+Y2, X1+X2) that ends the proof. �

Proof of Corollary 1.
Let’s define Y = Y1 + Y2. Assuming X1 �n1−SD (Y1 + Y2) and X2 �n2−SD (Y1 + Y2),

we want to prove that Proposition 1 implies Corollary 1. As Y1, Y2, X1, X2 are mutually
independent, we have Y ⊥ X1, Y ⊥ X2. As Y1 �2−SD 0 and Y2 �2−SD 0, we have (using
the convolution property) Y1 + Y2 �2−SD 0. Assumptions of Corollary 1 hold.
Eq. (17) (i.e., the claim of Corollary 1) rewrites then w(x;Y1 + Y2, X1 + X2) ≥

w(x;Y1 + Y2, X1) + w(x;Y1 + Y2, X2) that we label (17′). Eq. (16) (i.e. the claim of
Proposition 1) writes as w(x;Y1 + Y2, X1 +X2) ≥ w(x;Y1, X1) + w(x;Y2, X2).
We show (see proof below) that w(x;Y1, X1) ≥ w(x;Y1 + Y2, X1) and w(x;Y2, X2) ≥

w(x;Y1 + Y2, X2). Using this result we obtain Eq. (16) ⇒ Eq. (17′).
To prove that w(x;Y1, X1) ≥ w(x;Y1 + Y2, X1), we use the definition of the nth-

order utility premium. Then w(x;Y1, X1) ≥ w(x;Y1 + Y2, X1) writes equivalently as
E[u(x+ Y1+ Y2)] ≤ E[u(x+ Y1)] which is true for all u such that u′′ < 0 as Y1 and Y2 are
zero-mean independent risks. The proof is the same for w(x;Y2, X2) ≥ w(x;Y1+Y2, X2). �

Proof of Corollary 2.
Using the definition of w, w(x+X2;Y,X)−w(x+ Y2;Y,X) ≥ 0 rewrites equivalently

as E[u(x+ Y +X2)]−E[u(x+X +X2)] ≥ E[u(x+ Y + Y2)]−E[u(x+X + Y2)], that is
equivalent to E[u(x+Y +X2)]+E[u(x+X+Y2)] ≥ E[u(x+Y +Y2)]+E[u(x+X+X2)].
Following Eeckhoudt et al. (2009), this last expression is equivalent to (−1)(1+k)u(k) ≥ 0
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for k = 1, . . . , n1 + n2. �
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