Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Résumé
In the context of home healthcare services, patients may need to be visited multiple times by different healthcare specialists who may use a fleet of heterogeneous vehicles. In addition, some of these visits may need to be synchronized with each other for performing a treatment at the same time. We call this problem the Heterogeneous Fleet Vehicle Routing Problem with Synchronized visits (HF-VRPS). It consists of planning a set of routes for a set of light duty vehicles running on alternative fuels. We propose three population-based hybrid Artificial Bee Colony metaheuristic algorithms for the HF-VRPS. These algorithms are tested on newly generated instances and on a set of homogeneous VRPS instances from the literature. Besides producing quality solutions, our experimental results illustrate the trade-offs between important factors, such as CO2 emissions and driver wage. The computational results also demonstrate the advantages of adopting a heterogeneous fleet rather than a homogeneous one for the use in home healthcare services.