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a b s t r a c t 

We present a numerical model for the simulation of 3D poly-dispersed sediment transport in a Newto- 

nian flow with free surfaces. The physical model is based on a mixture model for multiphase flows. The 

Navier–Stokes equations are coupled with the transport and deposition of the particle concentrations, 

and a volume-of-fluid approach to track the free surface between water and air. The numerical algorithm 

relies on operator-splitting to decouple advection and diffusion phenomena. Two grids are used, based on 

unstructured finite elements for diffusion and an appropriate combination of the characteristics method 

with Godunov’s method for advection on a structured grid. The numerical model is validated through 

numerical experiments. Simulation results are compared with experimental results in various situations 

for mono-disperse and bi-disperse sediments, and the calibration of the model is performed using, in 

particular, erosion experiments. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The modeling of sediment transport in rivers, lakes or shores

s particularly relevant in hydraulic engineering to determine the

mount and location of granular matters in the liquid. Sediments

ave indeed an influence on structural damages, operations effi-

iency and management, but also influence the efficiency of energy

roduction in dam retention lakes. Moreover, the accumulation of

iver sediments in certain areas of the rivers modifies the natural

nvironment, which might have important consequences for hy-

raulic energy production [1] or environmental regulations. 

The modeling of sediment transport in a flow classically relies

n a multiphase model. Two-phase flow models [2–4] use a second

iquid field for the dilute sediment phase, with a different momen-

um equation in addition to that of the first liquid field, and possi-

ly with a different rheology. The other alternatives are to macro-

copically model the sediment concentration by an additional con-
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entration field [5,6] , which is well-validated at low concentration

evels, or via the modeling of individual sediment particles at the

icroscopic level [7,8] . 

We focus here on sediments in suspension or accumulated in

 Newtonian fluid (typically water). We investigate a macroscopic

odel for the sediment transport based on a sediment concentra-

ion with a single momentum balance for the mixture. The dilute

oncentration of sediments oscillates between zero and a maximal

oncentration corresponding to consolidated sediments. 

The model proposed here couples the Navier–Stokes equations,

ith a volume-of-fluid approach for the tracking of the free sur-

aces between water and air, plus a nonlinear advection equation

or the sediments’ migration from low to high concentration ar-

as. Since both dilute and undilute sediment concentrations in the

iquid need to be described, a model able to describe not only

he two phases but also the migration of the sediments from high

o low concentration areas, and the resulting density variations, is

hosen. This requires a miscible model , by opposition with, e.g., im-

iscible multiphase flow model [9] . As opposed to [9] , here the

dvection equation for the tracers is nonlinear and concentrations

ary along the Lagrangian trajectories. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Dam retention lake including sediment transport and deposition. 2D sketch 

of the geometrical domain.The cavity � is highlighted in bold. At each time t ∈ (0, 

T ), the liquid domain �t is separated from the ambient air by the water-air inter- 

face �t . The water domain is described by its characteristic function ϕ, while the 

sediment concentration fs is bounded in the liquid by its maximal value fs CR . 
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A mathematical model for the simulation of Newtonian fluids

with free surfaces, without sediment transport, has been presented

and validated in [10–13] , and has been applied to hydraulic engi-

neering situations in [14] . It is extended here to include sediment

transport. The addition of sediments has a direct effect on the den-

sity and viscosity of the flow. Reciprocally, the velocity of the flow

is used to transport the sediment concentration, in addition to de-

position effects due to the gravity. 

An operator splitting approach allows to decouple the diffusion

operator, the advection operator (by the mixture velocity) and the

nonlinear transport operator for sediment deposition. A two-grids

method couples a finite element discretization for the solution of

a Stokes problem, with a finer structured grid of small cells for

the discretization of advection operators and sediment deposition.

While finite elements techniques are used for the approximation

of the Stokes problem, a characteristics method and a Godunov

method are used for the approximation of the linear and nonlin-

ear transport problems respectively. Several numerical experiments

validate the mathematical model presented in this work, starting

with benchmark situations in simple geometries to real experi-

ments for erosion problems, in which computational results are

benchmarked against experimental results. Mono- and bi-disperse

sediments are considered, and sensitivity analyses are performed. 

The novelty of the proposed approach lies in the choice of a

dedicated numerical method proposed to solve this multiphysics

model, which couples sediment transport and free surfaces. The

advocated splitting algorithm efficiently decouples the various

physical phenomena and addresses each of them with dedicated

techniques, involving finite elements, finite volumes and character-

istics methods. Furthermore, there is no explicit tracking of the in-

terfaces. The free surface between water and air is modeled by an

Eulerian (volume-of-fluid) approach, while a diffuse interface mod-

eling is used for the interface between water and the sediments. 

This article is structured as follows. In Section 2 , we describe

the mathematical model for coupling the evolution of a Newtonian

fluid with free surfaces with sediment transport. Sections 3 and

4 detail respectively the time and space discretizations. The results

of numerical experiments for various test cases are presented in

Section 5 . 

2. Mathematical model 

Let us consider � a bounded domain in R 

3 with a sufficiently

smooth boundary. Typically, we can consider a water reservoir or a

dam retention lake, a sketch of which is illustrated in Fig. 1 in two

space dimensions. 

Let T > 0 be the final time of simulation. For any given time

t ∈ (0, T ), let �t ⊂� be the domain occupied by the fluid (mixture

including sediments), so that the remaining part of the domain
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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is occupied by the ambient air. Let �t be the free surface be-

ween the liquid and the ambient air; it is defined by �t := ∂ �t \ ∂ �
namely the boundary of the liquid domain that is not in contact

ith the boundary of the whole cavity). 

The mathematical model reads as follows. First let us de-

cribe the set of unknowns. Let Q T denote the space-time domain

ontaining the liquid, that is Q T = { (x , t) : x ∈ �t , 0 < t < T } .
he liquid domain is described by its characteristic func-

ion ϕ: �× (0, T ) → {0, 1}, which implies that Q T =
 

(x , t) ∈ � × (0 , T ) : ϕ(x , t) = 1 } . Assuming that the liquid do-

ain Q T is known and sufficiently regular, in the liquid region,

he velocity field v : Q T → R 

3 and the pressure field p : Q T → R

re assumed to satisfy time-dependent, incompressible Navier–

tokes equations, with variable density and viscosity coefficients,

nd an additional Darcy-like reaction term modeling the porous

olid matrix [15,16] . Finally, for the various classes of sediments,

he sediment concentrations are defined in the liquid domain

s fs i : Q T → [0 , fs CR ] , where fs CR is the maximal sediment con-

entration. The set of corresponding equations read as follows.

he evolution of the mixture (water and sediments) domain

t ⊂� is modeled by means of a volume-of-fluid method. Let

 : � × (0 , T ) → R be the characteristic function of the liquid do-

ain Q T . The function ϕ equals one at the point ( x , t ) if the liquid

s present, zero if it is not. In order to describe the kinematics of

he free surface, ϕ must satisfy (in a weak sense): 

∂ϕ 

∂t 
+ v · ∇ϕ = 0 in � × (0 , T ) , (2.1)

here v outside Q T is a regular extension of v inside Q T (see, e.g. ,

17] ). More precisely, v (X (t ) , t ) = v (X (0) , 0) , where X ( t ) is the tra-

ectory of a fluid particle which is at position X (0) at time t = 0 ,

hus X 

′ (t) = v (X (t ) , t ) . 

The characteristic function of the liquid domain ϕ is given at

nitial time, which is equivalent to defining the initial liquid region

0 = { x ∈ � : ϕ(x , 0) = 1 } . The initial velocity field v is prescribed

n �0 (see below), and boundary conditions are given on the inlet

art of ∂�. 

Together, we consider a poly-dispersed model for the miscible

ediment in the liquid. Assuming M populations of sediments (dif-

ering by size and/or density and/or shape), the presence rate of

 sediment population is denoted by the solid fractions fs i : Q T →
0 , 1] for i = 1 , . . . , M. This presence rate is a percentage of solid

ediment in a given volume. The total amount of sediment 

s = 

M ∑ 

i =1 

fs i 

s actually limited by a critical maximum value fs CR < 1 that essen-

ially depends on the shape of the sediment particles. In practise,

f we consider a mono-disperse model with solid spherical parti-

les and without consolidation, this value is approximately equal

o 0.63. 

We assume the liquid mixture velocity and pressure v : Q T →
 

3 and p : Q T → R satisfy, in Q T : 

ρ( f s ) 
∂v 

∂t 
+ ρ( f s )(v · ∇) v − 2 ∇ · ( μ( fs ) D (v ) ) 

+ α( f s ) v + ∇p = ρ( f s ) g , (2.2)

∇ · v = 0 . (2.3)

ere D (v ) = 1 / 2(∇v + ∇v T ) is the symmetric deformation tensor,

 denotes the gravity field, and ρ( f s ) (resp. μ( f s ) ) is the density

resp. viscosity) of the fluid-sediment mixture. The coefficient α( f s )

s a Darcy-like penalization term. All physical coefficients depend

n the sediment concentrations fs i , i = 1 , . . . , M. More precisely,
method for the numerical simulation of sediment transport with 
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he density ρ = ρ( f s 1 , . . . , fs M 

) is given by a linear weighted com-

ination of the individual densities ρ i : 

= ρl (1 − fs ) + 

M ∑ 

i =1 

ρi fs i , (2.4)

here ρ l (resp. ρ i ) is the fluid density (resp. the density of sedi-

ent i ). For the sake of notation, ρ( f s 1 , . . . , fs M 

) is still denoted by

( f s ) . The viscosity μ = μ( f s ) , represents the apparent viscosity of

he fluid with the suspended particles; it is modeled with the so-

alled Ishii and Zuber law for particle flows [18] : 

( f s ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

μl 

(
1 − fs 

fs CR 

)−2 . 5 fs CR 

, if fs < fs CO , 

μl 

(
1 − fs CO 

fs CR 

)−2 . 5 fs CR 

, otherwise . 

(2.5) 

here fs CO is a cohesion threshold parameter to be calibrated. The

hoice of (2.5) is validated in the literature for small values of the

oncentration fs . Moreover, the velocity in the Navier–Stokes equa-

ions is penalized with a Brinkman term using Carman–Kozeny

mpirical law, which represents the coupling with Darcy flow in

orous media. The reaction coefficient α = α( f s ) in (2.2) is given

y: 

( f s ) = K 

μl fs 
2 

d 2 ∗ ( f s CR − fs ) 3 + ε 
, (2.6)

here K and ε are constants to be calibrated (in the numerical

xperiments, we consider K = 1 and vary ε), and d ∗ is the local

ean particle diameter computed as 

 ∗ = 

M ∑ 

i =1 

fs i 
fs 

d i . (2.7) 

ote that, practically, the parameter ε (0 < ε � 1) avoids a division

y zero when fs = fs CR in (2.6) . 

The Navier-Stokes equations (2.2) –(2.3) are completed with ini-

ial and boundary conditions. The initial conditions for the velocity

re 

 (0) = v 0 , in �0 , 

hile slip or no-slip boundary conditions are imposed on the

oundary of the liquid domain ∂�t that is in contact with the

oundary of the cavity ∂�. Surface tension effects on the liquid-

as interface are not taken into account, and the ambient air is

upposed to have no influence on the liquid, and is treated as vac-

um. The boundary conditions on the liquid-gas interface are thus

iven by the no-force boundary condition: 

pn � + 2 μ( fs ) D (v ) n � = 0 , on �t = ∂ �t \ ∂ �. (2.8)

ith n � the external normal vector to �. 

The sedimentation transport model for each population of par-

icles reads as follows: for i = 1 , . . . , M, the solid fraction fs i : Q T →
 satisfy: 

∂ fs i 
∂t 

+ v · ∇ fs i + ∇ · F ( f s i ) = 0 , i = 1 . . . , M, in Q T , (2.9)

here F ( f s i ) is a deposition flux. Various multiphase models for

his deposition flux exist in the literature. Here, this flux is given

y: 

 ( f s i ) = κ fs i 

(
1 − fs i 

fs CR 

)
v stokes,i 

g 

| | g | | 2 , (2.10)

here κ is a constant independent from fs i , v stokes, i is the maximal

ediment velocity given by the Stokes’ law: 

 stokes,i = 

d 2 
i | | g | | 2 (ρi − ρl ) 

18 μl 

, (2.11) 
f

Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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here d i [m] is the mean particle diameter and ρ i [kg/m 

3 ] is the

ensity for the i th population, || g || 2 [m/s 2 ] is the gravity magni-

ude, and ρ l [kg/m 

3 ] (resp. μl [N s/m 

2 ]) is the density (resp. vis-

osity) of the fluid. The flux (2.10) vanishes at fs i = 0 and fs = fs CR ,

o that the domain (0 , fs CR ) is invariant. 

The parabolic flux (2.10) is the most natural choice, as it directly

nsures that the solid fractions belong to (0 , fs CR ) , with zero fluxes

t the extremities of this interval (see, e.g., [19,20] ). Other models

or settling fluxes can be found in, e.g., [21,22] . 

Note that here the following effects are not taken into account

n the model at this point: the resuspension of sediments, the in-

eractions between populations (e.g. aggregation or collisions), or

he solid bed modeling (sediment that lies outside the liquid).

owever, numerical experiments reported in Section 5 indicate

hat this model is still sufficient to reproduce various interesting

ediment ladden flows. 

To summarize, the coupled multiphysics problem consists in

nding the time evolution of the position of the volume fraction

f liquid ϕ in the cavity �, together with the velocity v , the pres-

ure p , and the sediment solid fraction of each sediment particles

opulation fs i in the liquid mixture domain only. 

. Time discretization 

Let 0 = t 0 < t 1 < t 2 < . . . < t N = T be a subdivision of the time

nterval [0, T ] and τ n = t n +1 − t n the (n + 1) th time step, n =
 , 1 , 2 , . . . , N − 1 , τ denoting the largest time step. 

Let ϕn , v n , p n , fs n 1 , . . . , fs 
n 
M 

, �n be approximations of ϕ, v , p , fs 1 ,

 . . , fs M 

, �t respectively at time t n . Then the approximations ϕ 

n +1 ,

 

n +1 , p n +1 , fs n +1 
1 , . . . , fs n +1 

M 

, �n +1 at time t n +1 are computed by

eans of a semi-implicit splitting algorithm, which is illustrated

n Fig. 2 . 

.1. Diffusion operator 

First, a discretized time dependent Stokes problem is solved in
n to obtain a prediction of the velocity v n +1 / 2 and the pressure

p n +1 in the liquid domain. 

We proceed as follows: the approximations fs n i ( i = 1 , . . . , M)

llow to define respectively approximations ρn = ρ( f s n ) , μn =
( f s n ) and αn = α( f s n ) of the density ρ( f s ) , viscosity μ( f s ) and

eaction coefficient α( f s ) following (2.4) –(2.6) . We use the follow-

ng implicit Euler scheme for the solution of the Stokes equations:

n v 
n +1 / 2 − v n 

τ n 
− 2 ∇ ·

(
μn D (v n +1 / 2 ) 

)
+ ∇p n +1 + αn v n +1 / 2 = ρn g in �n , 

 · v n +1 / 2 = 0 in �n . 

(3.1) 

ith zero force condition on the liquid-air interface ∂ �n \ ∂ �, and

o-slip or pure-slip conditions on the boundary of the cavity �. 

.2. Sedimentation deposition operator 

Second, in the operator splitting strategy, (2.9) is decoupled into

 transport equation (treated in Section 3.3 ) and a sedimentation

eposition operator that describes the vertical deposition (along

he gravity field) of the sediments. The deposition step consists in

olving between t n and t n +1 : 

∂ fs i 
∂t 

+ ∇ · F ( f s i ) = 0 , i = 1 , . . . , M, (3.2)

ogether with the initial conditions fs i (t n ) = fs n i , i = 1 , . . . , M, and

et 

s 
n +1 / 2 
i 

= fs i (t n +1 ) , i = 1 , . . . , M. 
method for the numerical simulation of sediment transport with 
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Fig. 2. Operator splitting algorithm (from left to right, top to bottom). At each time step n , we first solve a time dependent Stokes problem to obtain the predicted velocity 

v n +1 / 2 and the pressure p n +1 in the liquid domain �n . Second, the sediment vertical deposition is computed to obtain predicted concentrations fs 
n +1 / 2 
i 

, i = 1 , . . . , M. Finally, 

advection problems are solved to determine the new approximation of the characteristic function ϕ n +1 (and thus the new liquid domain �n +1 ), and the corrected velocity 

v n +1 and concentrations fs 
n +1 
i , i = 1 , . . . , M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

p  

p  

m  

a  

t  

t  

c  

n  

d

 

i  

a  

w  

b  

e  

F  

e

4

 

w  

u  

u  

l

 

i

 

 

w  

e  

α  

e  

P  

 

a

It is solved with a classical finite-volume method for conservation

laws (see for instance [23] ) which is described in Section 4.3 . 

3.3. Advection operator 

Third, the predicted velocity v n +1 / 2 can be used to transport the

volume fraction of liquid ϕn , the solid fractions fs n +1 / 2 
i 

, and the ve-

locity v n +1 / 2 itself (by considering the convection operator of the

Navier–Stokes equations separately). Thus we compute corrections

of the velocity v n +1 and solid fractions fs n +1 
i defined on a new liq-

uid domain �n +1 defined thanks to ϕ 

n +1 . More precisely, this ad-

vection step consists in solving, between t n and t n +1 the following

system of nonlinear equations: 

∂ϕ 

∂t 
+ v · ∇ϕ = 0 , (3.3)

∂ fs i 
∂t 

+ v · ∇ fs i = 0 , i = 1 , . . . , M, (3.4)

∂v 

∂t 
+ (v · ∇) v = 0 , (3.5)

with initial conditions ϕn , fs n +1 / 2 
i 

and v n +1 / 2 respectively. This sys-

tem of hyperbolic equations is linearized and solved with a for-

ward characteristics method, so that ϕ 

n +1 , fs n +1 
i and v n +1 are re-

spectively given by 

ϕ 

n +1 (x + τ n v n +1 / 2 (x )) = ϕ 

n (x ) , (3.6)

fs 
n +1 
i (x + τ n v n +1 / 2 (x )) = fs 

n +1 / 2 
i 

(x ) , i = 1 , . . . , M, (3.7)

v n +1 (x + τ n v n +1 / 2 (x )) = v n +1 / 2 (x ) , (3.8)

for all x ∈ �n . The new liquid domain �n +1 is then defined as

�n +1 = { x ∈ � : ϕ 

n +1 (x ) = 1 } . 
4. Space discretization 

In order to solve this multiphysics problem, a two-grids method

is used, following [11–13,17] . As illustrated in Fig. 3 (in two di-

mensions of space), a regular grid of small structured cells is used
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 

free surface flows, Computers and Fluids (2018), https://doi.org/10.1016
o solve the advection problems (3.6) –(3.8) and the sedimentation

roblem (3.2) , while the solution of the diffusion problem (3.1) is

erformed on a coarser unstructured tetrahedral finite element

esh. The goal of introducing a two-grid method is to increase the

ccuracy of the approximation of the free surfaces (by decreasing

he numerical diffusion of the approximation ϕ 

n +1 in (3.6) ) and of

he solution of the conservation laws, while keeping reasonable the

omputational cost of solving the Stokes problem. Adaptive tech-

iques for both grids have been investigated in [12,24] but are not

iscussed here. 

Let T H be a finite element tetrahedral discretization of the cav-

ty �, with typical size H . The cavity � is embedded into a par-

llelipipedic box discretized into a structured Cartesian grid C h ,
hich is made out of small cells whose dimensions are denoted

y ( h x , h y , h z ), with a typical size h := max { h x , h y , h z }. We label

ach cell by the indices ( ijk ), and denote by C ijk a generic cell of C h .
ollowing [17] , we typically advocate H 	 3 h − 5 h in the numerical

xperiments presented hereafter. 

.1. Diffusion operator 

Let ϕ 

n 
H 

be the volume fraction of liquid defined by the piece-

ise linear finite element approximation of ϕn defined by its val-

es at the vertices of T H . The liquid region �n 
H 

is defined by the

nion of all tetrahedra of the finite element mesh T H having (at

east) one of its vertices P with a value ϕ 

n 
P 

> 0 . 5 . 

Let v n 
H 

∈ (V H ) 
3 (resp. p n 

H 
∈ Q H ) be piecewise polynomial approx-

mations of v n (resp. p n ), using the finite element spaces 

V H = 

{
v H ∈ C 0 (�) : v H | K ∈ P 

B 
1 , ∀ K ∈ T H 

}
, (4.1)

Q H = 

{
q H ∈ C 0 (�) : q H | K ∈ P 1 , ∀ K ∈ T H 

}
, (4.2)

here P 

B 
1 

the classical space of polynomials of first degree on K

nriched with a bubble function [25] . Let us define ρn 
H 
, μn 

H 
and

n 
H 

the piecewise constant approximations of ρn , μn and αn on

ach tetrahedron, respectively. The Stokes problem is solved with

 

B 
1 − P 1 finite elements; it consists in finding the velocity v n +1 / 2 

H 
∈

(V H ) 
3 and the pressure p n +1 

H 
∈ Q H , satisfying the essential bound-

ry conditions on ∂�n , and such that: 

H 
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Fig. 3. Two-grid method (2D sketch): the advection problems and the hyperbolic conservation law are solved on a structured grid of small square cells C h (left), and the 

diffusion problem is solved on an unstructured finite element mesh T H (right). 

∫

f  

w  

l  

m

4

 

i

o  

W  

i  

b  

b  

c

v

w  

i  

o

4

 

S  

P  

b  

c

w

 

t  

i  

c  

fi  

f

θ

w  

m  

i  

g

F

R  

b  

m  

t  

w

F

T  

t  

a  

a  

w

 

e  

a  

m

 

h  

a  

a  

s

4

 

C  

p  

τ  

t  

t  

o

 

v  

u  

W  

t

 

t  

s  

l  

l  

p  

a

4
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�n 
H 

(
ρn 

H 

v n +1 / 2 
H 

−v n H 

τ n 
· w + 2 μn 

H D (v n +1 / 2 
H 

) : D (w ) + αn 
H v 

n +1 / 2 
H 

· w 

)
dx 

−
∫ 
�n 

H 

p n H ∇ · w dx −
∫ 
�n 

H 

q ∇ · v n +1 / 2 
H 

dx = 

∫ 
�n 

H 

ρn 
H g · w dx , (4.3) 

or all w and q the velocity and pressure test functions, compatible

ith the essential boundary conditions on ∂�n 
H 

. The corresponding

inear system is solved with a sequential preconditioned GMRES

ethod. 

.2. Interpolation on the structured grid 

The continuous P 

B 
1 
-approximation of the velocity v n +1 / 2 

H 
on T H is

nterpolated at the center of each cell C ijk to obtain values v n +1 / 2 
i jk 

n the structured grid C h (i.e. a piecewise constant approximation).

hen the center of the cell C ijk belongs to the element K , the field

s restricted by a geometric distance-based interpolation . Denoting

y P J , J = 0 , . . . , 3 the vertices of K , by P 4 the barycenter of K , and

y v n +1 / 2 
H,J 

the values of the velocity at point P J for J = 0 , . . . , 4 , we

ompute a weighted average 

 

n +1 / 2 

i jk 
= 

∑ 4 
J=0 v n +1 / 2 

H,J 
dist (C i jk , P J ) 

−2 ∑ 4 
J=0 dist (C i jk , P J ) −2 

, (4.4) 

here dist( ·, ·) denotes the Euclidean distance. A special treatment

s applied when the cell center coincides exactly with the location

f a degree of freedom in K . 

.3. Sedimentation operator 

From now on, and for all numerical experiments presented in

ection 5 , the gravity g is assumed to aligned with the Oz axis.

roblem (3.2) is therefore an one-dimensional problem, which can

e written as an instance of the generic one-dimensional nonlinear

onservation law (using θ = θ (z, t) as fs i ): 

∂θ

∂t 
+ 

∂ f (θ ) 

∂z 
= 0 , (4.5) 

here 

f (θ ) = −κv stokes θ

(
1 − θ

θmax 

)
. (4.6) 

Let us consider one column of elements of C h , corresponding to

he fixed indices ( i, j ), and denote by θn 
i jk 

the value of the approx-

mation θn in the cell ( i, j, k ). Let us also note N Z the number of

ells in the z-direction in the column ( i, j ). We use a time-explicit

nite volume method, namely the Godunov scheme, to solve (4.5) :

or k = 1 , . . . , N Z , we set θn +1 / 2 
i jk 

as 

n +1 / 2 

i jk 
= θn 

i jk + 

τ̄ n 

h z 

(
F i j,k −1 / 2 − F i j,k +1 / 2 

)
, (4.7) 

here τ̄ n is the largest time step such that τ̄ n ≤ τ n , and

ax 0 <ξ< fs CR 
| f ′ (ξ ) | · τ̄ n ≤ h z (potentially determined via sub-

terations), and F i j,k +1 / 2 is the flux between the cells k and k + 1
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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iven by 

 i j,k +1 / 2 = 

⎧ ⎨ 

⎩ 

min 

θn 
i j,k 

≤ξ≤θn 
i j,k +1 

f (ξ ) , if θn 
i j,k 

≤ θn 
i j,k +1 

, 

max 
θn 

i j,k +1 
≤ξ≤θn 

i j,k 

f (ξ ) , if θn 
i j,k +1 

≤ θn 
i j,k 

, 
(4.8) 

elationship (4.8) requires an optimisation problem to be solved

etween each consequent cells. However, if the flux has a single

inimum at a point denoted by ω, and no local maxima within

he ]0 , fs CR [ interval (which is the case with (4.6) by convexity),

e have the following property: 

 i j,k +1 / 2 = max 
(

f ( max (θn 
i j,k , ω)) , f ( min (θn 

i j,k +1 , ω)) 
)
. (4.9) 

his relationship allows a fast computation of the fluxes. On the

op and bottom of each column, from (4.6) , zero flux conditions

re imposed, namely F i j, 1 / 2 = F i j,N Z +1 / 2 = 0 . The sedimentation step

llows to obtain a prediction fs n +1 / 2 
i 

of the sediment concentration,

hich is corrected in the advection step below. 

Other fluxes (instead of (4.6) ) have been suggested in the lit-

rature for the simulation of sediment deposition, e.g. [21,22] . An

pproximate Riemann solver, such as the one introduced in [26] ,

ay have to be considered for those cases. 

If the gravity is not aligned with one of the coordinate axis, we

ave to consider a 3D scalar hyperbolic problem instead of (4.5) ,

nd adapt the numerical techniques, for instance by solving two

dditional flux-differences problem like (4.7) , one per additional

pace dimension. 

.4. Advection operator 

Equations (3.6) –(3.8) are implemented on the structured grid

 h , using, at time t n , constant values within each cell C ijk . More

recisely, the algorithm consists in moving the cell ( ijk ) along
n v n +1 / 2 

i jk 
, and conservatively redistributing the transported quan-

ities, ϕ 

n 
i jk 

, fs n +1 / 2 
i jk 

and v n +1 / 2 
i jk 

, into the overlapped cells (propor-

ionally to the volume intersected by the transported cell and the

verlapped cells). 

In order to enhance the quality of the approximation ϕ 

n 
i jk 

of the

olume fraction of liquid, and reduce the numerical diffusion, we

se a variation of the heuristic SLIC algorithm inspired by Noh and

oodward [27] to reduce the numerical diffusion of the front. De-

ails can be found in [17] . 

In order to avoid the artificial compression of the fluid and/or of

he sediment concentration (i.e. when ϕ 

n +1 
i jk 

> 1 or fs n +1 
i jk > fs CR for

ome ( ijk )), a post-processing technique redistributes the excess of

iquid and solid fractions from over-filled cells to non-full cells. Re-

ated to global repair algorithms [28] , this decompression technique

roduces final values ϕ 

n +1 
i jk 

(resp. fs n +1 
i jk ) which are between zero

nd one (resp. zero and fs CR ). Details can be found in [17] . 

.5. Projection on the finite element triangulation T H 

Once values ϕ 

n +1 
i jk 

, fs n +1 
i jk and v n +1 

i jk 
have been computed on C h ,

he approximated fields are interpolated at the vertices (and pos-
method for the numerical simulation of sediment transport with 
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(  

s  
sibly at the barycenter when projecting the velocity) of each tetra-

hedra K of the mesh T H , in order to restart the next time step with

the Stokes problem. The volume fraction of liquid at the vertex P
is computed by considering all the cells in the tetrahedra that are

adjacent with P: 

ϕ 

n +1 
H (P) = 

∑ 

K, P∈ K 
∑ 

C i jk ∈ K ϕ 

n +1 
i jk 

· dist (C i jk , P) −2 ∑ 

K, P∈ K 
∑ 

C i jk ∈ K dist (C i jk , P) −2 
. (4.10)

If the point considered is the barycenter of a tetrahedron K , the

formula is modified to account only for the element K and not the

adjacent tetrahedra. 

When the values of ϕ 

n +1 
H 

are available at the vertices of T H , the

liquid region �n +1 
H 

is defined as follows: an element of the finite

element mesh T H is said to be liquid if (at least) one of its ver-

tices P has a value ϕ 

n +1 
P 

> 0 . 5 . The computational domain �n +1 
H 

is

defined as the union of all liquid elements. 

The approximations ρn +1 
H 

, μn +1 
H 

and αn +1 
H 

are computed on the

finite element mesh in order to solve (4.3) . More precisely, piece-

wise constant approximations of those quantities are first com-

puted on the structured grid C h following (2.4) –(2.6) , based on

the piecewise constant approximations of the sediment concentra-

tions that are obtained on the grid of cells after the advection step.

These values are then interpolated on the finite element mesh to

obtain piecewise constant approximations of the physical proper-

ties. For instance, the approximation of the density is given by: 

ρn +1 
H 

∣∣
K 

= 

∑ 

C i jk ∈ K ρ
n +1 
i jk 

· dist (C i jk , B) −2 ∑ 

C i jk ∈ K dist (C i jk , B) −2 
, (4.11)

where B is the barycentric center of element K . Similar relation-

ships apply for μn +1 
H 

and αn +1 
H 

, to obtain piecewise constant ap-

proximations of those quantities on the finite element mesh T H . 
Under the CFL condition ( 

max | | v H | | 2 τ
h 

≤ C CF L ), and provided that

H 	 3 h − 5 h, the overall convergence rate of the numerical method

is order one. Thus, when dividing H, h and τ by two, the error

should be divided by two. 

5. Numerical experiments 

Numerical experiments are detailed in the sequel to validate the

numerical approach, to benchmark the computational results with

experiments, and to discuss the limits of the underlying physical

models. 

5.1. Sedimentation of polystyrene particles in a still fluid 

The goal of the first experiment is to validate the numerical

treatment of the sediment operator in the multiphysics problem,

and confirm the convergence of the method when the discretiza-

tion parameters tend to zero. 

In order to do so, let us consider the sedimentation of sus-

pended, mono disperse ( M = 1 ), polystyrene particles in a tank

of silicon oil. The particles properties are d ∗ = 290 [μm] and

ρp = 1 . 05 [g cm 

−3 ]; the silicon oil has μl = 0 . 02 [Pa s]

and ρl = 0 . 95 [g cm 

−3 ]. The dimensions of the tank are

2.5 × 0.05 × 10 [cm 

3 ]. A mixing procedure was used to obtain a

well-mixed, very dense, liquid mixture of uniform distribution

fs (0) = 0 . 48 in the bottom half of the domain ( z ≤ 5.55 [cm]). The

maximal solid fraction is fs CR = 0 . 6 , the cohesion parameter is

fs CO = 0 . 5999 , ε = 0 . 4 , and K = 1 . 

This sedimentation process has been investigated in [21] with a

comparison between a 1D model and experimental results, and in

[29] with a multiphase 2D model. 

If we consider the parabolic flux (2.10) , and the corresponding

analytical prototypical problem for θ ∈ (0, θmax ), 

∂θ

∂t 
+ 

∂ 

∂z 
( αθ( θ − θmax ) ) = 0 , in R , 
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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ith α = κv stokes /θmax , θmax = fs CR , and with a discontinuous ini-

ial solution that reads: 

(t = 0) = 

{ 

θ+ = 0 , z ≥ 0 = z 0 
θ− = 0 . 48 , 0 ≥ z ≥ z −

θmax = 0 . 6 , z − ≥ z. 

n such case, an analytical solution can be obtained explicitly, and

e obtain the development of two shockwaves, with shock speeds

espectively equal to −0 . 12 and +0 . 48 . The intersection of the two

hocks takes place at ( t � , z � ), with 

 

� = z − + α0 . 48 t � = α(−0 . 12) t � , 

hich leads to (t � , z � ) = (1084 . 0 , 0 . 044) in the case of this partic-

lar experiment. 

Fig. 4 shows the snapshots of the sediment concentration at dif-

erent times for our model with the parabolic flux ( κ = 1 ). The nu-

erical results show indeed the evolution of the two interfaces:

ne that separates the clear fluid and the mixed fluid and an-

ther one between the mixed fluid and the fluid saturated with

ediments. Fig. 5 illustrates the positions of these interfaces with,

n particular: i) a comparison with [29] , in which experimental

ata and simulations are compared with a 2D multiphase model,

i) a comparison with the analytical solution derived previously,

nd iii) the evolution of the positions of these interfaces when

he discretization parameters tends to zero. For the convergence

tudy, we consider three discretizations, respectively, with: (i) H =
 . 00 6 638 , h = 0 . 001 , and τ = 0 . 01 [s] (so-called coarse mesh);

ii) H = 0 . 004978 , h = 0 . 00075 , and τ = 0 . 0075 [s] (intermediate

esh); and (iii) H = 0 . 003319 , h = 0 . 0 0 05 , and τ = 0 . 005 [s] (fine

esh). These results show not only a very good agreement of the

omputational results with existing ones, but also the convergence

f the method when the discretization parameters tends to zero. 

In order to quantitatively assess the convergence of the approx-

mated solutions, we define two error estimates. The first estimate

s based on the approximation error on the time trajectories of the

nterfaces (and the final time); the second is based on the L 1 error

n the solution of the hyperbolic equation. Namely: 

 1 = | | z 1 − z 1 h | | L 2 (0 ,t � ) + | | z 2 − z 2 h | | L 2 (0 ,t � ) + | t � − t h | , 
 2 = | | fs − fs h | | L 1 (�) , 

here z 1 (t) = z − + α0 . 48 t (resp. z 2 (t) = α(−0 . 12) t) denote the

ime evolution of the lower and upper interfaces, z 1 h , z 2 h their re-

pective numerical approximations, and t � the exact time of in-

ersection of the two trajectories. The position of the interfaces

 1h ( t ) and z 2h ( t ) are computed on the grid C h as follows. The po-

ition z 1h ( t ) is given by the vertical position of the center of the

rst cell (swept from bottom to top) such that fs n +1 
i jk > fs CR − ε P ,

here ε P = 10 −5 . Reciprocally, the position z 2 h( t ) is given by the

ertical position of the first cell (swept from top to bottom) such

hat fs n +1 
i jk < ε P . Fig. 6 illustrates the convergence of these estimates

hen the discretization parameters h, H and τ tend to zero, and

hows an appropriate first order convergence order. 

.2. Erosion by an impinging liquid jet 

In order to validate the numerical algorithm for the mul-

iphysics model, we consider the benchmark simulation of the

rosion of a immersed granular bed by an impinging liquid jet

erpendicular to the surface of the consolidated sediment. We

onsider this erosion process as described in [30,31] . The ex-

eriment consists of a bed load of non-cohesive sediments, ini-

ially at rest at the bottom of a parallelipidedic domain of size

.495 × 0.032 × 0.2 [m 

3 ], as illustrated in Fig. 7 . 

The bed load on non-cohesive sediment is composed by sand

with particles of diameter 4 . 0 · 10 −4 [m]); the dry density of the

and particles is 2500 [kg m 

−3 ], while the bulk density is that
method for the numerical simulation of sediment transport with 
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Fig. 4. Numerical simulation of the sedimentation of polystyrene particles. Snapshots of the solid fraction fs . 

Fig. 5. Numerical simulation of the sedimentation of polystyrene particles. Time 

evolution of the two interfaces, including i) a comparison with [29] – experimen- 

tal and numerical data –, ii) a comparison with the analytical solution, and iii) a 

convergence study when the discretization parameters tends to zero. 

Fig. 7. Erosion by an impinging liquid jet. Sketch of the geometrical domain and 

numerical setup. 

o  

a  

d  

c  

c  

o  

Fig. 6. Numerical simulation of the sedimentation of polystyrene particles. Convergence 

estimates E 1 (left) and E 2 (right) when h → 0. 

Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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f water, i.e. 10 0 0 [kg m 

−3 ]. The computational domain is actu-

lly smaller than the physical domain, and formed by a parallelipi-

edic domain of size 0.2 × 0.004 × 0.135 [m 

3 ]. The initial conditions

onsist of a domain entirely filled with liquid. The sediment con-

entration is maximal (i.e. fs CR = 0 . 63 ) when z ≤ 0.05 [m] and zero

therwise. The water is vertically injected on the top of the do-
study when the discretization parameters tends to zero. Convergence of the error 

method for the numerical simulation of sediment transport with 
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Fig. 8. Erosion by an impinging liquid jet. Snapshots of the numerical solution (sed- 

iment position and velocity field) at times t = 0 , 0 . 45 and 4.0 [s]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Erosion by an impinging liquid jet. Determination of the optimal time step 

via the CFL criterion. 
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main with a velocity following a Poiseuille profile 1 . 85 · 10 5 (x −
0 . 102)(x − 0 . 098) [m/s], on the inlet of size 0.004 × 0.004 [m 

2 ] (so

that the maximal velocity is 7 . 4 · 10 −1 [m/s]). This corresponds to a

Reynolds number of Re � 630, where Re = 

ρl U J b 

μl 
, and U J denotes the

mean velocity of the inflow velocity, b is the diameter of the injec-

tion tube, and μl (resp. ρ l ) is the pure water viscosity (resp. den-

sity). The liquid can exit at the top of the domain (to compensate

for the liquid injected), so that the domain is full at all times. The

boundary conditions on the remaining part of the boundary of the

domain are homogeneous Dirichlet boundary conditions, except for

slip boundary conditions on the lateral walls. The water jet erodes

the sand bed to create a hole of width D and depth H . This numer-

ical experiment is used to study the properties of the algorithm, to

validate the mesh convergence of the algorithm, and to calibrate

the numerical parameters of the model. Fig. 8 illustrates snapshots

of the solution, in particular the sediment profile at various times,

and illustrates the stationary regime of the flow velocity. 

First, let us consider the grids containing 267,520 finite ele-

ments and 48,132 vertices in T H , and 1,071,360 cubic cells in C h ,
and obtain the appropriate value of the time step. The value of the

time step allows to define a CFL number for the simulation that
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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oth allows to maintain stability conditions, and is large enough

o minimize the computational effort. Numerical experiments have

hown that a CFL number equal to 6 ( τ = 0 . 003 [s]) is appropri-

te to balance those effects; Fig. 9 illustrates that this value is the

alue that provides a less diffusive solution. 

Fig. 10 shows the time evolution of the depth H and width D of

he eroded hole respectively, and confirms that the erosion process

as reached a stationary state after roughly T = 6 [s], time suitable

or all the simulations in the sequel. 

In order to study the convergence of the solution when the dis-

retization parameters tend to zero, we consider three discretiza-

ions, respectively, with: (i) 157,052 finite elements and 28,115

ertices in T H ( H = 0 . 00135 ), and 634,880 cubic cells in C h ( h =
 . 0 0 054 ), τ = 0 . 01 [s] (so-called coarse mesh); (ii) 490,866 finite

lements and 86,051 vertices in T H ( H = 0 . 0 0 09 ), and 2,142,720 cu-

ic cells in C h ( h = 0 . 0 0 036 ), τ = 0 . 0 06 [s] (intermediate mesh);

nd (iii) 1,133,868 finite elements and 196,506 vertices in T H 
 H = 0 . 0 0 0675 ), and 5,079,040 cubic cells in C h ( h = 0 . 0 0 027 ), τ =
 . 005 [s] (fine mesh). Fig. 11 illustrates the profile of the water-

and interface after T = 0 . 8 [s], and shows that convergence of the

umerical approximations is reached when the mesh sizes tend to

ero. 

From now on, we consider the intermediate mesh and pro-

eed to the calibration of the parameters involved in the model.

amely, the calibration of the model relies on determining the val-

es of the numerical parameters ε (the regularization parameter

n the Carman-Kozeny coefficient), and fs CO (the cohesion thresh-

ld). Numerical experiments have shown that optimal values are

iven by ε = 10 −9 and fs CO = 0 . 62 (with fs CR = 0 . 63 ). The choice of

hese values is based on the best fit with experiments provided in

30,31] , as illustrated in the sequel for these optimal values. 

The numerical results obtained with the proposed method are

ompared with experimental results from [30,31] . Fig. 12 illustrates

he values of the width D and depth H of the eroded hole as a

unction of the inlet velocity magnitude. The results are presented

n the same fashion as in [31] , namely by expressing the nor-

alized quantities ( D/ (L − λ) and H/ (L − λ) , where λ = 10 b is a

uggested correction of the distance L between the inlet and the

and interface), as a function of the erosion number E c (defined

s E c = U J (b/ (L − λ)) 1 / 2 ( ( ρs 
ρl 

− 1) || g || 2 d ∗) −1 / 2 
). In agreement with

31] , we consider inflow velocities inducing Reynolds numbers be-

ween Re = 630 and Re = 1890 . Results in Fig. 12 (first row) show

hat the higher the Reynolds number, the deeper and wider the

roded hole. The regression lines D/ (L − λ) = 0 . 55 + 1 . 4(E − 1) and

/ (L − λ) = 0 . 7(E − 1) , which are illustrated on the figures, are ex-

racted from [31] , compare well with the computational results,

nd validated our approach for such experiments. The second row

f Fig. 12 show the same result when λ = 5 b is taken as the cor-

ection factor, which shows the sensitivity of the post-processed

esults with respect to post-processing choices. 
method for the numerical simulation of sediment transport with 
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Fig. 10. Erosion by an impinging liquid jet. Left: time evolution of the numerical approximation of the hole width D . Right: time evolution of the numerical approximation 

of the hole depth H . 

Fig. 11. Erosion by an impinging liquid jet. Convergence of the approximated solu- 

tion when the discretization parameters tend to zero. Illustration of the sediment- 

water interface. 
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.3. Plunge pool scour 

The second experiment is the time evolution of plunge pool

cour, caused by an inclined impinging jet of water on a sedi-

ents bed. The impact of the inclined jet into the sediments cre-
ig. 12. Erosion by an impinging liquid jet. Numerical approximation of the width D an

egression lines are extracted from [31] . First row : λ = 10 b; second row: λ = 5 b. 
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tes a pool scour and a ridge with the transported sediments. As

ighlighted in [32–34] , such jets provoke turbulence in the flow,

ut eventually converge to steady state conditions for the scour

epth and ridge height. Experimental results have been presented

n [33,34] , while simulations with Flow-3D have been validated in

32] . 

We consider the full 3D numerical setup used in [32] and il-

ustrated in Fig. 13 . The experiment consists of a bed load of non-

ohesive sediments, initially at rest at the bottom of a parallelipi-

edic domain of size W × w e × L = 1 . 9 × 0 . 5 × 0 . 65 [m 

3 ]. Let us

onsider three discretizations: the fine one contains 76,380 finite

lements and 13,549 vertices in T H , and 1,267,200 cubic cells in C h ,
ith τ = 0 . 0085 [s] (while the intermediate one contains 689,920

ubic cells, with τ = 0 . 01 [s], and the coarse one contains 483,840

ubic cells, with τ = 0 . 012 [s]). 

The bed load on non-cohesive sediment is composed by nearly

niform particles of diameter d ∗ = 0 . 00125 [m]; the dry density of

he particles is ρs = 1400 [kg m 

−3 ], while the bulk density is that

f water, i.e. ρl = 10 0 0 [kg m 

−3 ]. The initial conditions consist of a
d depth H of the eroded hole, as a function of the inlet velocity magnitude; the 
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Fig. 13. Plunge pool scour by an inclined impinging liquid jet. Sketch of the geo- 

metrical domain and numerical setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Plunge pool scour by an inclined impinging liquid jet. Snapshots of the nu- 

merical solution (sediment position and velocity field) at times t = 5 , 10 and 30 [s] 

(top to bottom). 

Table 1 

Flume bi-disperse lock-exchange experiment: composition (reparti- 

tion of sediments between coarse and fine particles) of the sand 

mixture for the seven experiments, labeled A through G [35] . 

Experiment A B C D E F G 

% coarse (69 μm) 0 20 40 50 60 80 100 

% fine (25 μm) 100 80 60 50 40 20 0 

 

t  

d  

O  

w  

a

 

t  

e  

e  

v  

l  

l  

e  

t  

t  

C

 

p  

m  
domain entirely filled with liquid, with zero velocity. The sediment

concentration is maximal (i.e. fs CR = 0 . 6 ) when z ≤ 0.3 [m] and zero

otherwise. The cohesion threshold is given by fs CO = 0 . 59 , and ε =
10 −9 . 

The water is injected from the top of the domain with a jet di-

ameter b = 0 . 035 [m] and a jet impact angle α = 45 ◦. The jet dis-

charge Q is 3.5 [L/s]. This results in a diagonally injected water jet

with velocity u in = ( 4 . 04 , 0 , −4 . 04 ) T [m/s]. The water level h 0 is

kept such that the tail water ratio T = 

h 0 
b 

is equal to 5.9. 

The boundary conditions on the remaining part of the bound-

ary of the domain are homogeneous Dirichlet boundary conditions,

except for slip boundary conditions on the symmetry wall. We in-

troduce the dimensionless time τ = (g ′ d) 
1 
2 (t/b) where t denotes

the time [s] and g ′ = || g || 2 (ρs − ρl ) /ρl denotes the reduced grav-

itational acceleration. Computational restrictions being inevitable,

the end of the calculations is not that of the experiments. It is,

however, whenever the steady state of the scour characteristics is

observed. 

Fig. 14 illustrates snapshots of the solution obtained with the

intermediate mesh, in particular the sediment profile at various

times. The scour depth D and the nearby ridge H are developing

until a state where they only vary in minor orders after about

40 [s]. Fig. 15 illustrates the time evolution of the stationary di-

mensionless depth D d = D/b, and the dimensionless ridge height

H d = H/b, as a function of the dimensionless time τ . Results are

post-processed as in [32] , and compared with experimental results.

We observe that, albeit some numerical diffusion appears (espe-

cially for coarser meshes, which is not surprising for 3D calcula-

tions), the slope of the graph is adequately reproduced; further-

more, the numerical results improve when the mesh discretization

parameters tend to zero. 

5.4. Flume bi-disperse gravity currents 

In order to validate our numerical method with poly-disperse

sediments, we consider a miscible flume lock-exchange experiment

considered in [35] . It consists of increasing the density of a fluid

with a fixed volume of fine silicon carbide particles. This fluid is

then released into clear water by removing a separating lock gate.

The dimensions of the glass tank are 5.7 [m] long and 0.2 [m]

wide; it is filled up to a water height of 0.4 [m], as illustrated in

Fig. 16 . 

In this experiment we consider two ( M = 2 ) populations of par-

ticles with different sizes, both with density ρi = 3217 [kg m 

−3 ],

but with average particle diameters of 25 and 69 [μm] respectively.

In all numerical and practical experiments, the total mass of parti-

cles is equal to 180 [g], initially suspended in 16 [l] of water. Seven

experiments are considered, the proportions of coarse and fine par-

ticles varying as specified in Table 1 . 
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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This experiment is a pseudo-2D experiment; compared to [35] ,

he domain is reduced here to a width of 0.02 [cm] along the Oy

irection for computational purposes (the dimensions in Ox and

z directions remain unchanged). The upper free-surface between

ater and air is not considered and pure slip boundary conditions

re applied instead at the top boundary of the domain. 

Simulations are performed on a (relatively coarse) discretiza-

ion ( H = 20 [mm], h = 4 [mm], 53,740 tetrahedra in the finite el-

ment mesh and 142,500 cells in the structured grid). Numerical

xperiments are compared with experiments reported in [35] , for

arious configurations of CFL and boundary conditions. In particu-

ar, we compare the sediment front evolution between dense and

ight miscible liquids (see also [9] for a similar approach for a lock-

xchange experiment when the two liquids are immiscible). The

ime step is adapted automatically to ensure that the CFL condi-

ion 

max | | v H | | 2 τ
h 

≤ C CF L (where C CFL is a given threshold – so-called

FL number ) is satisfied. 

The experimentalists wait at least 450 [s] to ensure that the de-

osition of all particles is achieved. When using the characteristics

ethod for the advection of the velocity, one has to consider large
method for the numerical simulation of sediment transport with 
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Fig. 15. Plunge pool scour by an inclined impinging liquid jet. Comparison of the time evolution of dimensionless ridge height H d and scour depth D d derived from the 

experiments and those derived from numerical calculations for a coarse, intermediate, and fine meshes. 

Fig. 16. Flume bi-disperse lock-exchange experiment: setup and dimensions. 

Fig. 17. Flume bi-disperse lock-exchange experiment: comparison of experimental 

and numerical results. Illustration of the relationship between the distance reached 

by the particles and the grain size, at two given times T = 72 [s] and T = 111 [s]. 
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Fig. 18. Flume bi-disperse lock-exchange experiment: simulation results. Relation- 

ship between the distance reached by the particles and the total deposit density. 

Fig. 19. Flushing of sediments. Sketch of the geometrical domain and numerical 

setup (similar as in [36] ). 
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FL numbers ( C CF L 	 3 − 6 numerically), and thus large time steps,

o guarantee the efficiency and accuracy of the method over this

ime frame [17,24] . 

Simulations have been achieved with the adjusted parabolic

edimentation flux. Fig. 17 represents the computed location of

he sediment flow front reached at fixed times, which compares

ery well with measurements from [35] . According to simulation

esults, the dependency of the flow velocity upon grain size is

trongly nonlinear. 

A comparison of the deposit density is illustrated in Fig. 18 ; it

hows the total deposit density (for fine and coarse particles), quan-

ified by the concentration of particles on the boundary of the tank

fter 450 [s] of simulation for all experiments. The general trends

nd orders of magnitude are accurately tracked, and compare well

ith the corresponding graph from [35] . 
Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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.5. Sediments flushing 

We discuss a last numerical experiment, in order to define

he range of capability of the physical model, but also illustrate

ts limitations. We consider a flushing process as described in

36] (and references therein). The importance of flushing tech-

iques has been described, e.g., in [37] , for both industrial applica-

ions in dams, and natural configurations in rivers and lakes. The

xperiment consists of a bed load of non-cohesive sediments, ini-

ially at rest at the bottom of a channel, as illustrated in Fig. 19 . It

s realized in a laboratory flume of width 0.2 [m]. The bed load of

on-cohesive sediment is composed by sand (with particles of di-

meter d ∗ = 7 . 6 · 10 −4 [m]); the dry density of the sand particles is

s = 2650 [kg m 

−3 ], while the bulk density is ρl = 1750 [kg m 

−3 ].

nder vertical gravity forces, the liquid flows out of the domain via

he valve on the right, and the sediment is flushed by the rapid

ow. 
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Fig. 20. Sediments flushing. Convergence of the numerical solution when discretization parameters tend to zero. Top: sediment profiles at time T = 2 . 5 [s] for various mesh 

sizes. Bottom: time evolution of the position of the sediment front. 

Fig. 21. Sediments flushing. Comparison of sediments profiles at time T = 48 . 0 [s] between the computed solution and the experimental results from [36] . 
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No inflow condition are enforced, but an outflow condition, by

imposing a discharge of q 0 = 0 . 0079 [m 

3 /s] on the bottom right

part of the domain (which corresponds to an outflow velocity of

0.132 [m/s]). A free surface between liquid and air lies at the top

of the domain, such that the domain is initially full but the liq-

uid level decreases as liquid escapes. Slip boundary conditions are

imposed everywhere else. Initially the liquid and sediments are at

rest. 

We first evaluate the convergence of the numerical method,

when the discretization parameters (time step and mesh size) de-

crease. In order to do so, we run a simulation over 2.5 [s]. We con-

sider three discretizations: (i) 5592 elements/1,144 nodes/646,800

cells, (ii) 32,710 elements/6,237 nodes/5,174,400 cells, and (iii)

218,554 elements/39,430 nodes/41,395,200 cells), with correspond-

ing time steps τ = 0 . 01 , 0 . 003 , 0 . 001 [s] respectively. Fig. 20 shows

the convergence of the solution when the time step and mesh

sizes decrease. The top figure illustrates the sediment profile after

T = 2 . 5 [s] for the three meshes, while the bottom figure visual-

izes the position of the sediment front (position of the first par-

ticle of sand flushed to the right) for the three meshes. Based on

both figures, numerical experiments show convergence of the nu-

merical solution, for both the sediment profile and the position of

the front, when the discretization parameters tend to zero. 

In a second step, numerical results are compared with experi-

mental results in [36] . We extend the simulation until T = 48 . 0 [s].

Fig. 21 illustrates a comparison between computed and measured

sediment profiles. Computed results do not provide profiles with

exactly the same slope for the sediment bed as that of experimen-
tal results. We infer that this difference comes from the limited i  

Please cite this article as: S. Boyaval et al., A semi-Lagrangian splitting 
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hysical model considered here, which does not include the resus-

ension effects of the sediments in the liquid. These effects have

een highlighted in [36] , when considering the so-called Shields

odel, and have been deemed to be necessary to match experi-

ental results. 

. Conclusion and perspectives 

A three-dimensional numerical model for the transport and

edimentation of poly-dispersed particle populations within a

ewtonian flow with free surfaces has been designed. The oper-

tor splitting strategy, and the appropriate mix of finite elements,

nite volumes and structured grids, has proved to be very flexible

o incorporate various numerical solvers. The model has been cali-

rated versus experiments; the numerical results agree with exper-

mental measurements for pure sedimentation, erosion processes

nd impinging jets. However, a more complete physical model for

he sediments resuspension is missing to adequately model flush-

ng experiments for instance. Future perspectives will thus include

he extension of the model with more complete physical compo-

ents such as re-suspension of cohesive particle bed, the intro-

uction of interactions between populations, and the simulation of

eal-life 3D topographies. 
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