
Instantaneous Centre of Rotation Based Motion Control
for Omnidirectional Mobile Robots with Sidewards Off-centred Wheels

Lionel Claviena,∗, Michel Lauriab, François Michauda

aUniversité de Sherbrooke, Sherbrooke QC, Canada
bUniversity of Applied Sciences Western Switzerland (HES-SO), Geneva, Switzerland

Abstract

AZIMUT-3 is a nonholonomic omnidirectional platform design using sidewards off-centred compliant wheels. This design
makes it possible to experiment with the use of the chassis’ instantaneous centre of rotation (ICR) for motion control. Research
on ICR-based motion controllers has focused on handling structural singularities and misses a more general consideration of
the chassis’ kinematic and physical constraints like steering, velocity and acceleration constraints. This paper presents the
design of an ICR-based motion controller for AZIMUT-3. Leveraging a new parametrization of the motion state space and
the associated representation in R3 (collectively referred to as the H representation) and adapting a time scaling principle
initially developed for manipulator trajectories, the designed motion controller is able to handle actuators coordination and
their physical limits, as well as structural singularities. Results of tests done with the platform are presented, demonstrating
the applicability of the proposed motion controller in efficiently handling these issues.

Keywords: instantaneous centre of rotation (ICR), nonholonomic omnidirectional robots, motion control, kinematics,
wheeled robots

1. Introduction

Nowadays, a variety of robotic platforms are using om-
nidirectional locomotion mechanisms. Many use omni-
directional wheels like the Mecanum wheel [1] used on
ARMAR-III [2] or the Segway RMP [3], which provide
true omnidirectional motion but bring limitations in terms
of odometry precision, vibrations and obstacle crossing [4].
Another common solution is to use steerable wheels, which
provides accurate odometry and lower mechanical com-
plexity [5]. Different types of steerable wheels have been
designed, each with specific kinematic properties. The
centred wheel is the simplest type and is used by HER-
MES [6] and Rollin’ Justin [7, 8]. The caster wheel is the
most common one, as used by Corsero [9], Dynamaid [10],
Meka B1 [11] and Willow Garage PR2 [12], and enables
pseudo-holonomic motion. Both have in common a steer-
ing axis lying within the rolling plane of the wheel. A
third type is the sidewards off-centred steerable wheel, used
by platforms based on Neobotix MPO-700 [13] (like Care-
O-bot 3 [14, 15], DESIRE [16] and [17]) and Johnny-
0 [18, 19], called AZIMUT wheel [20]. As illustrated by

∗Corresponding author
Email address: l.clavien@ieee.org (Lionel Clavien)

sa

pa

Figure 1: The AZIMUT-3 platform alongside an illustration of an AZ-
IMUT wheel with its steering axis (sa) and propulsion axis (pa). Also
visible are Optotrack wireless optical trackers (dashed rectangle) placed on
top of the platform.

Fig. 1 and unlike the caster wheel, the steering axis of an
AZIMUT wheel lies outside of its rolling plane. This creates
a kinematic coupling between steering and propulsion, i.e.,
any steering motion needs an appropriate propulsion mo-
tion, even without chassis motion.

Employing steerable wheels leads however to nonholo-
nomic platform designs, and the actuators then need to be
carefully coordinated to guarantee safe and precise mo-

Preprint submitted to Robotics and Autonomous Systems April 14, 2018

To be published in Robotics and Autonomous
Systems, 2018, 106, pp. 58-68,which should be
cited to refer to this work.

DOI: 10.1016/j.robot.2018.03.014

tion [5]. Using the chassis’ instantaneous centre of rotation
(ICR) and the motion around it is well suited to handle that
actuator coordination for platforms equipped with centred
and AZIMUT wheels [17, 21, 22, 23]. Amongst other ad-
vantages, it provides independent control inputs that can be
directly mapped to the platform’s degrees of freedom, which
should provide simple and efficient kinematic models, eas-
ing motion control.

Also shown on Fig. 1, AZIMUT-3 is a nonholonomic om-
nidirectional platform equipped with four AZIMUT wheels.
It is used as the mobile base of Johnny-0. Use of wheels
with a sidewards offset was motivated by three reasons: 1)
AZIMUT’s first prototype used tracks instead of wheels,
providing multi-modal locomotion capabilities [24]; 2) us-
ing compliant elastic actuators [25] for wheel steering al-
lows the platform to sense wrenches applied on the plat-
form [26] if such offset is present; and 3) it helps low-
ering the platform’s centre of gravity, considering that we
planned to use the platform with a humanoid torso [19].
This low centre of gravity design implies however that the
wheels cannot rotate completely around their steering axis.
AZIMUT-3 has therefore the limitation of having to stop for
the wheels to be reoriented when they come too close to the
chassis [27]: they then must do a 180◦ rotation to continue
with the intended trajectory. This process is referred to as a
wheel reconfiguration. In addition, steering and propulsion
actuators cannot provide infinite velocity or infinite acceler-
ation and thus set inherent limits on a wheel’s motion.

Handling all these constraints is a critical part of mo-
tion coordination, usually handled at planning time [27, 28]
or during trajectory tracking [29] using complex kinematic
models. A more generic solution would be to take these con-
straints into consideration at the motion control level. For
instance, Connette et al. [30] take actuators’ physical lim-
its into account at the motion control level using predictive
potential fields, but only to ensure bounds on the steering
velocities. Schwesinger et al. [22] and Sorour et al. [17]
take both steering velocity and acceleration bounds into ac-
count by constraining the ICR velocity and acceleration, but
do not take into account bounds on the propulsion.

In this paper, we present the design of an ICR-based real-
time motion controller for AZIMUT-3. Using a trajectory
time-scaling principle introduced by Hollerbach for indus-
trial robotic manipulators [31], our motion controller out-
puts commands that satisfy both velocity and acceleration
limits related to all actuators, taking into account the kine-
matic coupling of the wheels. It also handles the steering
limitations and structural singularities of the platform.

The paper is organized as follows. Section 2 presents the
state space representation used for the chassis’ motion and
the kinematic models of AZIMUT-3. Section 3 then details
the proposed motion controller and methods to address han-

dling of actuators’ physical constraints and platform singu-
larities. Section 4 presents results obtained using AZIMUT-
3.

2. Motion Modelling

The design of a motion controller starts by defining a mo-
tion model of the platform to associate motion of the chas-
sis with the individual actuators. Actuators are usually con-
trolled in position or velocity and this model is thus based on
the platform’s kinematics. Since the model depends on how
the motion is represented, the representation used is first de-
scribed, followed by the kinematic models of AZIMUT-3.

2.1. ICR-based Motion Representation

With omnidirectional robots, the ICR position may be lo-
cated anywhere in the motion plane [32]. Two-dimensional
Cartesian (R2) or polar (R × S) coordinates are then
natural choices for its parametrization, but this leads to
parametrization-induced singularities [33]. Motion control
being based on the kinematic models of the robot, which
depend on the parametrization chosen for its motion, these
parametrization-induced singularities needlessly complex-
ify motion control.

This is why a different parameterization of the motion
state space and a corresponding visualization, collectively
referred to as the H representation and illustrated on Fig. 2,
have been introduced in previous works [23, 27, 34]. The
main difference with other ICR-based representations [33,
35] is that the configuration space for the ICR position is
based on P2(R) (the real projective plane) instead of S2 or
R2. To ease visualization and computations, it is represented
in R3 as the set Λ of identified antipodal points on a unit
sphere centred at the origin. The sphere is parametrized
with three-dimensional Cartesian coordinates (noted (u v w)
in the {O,U,V,W} frame), which leads to a singularity-free
parametrization: any continuous motion of the chassis cor-
responds to a continuous trajectory in Λ. The motion around
the ICR, parametrized by R and noted µ, may be represented
by the spin of the oriented line going through the antipodal
points. The full configuration space for the chassis motion is
thus H = Λ ×R and one of its elements is noted ηηη = (λλλ µ)T ,
with λλλ = (u, v,w)T . λλλ+ and λλλ− are used to differentiate two
antipodal points from each other when needed.

Even though other ICR-based motion controllers ex-
ist [33, 35], to our knowledge no motion planner or tra-
jectory tracker directly generates ICR-based commands in-
stead of twist-based commands. Hence, conversions be-
tween the two representations are needed. Converting a
twist ξ̇ξξ = (ẋ ẏ θ̇)T into an ηηη can be done by considering the
geometry of motion as pictured on Fig. 2. Since the chassis

2

O
UV

W

λλλ+

λλλ−

ξ̇ξξ
⊥

XR
YR

ξ̇ξξ

µ

λλλ2

Figure 2: H representation with twist ξ̇ξξ and ICR position on the motion
plane λλλ2.

is a rigid body, its heading (given by the twist direction) is
perpendicular to the line linking the ICR position λλλ2 to the
chassis’ centre. The vectors λλλ and ξ̇ξξ⊥ = (−ẏ ẋ θ̇)T (ξ̇ξξ rotated
90◦ around the W axis) are thus collinear. In addition, mo-
tion around the ICR is directly proportional to the amplitude
of the twist. Conversion from ξ̇ξξ to ηηη is thus given by:

ηηη =
1
‖ξ̇ξξ‖

(
−ẏ ẋ θ̇ ‖ξ̇ξξ‖2

)T
(1)

The reverse conversion is given by:

ξ̇ξξ = µ
(
v −u w

)T
(2)

Equation (2) has no singularities and (1) only one structural
singularity: if there is no motion, ξ̇ξξ is null and no ICR can
be computed out of it.

2.2. Kinematic Models

Under the assumption that a wheel may be modelled as a
rigid body with no sliding at the contact point, a steerable
wheel is subject to two kinematic constraints: pure rolling
in the wheel’s motion direction, and no sliding in the per-
pendicular direction to that motion. By using the twist rep-
resentation, Campion et al. [32] have studied the kinemat-
ics of two specific variants of a steerable wheel, namely the
centred and caster wheels. Using the H representation, we
extend this study to the AZIMUT wheel, which leads to the
definition of AZIMUT-3 inverse and direct kinematic mod-
els.

2.2.1. Kinematic Constraints
Figure 3 illustrates the parameters of the AZIMUT wheel

with radius r and rotational velocity ϕ̇. There are four im-
portant frames of reference related to the wheel: the inertial
frame {I, XI ,YI}; the chassis’ frame {R, XR,YR}; the frame

I

R

A B

XI

YI

XR

YR

XA
YA

XB

YB

x

y l b

θ

α

β

Figure 3: Geometry of the chassis and steering mechanism.

{A, XA,YA} associated with the steering axis and making an
angle α with {R, XR,YR}); and the frame {B, XB,YB} associ-
ated with the wheel centre B and making an angle β with
{A, XA,YA}.

Let us define some shorthand notation. An orthogonal
matrix representing a rotation of angle δ is expressed in R2

as:

M2(δ) =

[
cos δ − sin δ
sin δ cos δ

]
(3)

Let us also define the following vectors in R3:

aaa = (cosα sinα 0)T (4a)

aaa⊥ = (− sinα cosα 0)T (4b)

sss = (l cosα l sinα 1)T (4c)

bbb = (0 0 b)T (4d)

lll = (0 0 l)T (4e)

aaa and aaa⊥ are the orthogonal projections on the sphere’s
equatorial plane of the basis vectors of {A, XA,YA}, and bbb
and lll are the characteristic lengths of the wheel (b = ‖ABABAB‖,
l = ‖RARARA‖) reported along the W axis (shown on Fig. 2). The
vectors (aaa−lll) and aaa⊥ define an orthogonal basis of the plane
going through the origin of the sphere and perpendicular to
the line through A, whose direction vector is sss, i.e.,

(aaa − lll) · aaa⊥ = 0 and (aaa − lll) × aaa⊥ = sss (5)

Thus, any linear combination of them lies in that plane, in
particular the two vectors:

sss⊥1 (β) = sin β(aaa − lll) − cos βaaa⊥ (6a)
sss⊥2 (β) = cos β(aaa − lll) + sin βaaa⊥ (6b)

As those vectors are orthogonal, the following holds:

ṡss⊥1 (β) = β̇sss⊥2 (β) and ṡss⊥2 (β) = −β̇sss⊥1 (β) (7)

The two kinematic constraints may be expressed by set-
ting the coordinates of the velocity vector vBvBvB of point B

3

in {B, XB,YB} to respectively 0 (no lateral sliding) and −rϕ̇
(pure rolling):

BvBvBvB = M−1
2 (α + β)RvBvBvB =

(
0
−rϕ̇

)
(8)

Under the rigid body assumption, the same velocity in
{R, XR,YR} may be computed as:

RvBvBvB =
d
dt

RIBIBIB =
d
dt

RIRIRIR +
d
dt

RRARARA +
d
dt

RABABAB (9)

and (8) becomes:

M−1
2 (α + β)M−1

2 (θ)
(

I ẋ
I ẏ

)
+ θ̇M−1

2 (β)
(

0
l

)
+ (θ̇ + β̇)

(
0
b

)
=

(
0
−rϕ̇

)
(10)

which, by using (1) and (6), may be rewritten in the H rep-
resentation as:[

sss⊥1 (β)T

(sss⊥2 (β) − bbb)T

]
λλλµ =

[
0

bβ̇ + rϕ̇

]
(11)

The system (11) accepts two sets of solutions for its first
equation: µ = 0, meaning that if there is no motion, there
cannot be any sliding; and

sss⊥1 (β) · λλλ = 0 (12)

expressing the fact that if there is motion, it must be done
with the ICR direction perpendicular to sss⊥1 (β), otherwise
lateral sliding will occur. The motion of the chassis is
thus constrained by the wheel and leads to the construc-
tion of nonholonomic robots. Since the steering angle is
expressed solely as a function of the ICR position and the
robot’s geometry, the H representation is well suited to ex-
press the motion state of nonholonomic wheeled robots like
AZIMUT. Indeed, by definition of sss⊥1 (β) in (6), the steering
angle β may be expressed as:

tan β =
aaa⊥ · λλλ

(aaa − lll) · λλλ (13)

and (6) may in turn be expressed solely as a function of the
ICR position and robot geometry:

sss⊥1 (β) = sss⊥1 (λλλ) and sss⊥2 (β) = sss⊥2 (λλλ) (14)

2.2.2. Inverse Kinematic Model
Deriving twice (11) and using (7), (12) and (14) leads to:

β̇ = − sss⊥1 (λλλ) · λ̇λλ
sss⊥2 (λλλ) · λλλ (15a)

β̈ = −2β̇sss⊥2 (λλλ) · λ̇λλ + sss⊥1 (λλλ) · λ̈λλ
sss⊥2 (λλλ) · λλλ (15b)

ϕ̇ =
(sss⊥2 (λλλ) − bbb) · λλλµ − bβ̇

r
(15c)

ϕ̈ =
(sss⊥2 (λλλ) − bbb) · (λ̇λλµ + λλλµ̇) − bβ̈

r
(15d)

Equations (15a) and (15b) associate motion of the ICR
with the corresponding steering velocity and acceleration,
while (15c) and (15d) associate motion around the ICR
with the corresponding propulsion velocity and accelera-
tion. These equations define the inverse kinematic model
of the AZIMUT wheel, where λ̇λλ, λ̈λλ and µ̇ are the inputs and
λλλ and µ are the states.

The coupling induced by the b offset of the AZIMUT
wheel is highlighted by (15c) and (15d). Indeed, (15c) may
be rewritten as:

ϕ̇ = ϕ̇p + ϕ̇s (16)

with

ϕ̇p =
(sss⊥2 (λλλ) − bbb) · λλλµ

r
and ϕ̇s = −b

r
β̇ (17)

ϕ̇p gives the propulsion axis velocity needed to enable chas-
sis motion and ϕ̇s gives the contribution needed to accom-
modate a non-null steering velocity β̇ without sliding. (15d)
may be rewritten in the same way.

The system (15) becomes singular when:

sss⊥2 (λλλ) · λλλ = 0 (18)

Since (12) must also hold, (18) is satisfied only when λλλ
is simultaneously perpendicular to sss⊥1 (λλλ) and sss⊥2 (λλλ) which,
by (5), means that λλλ is collinear with sss. The inverse kine-
matic model may thus be used as long as the ICR is not on
the wheel’s steering axis. Equation (13) has the same sin-
gularity: the steering angle cannot be uniquely determined
when the ICR is on the steering axis. In the remaining of
this section, the ICR is supposed not to be on a steering
axis. This structural singularity is dealt with by the motion
controller presented in Section 3.

The inverse kinematic model of a wheeled robot is made
of the set of its wheels’ inverse kinematic models. By con-
sidering only the actuators velocity and using the fact that

4

the wheels have the same geometry, the resulting inverse
kinematic model for AZIMUT-3 may be written as:[

β̇ββ
ϕ̇ϕϕ

]
=

[−C 0004×1
b
r C D

] [
λ̇λλ
µ

]
= J(λλλ)

[
λ̇λλ
µ

]
(19)

where

C =


1

sss⊥2,1(λλλ)·λλλ sss⊥1,1(λλλ)T

...
1

sss⊥2,4(λλλ)·λλλ sss⊥1,4(λλλ)T

 and D =


(sss⊥2,1(λλλ)−bbb)·λλλ

r
...

(sss⊥2,4(λλλ)−bbb)·λλλ
r

 (20)

and β̇ββ and ϕ̇ϕϕ represent the set of β̇ and ϕ̇ for all wheels.
sss⊥1,k(λλλ) and sss⊥2,k(λλλ) are the vectors sss⊥1 (λλλ) and sss⊥2 (λλλ) for wheel
k.

J is expressed solely as a function of the ICR position
and the robot’s geometry; the model is thus implementable
and usable to control the robot.

2.2.3. Direct Kinematic Model
Since J is full rank, it may be pseudoinverted to find λ̇λλ

and µ from the sensors’ readings. It requires having direct
access to the measure of the steering velocities β̇ββ. This is
however not the case with AZIMUT-3, where only the steer-
ing angles βββ are available. Yet, observation of the structure
of (19) shows that the coupling induced by the AZIMUT
wheel introduces redundancy in the model. Using the prop-
erties of the H representation, i.e., that motion of a point on a
sphere is constrained to be tangential to its current position,
this redundancy may be replaced by a single constraint:

λλλ · λ̇λλ = 0 (21)

(19) thus reduces to:[
0
ϕ̇ϕϕ

]
=

[
λλλT 0
b
r C D

] [
λ̇λλ
µ

]
= K(λλλ)

[
λ̇λλ
µ

]
(22)

Since AZIMUT-3 has four wheels, the system is overdeter-
mined in the considered case. It may then be solved for
λ̇λλ and µ by using a standard least squares method to get
AZIMUT-3’s direct kinematic model. As K depends on λλλ,
the model takes for granted that the ICR is already known
from the sensors’ readings. ICR estimation for platforms
using centred and AZIMUT wheeels can be done reliably in
real-time [23, 36].

3. Motion Control for AZIMUT-3

To emphasize the role of a motion controller, Fig. 4
sketches the global control architecture used on AZIMUT-
3. The motion controller receives commands for a desired

Motion controller

High-level controller

z−1

Low-level controllers

ηηηd or ξ̇ξξd ηηηe, ξξξe

βββc, ϕ̇ϕϕc
βββm(0),
ϕ̇ϕϕm(0)

βββm(t > 0),
ϕ̇ϕϕm(t > 0)

Figure 4: AZIMUT-3 global control architecture, with z−1 representing the
feedforward model used.

motion state (given as a motion around an ICR ηηηd or a twist
ξ̇ξξd) from a high-level controller described in [18] and sends
motion commands (βββc and ϕ̇ϕϕc) to the independent steering
and propulsion low-level controllers for each wheel. It also
gets from the low-level controllers the measured steering
and propulsion state (βββm and ϕ̇ϕϕm) and uses it to estimate the
current platform state ηηηe and to compute the odometry ξξξe,
which are sent back to the high-level controller.

To avoid input filtering that would lower command re-
sponsiveness, the current implementation of the motion con-
troller uses a feed-forward configuration, with the plat-
form’s actions modelled as an one-step delay:

βββm(t) = βββc(t − ∆t) (23a)
ϕ̇ϕϕm(t) = ϕ̇ϕϕc(t − ∆t) (23b)

where ∆t is the control step duration. The measured steering
and propulsion configuration (βββm(0) and ϕ̇ϕϕm(0)) is read from
the low-level controllers only at (re)initialization. The mo-
tion controller design, which ensures the commands βββc and
ϕ̇ϕϕc are guaranteed to be executable, and the performant low-
level controllers available onboard AZIMUT-3 motivated
this choice.

Three important questions arose when designing a mo-
tion controller for a platform like AZIMUT-3: Q1) how to
handle structural singularities such as an ICR on a steering
axis (18); Q2) how to handle differential constraints such
as actuator velocity limits; and Q3) how to handle algebraic
constraints such as steering limitations. Algorithm 1 gives
an overview of one step of the motion control algorithm de-
vised for AZIMUT-3, which addresses all these questions.

The motion controller has been split into five logical mod-
ules which are organized as pictured on Fig. 5 and are de-
scribed in the following subsections.

3.1. State Estimator
The State Estimator module first determines the current

ICR λλλe from βββm (using an adapted version of the algorithm

5

Algorithm 1 Overview of a control step.
1: procedure DoControlStep(βββm, ϕ̇ϕϕm, λλλd , µd ,∆t)
2: λλλe ← EstimateLambda(βββm)
3: µe ← EstimateMu(ϕ̇ϕϕm, λλλe)
4: ξξξe ← ComputeOdometry(λλλe, µe,∆t)
5: kb ← 1, backtrack ← 1
6: while backtrack do
7: (λλλ′, λλλ′′, µ′)← ComputeChassisMotion(λλλd , λλλe, µd , µe, kb)
8: (βββ′, βββ′′, ϕ̇ϕϕp, ϕ̇ϕϕ

′
p)← ComputeActuatorsMotion(λλλ′, λλλ′′, µ′)

9: (ṡl, ṡu, s̈l, s̈u)← ComputeScalingBounds(βββ′, βββ′′, ϕ̇ϕϕp, ϕ̇ϕϕ
′
p)

10: if ṡl ≤ ṡu ∧ s̈l ≤ s̈u then
11: backtrack ← 0
12: else
13: kb ← UpdateBacktrackingParameter(kb)
14: end if
15: end while
16: (ṡ, s̈)← ComputeScalingParameters(ṡl, ṡu, s̈l, s̈u)
17: (β̇ββ, β̈ββ, ϕ̈ϕϕp)← ScaleMotion(βββ′, βββ′′, ϕ̇ϕϕ′p, ṡ, s̈)
18: (βββc, ϕ̇ϕϕc)← IntegrateMotion(β̇ββ, β̈ββ, ϕ̇ϕϕp, ϕ̈ϕϕp,∆t)
19: end procedure

S

Pa
th

Pl
an

ne
r

K
in

em
at

ic
M

od
el

Tr
aj

ec
to

ry
Sc

al
er

In
te

gr
at

or

S

S S S S S SState Estimator

ηηηd or ξ̇ξξd βββc, ϕ̇ϕϕc

ηηηe, ξξξe βββm, ϕ̇ϕϕm

Figure 5: Logical organisation of the motion controller designed for
AZIMUT-3. The arrows indicate the data flow.

described in [36], referred to as the Iterative Algorithm for
ICR estimation in [23]) and computes the corresponding
steer angles βββe using (13). Using ϕ̇ϕϕm, it then solves (22) to
estimate µe and finally computes the odometry ξξξe = (x y θ)T

using (2):

ξξξe(t) = ξξξe(t − ∆t) + M3(θ)ξ̇ξξe∆t (24)

where M3(θ) means the three dimensional orthogonal ma-
trix representing a rotation of angle θ in the W plane. If λλλe

is on steering axis k (Q1), the estimation algorithm sets βe,k

to βm,k.

3.2. Path Planner

The Path Planner module is the control entry point and
implements the control laws.

When a new desired state is received, which may be set
either by inputting a motion around an ICR ηηηd or a twist
ξ̇ξξd (internally converted to ηηηd using (1)), it is checked and
adapted if needed:

U

V

W

Figure 6: Spherical patches defined by the steering limitations of
AZIMUT-3. The small spherical square at the top represents the chassis
projection onto the sphere, each wheel being located at one of the corners.

• If λλλd is on a steering axis (Q1), ηηηd is discarded, en-
suring that a chassis’ rest configuration is never on a
structural singularity.

• A null twist (Q1) is handled by setting λλλd to λλλe and µd

to 0, ensuring smooth immobilization of the platform.

• Since the ICR is lying on a sphere with antipodal points
identified, there are always two distinct paths between
λλλe and λλλd: λλλe to λλλ+

d and λλλe to λλλ−d . When a new com-
mand is received, the module needs to choose which
path to follow. To be efficient, the shortest path should
be chosen. However, each steering limitation (Q3) cre-
ates a great circle on the sphere and these great circles
then define the boundaries of spherical patches, some
of which are shown for AZIMUT-3 on Fig. 6. A con-
tinuous ICR motion between the patches leads to a dis-
continuous motion of at least one steering axis, which
implies a platform stop and a wheel reconfiguration.
Hence, this wheel reconfiguration cost is taken into ac-
count when choosing the path: if the shortest path leads
to a wheel reconfiguration but not the second one, the
second path is chosen; if both paths lead to a wheel
reconfiguration, the shortest path is kept.

• µ is linearly proportional with ϕ̇p, like a rewrite of (17)
shows:

µ =
r

(sss⊥2 (λλλ) − bbb) · λλλϕ̇p = f (λλλ)ϕ̇p (25)

Since the ICR position lies on a closed surface (i.e.,
f (λλλ) is bounded) and ϕ̇p is bounded, then µ is also

6

bounded:

µmin(ϕ̇min, λλλ) ≤ µ ≤ µmax(ϕ̇max, λλλ) (26)

Hence, a first step in handling propulsion velocity lim-
its (Q3) is done when receiving a new command: if
µd is not in the range (26), it is clamped to the nearest
allowed limit.

Once a valid path between ηηηe and a new ηηηd has been de-
termined or during normal path execution, the Path Planner
module also computes the required commands λλλ′, λλλ′′ and µ′

(state variables derivatives) to reach ηηηd from ηηηe. For µ′, a
simple proportional control law is used:

µ′ = kbkµ(µd − µe) (27)

where kµ ≥ 1 is the proportional gain and kb a modulating
factor described later and initialized to 1. Since the ICR
moves on the surface of a sphere, its derivatives must com-
ply to the following constraints:

λλλe · λλλ′ = 0 and λλλe · λλλ′′ = −‖λλλ′‖2 (28)

Multiplying the derivatives by a common factor kλ ≥ 1 does
not influence the constraints, and proportional control laws
may thus also be used for λλλ′ and λλλ′′. However, they should
be designed to ensure convergence of λλλe to λλλd, which needs
care when working on a sphere. A possible solution is:

λλλ′ = kbkλ (λλλd − (λλλe · λλλd)λλλe) (29a)

λλλ′′ = k2
bk2
λ ((λλλe · λλλd)λλλd − λλλe) (29b)

where the control error is given by the projection ofλλλe onλλλd,
and the ICR moves along the great circle going through λλλe

and λλλd. The proposed control laws satisfy (28) and ensure
convergence of ηηηe to ηηηd. They also only involve the state
variables and not their derivatives, which enables the use of
time scaling in the Time Scaler module. Using only scalar
products, they are also efficient and simple to implement.

3.3. Kinematic Model
Using (15), the Kinematic Model module transforms the

chassis motion commands λλλ′, λλλ′′ and µ′ output by the Path
Planner module into the corresponding motion for each ac-
tuator βββ′, βββ′′, ϕ̇ϕϕp and ϕ̇ϕϕ′p. There are however situations where
the model (15) cannot be used directly:

• When the ICR is on steering axis k (Q1), part of the
inverse kinematic model for wheel k is undefined. In
that case, both β′k and β′′k are set to 0.

• When a wheel reconfiguration occurs, the ICR be-
comes undefined and so is the global inverse kinematic
model. Handling this requires a two-step process:

1. The platform must first be stopped by setting
µd = 0, as motion of the chassis is possible only
with a defined ICR;

2. Once the platform has stopped, a proportional
control law is applied to each steering axis so as
to reach the wheel configuration βββd correspond-
ing to λλλd:

βββ′ = kβ(βββd − βββe) (30)

where kβ is the proportional gain. βββ′′, ϕ̇ϕϕp and ϕ̇ϕϕ′p
are all set to 000.

• At controller initialization, the ICR could be undefined.
This is handled similarly to a wheel reconfiguration: a
proportional control law is applied to each steering axis
so as to reach the wheel configuration βββe:

βββ′ = kβ(βββe − βββm) (31)

To handle these different tasks and allow easy coordina-
tion with the other modules, the Kinematic Model module
is built around a finite state machine. The other modules
communicate events (new command received, wheel recon-
figuration needed, etc.), which generate transitions between
the different states.

3.4. Time Scaler

Due to the simplicity of the control laws used in the Path
Planner module, the amplitude of the values generated by
the Kinematic Model module might be arbitrarily high and
are not guaranteed to be executable by the actuators. The
Time Scaler module is thus used to scale βββ′, βββ′′ and ϕ̇ϕϕ′p into
β̇ββ, β̈ββ and ϕ̈ϕϕp such that differential constraints (Q2) on each
actuator’s motion are respected. To that end, a modified ver-
sion of the trajectory time scaling method proposed in [31]
is used: instead of scaling statically the whole motion at
planning time, scaling is done dynamically at each control
step. Time scaling is based on a fundamental property of
differentiation:

ẋ =
d
dt

x(t) =
d
ds

x(s)
d
dt

s(t) = x′ ṡ (32)

i.e., a given trajectory x(t) may be re-parametrized using s
to follow the same path as x(t) but with a different timing
function ṡ.

The state variables derivatives may thus be expressed as:

λ̇λλ = λλλ′ ṡ (33a)

λ̈λλ = λλλ′′ ṡ2 + λλλ′ s̈ (33b)
µ̇ = µ′ ṡ (33c)

7

As (33) suggests, only motion equations involving directly
the state variable derivatives may be considered for time
scaling. The time scalable variables from (15) are then:

β̇ = β′ ṡ (34a)

β̈ = β′′ ṡ2 + β′ s̈ (34b)
ϕ̈p = ϕ̇′p ṡ (34c)

and the limits on the actuators motion considered for scaling
are:

β̇min ≤ β̇ ≤ β̇max (35a)
β̈min ≤ β̈ ≤ β̈max (35b)
ϕ̈min ≤ ϕ̈p ≤ ϕ̈max (35c)

This leads to the following scaling bounds (with β′ > 0 and
ϕ̇′p > 0):

β̇min

β′
≤ ṡ ≤ β̇max

β′
(36a)

β̈min − β′′ ṡ2

β′
≤ s̈ ≤ β̈max − β′′ ṡ2

β′
(36b)

ϕ̈min

ϕ̇′p
≤ ṡ ≤ ϕ̈max

ϕ̇′p
(36c)

The inequalities are reversed for β′ < 0 or ϕ̇′p < 0. When
|β′| � 0 or |ϕ̇′p| � 0, the corresponding constraint is not
considered for time scaling.

Nonholonomic systems cannot be asymptotically stabi-
lized to a rest configuration by means of smooth state feed-
back laws like (29a), (29b) and (27); they need smooth time-
varying feedback laws to do so. Trajectory tracking may
be done with dynamic feedback laws, but it cannot enclose
rest configurations. Those matters are discussed in detail
by Thuilot et al. [35], who designed a hybrid control law
to switch between dynamic tracking and time-varying sta-
bilization. Control of the state variables in the motion con-
troller faces the same challenges: a trajectory between ηηηe

and ηηηd must be tracked, and the rest configuration ηηηd must
then be stabilized. Time scaling provides a simple way to
handle these challenges. Indeed, (33) shows that the state
feedback laws are dynamically converted into time-varying
laws. If ṡ > 1, then the motion imposed by the control laws
is amplified; it is unaffected when ṡ = 1; it is slowed down
when ṡ < 1. Ensuring:

0 < ṡ ≤ 1 (37)

then allows for a smooth transition between tracking and
stabilization: while the limits (35) are exceeded, the control
laws are scaled down; but as soon as they are within limits,
ṡ = 1 is enforced and the control laws are unmodified, thus

stabilizing ηηηe to ηηηd. Another condition for that rest configu-
ration to be possible is:

β̇min ≤ 0 ≤ β̇max (38a)
β̈min ≤ 0 ≤ β̈max (38b)
ϕ̈min ≤ 0 ≤ ϕ̈max (38c)

i.e., the limits need to be of opposite sign; but they do not
need to be symmetric nor identical for all wheels. When
βββ′ � 000, there are no active constraints to define s̈ and it is set
to 1, so as not to influence the control laws.

The set of scaling constraints (36) and (37) create, for
each wheel, a range of possible values for ṡ and s̈. The in-
tersection of all those ranges gives the respective intervals
in which ṡ and s̈ should be chosen to ensure that the de-
sired path for each actuator is followed without violating its
motion limits. To make the motion controller efficient, the
upper bound of the interval allowed for ṡ and s̈ is always
chosen. When the interval is empty (which may happen for
s̈), the trajectory is not executable while satisfying all dif-
ferential constraints (Q2). In that case, kb (which βββ′, βββ′′ and
ϕ̇ϕϕ′p depend on through λλλ′, λλλ′′, µ′) is scaled down by halving
its value until the interval is no more empty.

Once β′′ and ϕ̇′p have been scaled and are thus bounded,
the coupling effect of the AZIMUT wheel on ϕ̈ may be han-
dled. This is done by first finding a scaling factor fdd such
that:

ϕ̈ϕϕmin ≤ fdd(ϕ̈ϕϕp −
b
r
β̈ββ) ≤ ϕ̈ϕϕmax (39)

holds, and then use it to scale β̈ββ and ϕ̈ϕϕp.

3.5. Integrator
The Integrator module generates the commands βββc and ϕ̇ϕϕc

for the individual actuators by integrating β̇ββ, β̈ββ and ϕ̈ϕϕp output
by the Time Scaler module:

βββc = βββe + β̇ββ∆t +
1
2
β̈ββ(∆t)2 (40a)

ϕ̇ϕϕc = (ϕ̇ϕϕp −
b
r
β̇ββ) + (ϕ̈ϕϕp −

b
r
β̈ββ)∆t (40b)

The module also handles the two algebraic constraints
(Q3), which are the steer angle limits and the maximum
propulsion velocity:

βββmin ≤ βββc ≤ βββmax (41a)
ϕ̇ϕϕmin ≤ ϕ̇ϕϕc ≤ ϕ̇ϕϕmax (41b)

Since with AZIMUT wheels propulsion velocity depends on
steering velocity, the order in which the limitations are han-
dled is important: propulsion velocity limitations are han-
dled first, followed by steering limitations. The Path Plan-
ner and Time Scaler modules ensure that each component

8

of (40b) is bounded. Dynamic handling of propulsion limi-
tations then resumes to finding a scaling factor fd such that:

ϕ̇ϕϕmin ≤ fdϕ̇ϕϕc ≤ ϕ̇ϕϕmax (42)

holds and use it to scale ϕ̇ϕϕc, β̇ββ and β̈ββ. Once β̇ββ and β̈ββ have been
scaled, (40a) is computed and βββc is checked: if (41a) does
not hold, a steering limitation crossing is detected and the
Kinematic Model module needs to handle a wheel recon-
figuration. To avoid stopping the platform with an invalid
wheel configuration, βββc is set to its preceding value:

βββc(t) = βββc(t − ∆t) (43)

4. Experimental Results

The motion controller for AZIMUT-3 has been imple-
mented within the ROS software framework [37]. The plat-
form has four identical wheels with an offset b = 0.09 m
and a radius r = 0.079 m. The wheels are located at
the corners of a square centred at the chassis’ centre, thus
αk = − π4 + (k − 1) π2 rad where k is the wheel number
starting at 1 for the front-right wheel and counting up in
the trigonometric direction. Each wheel has a distance of
l = 0.257 m to the chassis’ centre and may be steered with
− π2 < β ≤ π

2 rad. Motion limits for the actuators are:

−1.75 ≤ β̇ ≤ 1.75 rad/s (44a)

−15 ≤ β̈ ≤ 15 rad/s2 (44b)
−13 ≤ ϕ̇ ≤ 13 rad/s (44c)

−20 ≤ ϕ̈ ≤ 20 rad/s2 (44d)

The control step duration is ∆t = 10 ms and the control
gains are kλ = kµ = kβ = 40.

After having validated the feedforward model used, the
motion controller has been tested to evaluate odometry pre-
cision, control efficiency and handling of singularities, in
order to globally validate the handling of all control con-
straints.

A video recording of the conducted experiments is avail-
able at https://youtu.be/Bucyf4iBQLo.

4.1. Feedforward Model Validation

To evaluate the validity of using a one-step delay as feed-
forward model, the following arbitrary trajectory has been
executed: initialization to ηηη1 = (0 1 0 0)T , step on µ at
t = 0 s to ηηη2 = (0 1 0 0.5)T , followed by a step on λλλ at
t = 1.7 s to ηηη3 = (0 0.6 0 0.5)T . Figure 7 compares the com-
mands sent by the motion controller with the state read from
the low-level controllers. To ease comparison, the feedfor-
ward model has been taken into account in the results: the

0 1 2 3 4

0.7

0.8

0.9

1

1.1

1.2

1.3

t (s)

β
2

(r
ad

)

0 1 2 3 4

0

2

4

6

t (s)

ϕ̇
2

(r
ad
/s

)

Figure 7: Feedforward model validation, with command (blue) and delayed
state (red) for β2 (top) and ϕ̇2 (bottom).

state plotted for t is the state that was read at t + ∆t. The top
part shows the steering angle β2: some overshoot and static
error are caused by the wheel’s low-level controller dynam-
ics and the compliant steering, but tracking performance is
globally acceptable. The bottom part shows the propulsion
velocity ϕ̇2: despite small oscillations when commanding a
constant velocity, which are again inherent to the low-level
controllers, the tracking performance looks good. Most im-
portantly, there is no static lag between the command and
the delayed state. Table 1 reports the detailed relative error
measures for each wheel. Due to stiction, the propulsion ac-
tuators need at least two control steps to start motion; these
steps have not been taken into account in the statistics pre-
sented. The 3.75% combined average error for β and 2.25%
for ϕ̇ suggest that the hypothesis of using a one-step delay

9

Table 1: Feedforward model error (in %).

Wheel 1 Wheel 2 Wheel 3 Wheel 4

βk

Mean 4.08 2.82 2.68 5.37
Std dev. 3.03 3.20 3.76 3.48
Max. 16.09 15.14 15.33 17.68

ϕ̇k

Mean 1.77 3.16 2.16 1.92
Std dev. 5.08 6.98 4.50 6.18
Max. 51.86 61.49 32.61 75.93

as feedforward model is valid.

4.2. Odometry Precision

To evaluate the global precision of actuator coordina-
tion, odometry computed by the motion controller has been
compared to measurements of the platform’s position us-
ing a NDI Optotrak system (consisting of four cameras and
twelve markers distributed symetrically around the chassis,
visible on Fig. 1), with a root mean square error of around
0.4 mm.Three different trajectories were used: T1) a circle;
T2) a spiral; and T3) an infinity sign made of lines and arcs.
Each trajectory started at ξξξe = 000 with the platform at rest
(µe = 0), ended also at rest (when µe = µd = 0) and was
executed with the chassis heading tangent to the trajectory.

Executing movements at high velocity involves more ac-
celeration from the actuators and could lead to time scal-
ing issues. To evaluate the impact of motion velocity on
the quality of the odometry, each trajectory was executed
ten times with two different values for µd(0): µ1 = 0.5 was
chosen to evaluate the performance at medium velocity that
should not require special care from the motion controller,
and µ2 = 1 was chosen as a relatively high velocity which, in
the case of discontinuous ICR motion (T3), needs full scal-
ing of the propulsion acceleration and dynamic handling of
propulsion velocity limits (as done in the Trajectory Scaler
and Integrator modules).

Figure 8 illustrates a typical trial for the trajectories exe-
cuted with µ2. The computed odometry closely matches the
position measurements, even for the high velocity trajecto-
ries considered. Error is mostly accumulated on orientation,
in particular when there are sharp transitions between ICR
positions, i.e., between the lines and arcs of T3. Apart from
the well-known errors due to geometric uncertainties, sen-
sors’ noise and non systematic errors, error is caused by the
compliant steering actuators, which generate a little oscilla-
tion of the chassis when they stop. Part of the error may also
been explained by the static error between the real steering
angles and βββc. Table 2 presents the relative error on position
and orientation at the end of each trajectory and confirms
that the error stays small, with a maximum of about 2%.
These results have been computed by dividing the positional

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

x (m)

y
(m

)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

x (m)

y
(m

)

Figure 8: Robot position as computed by odometry (blue) and as measured
by the external tracking system (red) for T1 (top), T2 (middle), and T3
(bottom), all executed with µ2.

10

Table 2: Relative odometry error at trajectory end (in %).

T1 T2 T3
Circle Spiral Inf. sign

µ1

Position Mean 0.69 2.09 0.67
Max. 0.75 2.14 2.31

Orientation Mean 0.69 1.17 1.12
Max. 0.91 1.21 1.25

µ2

Position Mean 0.74 0.55 0.31
Max. 0.83 0.61 0.38

Orientation Mean 0.92 0.10 0.86
Max. 1.14 0.20 0.94

error by the total traveled distance and the absolute angular
error by the total angle traveled. The table also shows that
high velocity trajectories do not imply larger odometry er-
ror than low velocity trajectories, which is expected since
only commands executable by the low-level controllers are
output by the motion controller. As a result, no loss of co-
ordination due to actuator saturation happens, which would
lead to large odometry errors.

4.3. Control Efficiency and Differential Constraints

To ensure a timely execution, a motion controller should
execute a desired command as fast as possible, while sat-
isfying all differential constraints on the actuators. For the
start of T3 (i.e., acceleration on a straight line) executed with
µ1, the top part of Fig. 9 shows the evolution of the absolute
error δµ between µd and µe and the evolution of the time
scaling factor ṡ, and the bottom part shows the correspond-
ing evolution of ϕ̈1 and ϕ̈2. Except for the last 0.07 s of the
trajectory for ηηη (time scaling stops at t = 0.29 s when ṡ = 1
and δµ is null at t = 0.36 s), there is always at least one actu-
ator whose velocity or acceleration is at its extremal value.
Motion is thus executed at the fastest allowable velocity and
acceleration, except for a small stabilization phase at the
end.

4.4. Singularities Handling

Contrary to most motion controllers that need to avoid
having the ICR move close to a singularity so that no arbi-
trarily high steering velocity command is generated for the
concerned wheel ([22, 38, 39]), the use of time scaling en-
ables our motion controller to handle an ICR moving very
close to a singularity or even going through it. Figure 11 il-
lustrates the evolution of the steering velocities for the ICR
trajectory depicted on Fig. 10, i.e., the ICR trajectory is par-
allel to the steering limitation of wheel 1 and has a minimum
distance to the singularity of around 1 cm. As expected, all
steering velocities remain bounded by the extremal values
allowed.

0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

t (s)

δ µ
,ṡ

0 0.1 0.2 0.3 0.4

−20

−10

0

10

20

t (s)

ϕ̈
(r

ad
/s

2)

Figure 9: Evolution of δµ (top, magenta), ṡ (top, black), ϕ̈1 (bottom, blue)
and ϕ̈2 (bottom, orange) for the start of T2 executed with µ1. The vertical
line at t = 0.29 s indicates the first time when ṡ becomes equal to 1, i.e.,
when time scaling stops.

For platforms having wheels with steering limitations like
AZIMUT-3, the singularities of the kinematic models have
an interesting property: if the ICR trajectory goes through
one steering axis, no wheel reconfiguration should occur
since the corresponding wheel may be freely controlled to
have a compatible direction with the ICR motion. Figure 13
illustrates the evolution of the steering angles for the ICR
trajectory depicted on Fig. 12, i.e., the ICR goes over the
steering axis of wheel 2. As the graph shows, no discontinu-
ities occur in any steering angle trajectory, which indicates
that no wheel reconfiguration was generated.

11

0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

x (m)

y
(m

)

Figure 10: ICR trajectory (blue) moving close to a singularity. The grey
box represents the relevant part of the chassis, which is centred at origin.

0 0.5 1 1.5 2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

t (s)

β̇
(r

ad
/s

)

Figure 11: Evolution of β̇1 (blue), β̇2 (orange) and β̇4 (black) when the ICR
moves close to a singularity. β̇3 is not shown, since its corresponding con-
straint is never activated during this particular trajectory. The vertical line
at t = 0.99 s indicates the time when the ICR is closest to the singularity.

5. Conclusion

Designing a motion controller for a nonholonomic robot
like AZIMUT-3 requires addressing issues such as actuator
coordination within their physical limits, platform singular-
ities and command execution efficiency. To do so, this pa-
per presents the design of an ICR-based motion controller
that takes advantage of the H representation, a singularity-
free parametrization of the ICR position and motion around
it based on the real projective plane, leading to simple and
efficient kinematic models and control laws which ensure
proper actuator coordination and easy handling of struc-
tural singularities. In addition, the use of trajectory time
scaling enables to maintain command execution efficiency,
while ensuring in a unified way that actuator physical limits
are never reached. Results acquired on AZIMUT-3 demon-
strate these capabilities, with accurate odometry and fast
command execution.

Although the motion controller and kinematic models

0.0 0.1 0.2 0.3

0.0

0.1

0.2

0.3

x (m)

y
(m

)

Figure 12: ICR trajectory (blue) going through a singularity. The grey box
represents the relevant part of the chassis, which is centred at origin.

0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

t (s)

β
c

(r
ad

)

Figure 13: Evolution of βc,1 (blue), βc,2 (orange) and βc,3 (magenta) when
the ICR goes through a singularity. βc,4 is not shown, as it follows exactly
the same trajectory as βc,2. The vertical line at t = 0.40 s indicates the time
when the ICR goes over the singularity.

presented in this paper are specifically geared towards
AZIMUT-3, the motion controller architecture may easily
be adapted to other platforms for which the State Estima-
tor, Path Planner and Kinematic Model modules can be ad-
equately defined. The proposed inverse kinematic model is
directly applicable to a robot equipped with any number of
centred or sidewards off-centred wheels. The proposed di-
rect kinematic model is also directly applicable to a robot
with three or more sidewards off-centred wheels. For cen-
tred wheels, µ may be directly estimated by solving (25)
for any number of those wheels, and estimation of λ̇λλ is not
necessary as the proposed control laws do not depend on it.
As indicated in [23, 33, 36], ICR estimation is possible for
three or more centred or sidewards off-centred wheels. Af-
ter implementing these additions and validating the result-
ing motion controller, the proposed approach could be used
with any platform using three or more centred or sidewards
off-centred wheels.

12

Acknowledgments

This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada, the Fonds de
recherche du Québec – Nature et technologies, the Canada
Foundation for Innovation and the Canada Research Chair
program. The authors would like to thank Dominic Lé-
tourneau, François Ferland and all the members of IntRo-
Lab for making this work possible.

[1] S. L. Dickerson, B. D. Lapin, Control of an omni-directional robotic
vehicle with Mecanum wheels, in: Proceedings of the National
Telesystems Conference, IEEE, 1991, pp. 323–328 vol. 1.

[2] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,
N. Vahrenkamp, R. Dillmann, ARMAR-III: An integrated humanoid
platform for sensory-motor control, in: Proceedings of the Interna-
tional Conference on Humanoid Robots, IEEE-RAS, 2006, pp. 169–
175.

[3] Segway Inc., 2017, Segway Robotic Mobility Platforms (RMPs)
Segway RMP400 Omni, URL: http://rmp.segway.com/
about-segway-robotics/segway-rmp400-omni/.

[4] B. Woods, Omni-Directional Wheelchair, Ph.D. thesis, The Uni-
versity of Western Australia, School of Mechanical, Materials and
Mechatronics Engineering, 2006.

[5] G. Campion, W. Chung, Wheeled robots, in: B. Siciliano, O. Khatib
(Eds.), Springer Handbook of Robotics, Springer, Berlin, 2008, pp.
391–410.

[6] R. Bischoff, V. Graefe, HERMES – An intelligent humanoid robot
designed and tested for dependability, in: B. Siciliano, P. Dario
(Eds.), Experimental Robotics VIII, volume 5 of Springer Tracts in
Advanced Robotics, Springer, Berlin, Heidelberg, 2003, pp. 64–74.
doi:10.1007/3-540-36268-1_4.

[7] M. Fuchs, C. Borst, P. R. Giordano, A. Baumann, E. Krämer, J. Lang-
wald, R. Gruber, N. Seitz, G. Plank, K. Kunze, R. Burger, F. Schmidt,
T. Wimböck, G. Hirzinger, Rollin’ Justin – Design considerations and
realization of a mobile platform for a humanoid upper body, in: Pro-
ceedings of the International Conference on Robotics and Automa-
tion, IEEE, 2009, pp. 4131–4137.

[8] A. Dietrich, T. Wimböck, A. Albu-Schäffer, G. Hirzinger, Reac-
tive whole-body control: Dynamic mobile manipulation using a large
number of actuated degrees of freedom, IEEE Robotics and Automa-
tion Magazine 19 (2012) 20–33.

[9] J. Stückler, M. Schwarz, S. Behnke, Mobile manipulation, tool use,
and intuitive interaction for cognitive service robot Cosero, Frontiers
in Robotics and AI 3 (2016) 1–20.

[10] J. Stückler, S. Behnke, Dynamaid, an anthropomorphic robot for
research on domestic service applications, Automatika – Journal
for Control, Measurement, Electronics, Computing and Communi-
cations 52 (2011) 233–243.

[11] Meka Robotics, 2013, B1 Omni Base | Meka Robotics, URL: http:
//mekabot.com/products/omni-base/.

[12] Willow Garage, 2017, Hardware Specs | Willow Garage, URL:
http://www.willowgarage.com/pages/pr2/specs.

[13] Neobotix GmbH, 2017, MPO-700 - Neobotix, URL: http://www.
neobotix-robots.com/omnidirectional-robot-mpo-700.
html.

[14] U. Reiser, C. P. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weis-
shardt, T. Jacobs, C. Parlitz, M. Hägele, A. Verl, Care-O-bot 3 –
Creating a product vision for service robot applications by integrat-
ing design and technology, in: Proceedings of the International Con-
ference on Intelligent Robots and Systems, IEEE / RSJ, 2009, pp.
1992–1998.

[15] C. P. Connette, C. Parlitz, B. Graf, M. Hägele, A. Verl, The mo-
bility concept of Care-O-bot 3, in: Proceedings of the International
Symposium on Robotics, VDE Verlag, 2008, pp. 746–750.

[16] E. Prassler, R. Bischoff, W. Burgard, R. Haschke, M. Hägele, G. Law-
itzky, B. N. amd Paul Plöger, U. Reiser, M. Zöllner (Eds.), Towards
Service Robots for Everyday Environments, Springer Tracts in Ad-
vanced Robotics, Springer, Berlin Heidelberg, 2012. doi:10.1007/
978-3-642-25116-0.

[17] M. Sorour, A. Cherubini, P. Fraisse, R. Passama, Motion
discontinuity-robust controller for steerable mobile robots, IEEE
Robotics and Automation Letters 2 (2017) 452–459.

[18] F. Michaud, F. Ferland, D. Létourneau, M.-A. Legault, M. Lauria, To-
ward autonomous, compliant, omnidirectional humanoid robots for
natural interaction in real-life settings, Paladyn. Journal of Behav-
ioral Robotics 1 (2010) 57–65.

[19] F. Ferland, A. Aumont, D. Létourneau, M.-A. Legault, F. Michaud,
Johnny-0, a compliant, force-controlled and interactive humanoid au-
tonomous robot, in: Proceedings of the Annual International Confer-
ence on Human-Robot Interaction, ACM / IEEE, 2012, pp. 417–418.
doi:10.1145/2157689.2157826.

[20] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. G. F. Gagnon, D. Lé-
tourneau, F. Michaud, Design and control of a four steered wheeled
mobile robot, in: Proceedings of the Annual Conference of the IEEE
Industrial Electronics Society, IEEE, 2006, pp. 4020–4025.

[21] C. P. Connette, M. Hägele, A. Verl, Singularity-free state-space
representation for non-holonomic, omnidirectional undercarriages by
means of coordinate switching, in: Proceedings of the International
Conference on Intelligent Robots and Systems, IEEE / RSJ, 2012, pp.
4959–4965.

[22] U. Schwesinger, C. Pradalier, R. Siegwart, A novel approach for
steering wheel synchronization with velocity/acceleration limits and
mechanical constraints, in: Proceedings of the International Con-
ference on Intelligent Robots and Systems, IEEE / RSJ, 2012, pp.
5360–5366. doi:10.1109/IROS.2012.6385644.

[23] L. Clavien, M. Lauria, F. Michaud, Estimation of the instantaneous
centre of rotation with nonholonomic omnidirectional mobile robots,
Robotics and Autonomous Systems (2018).

[24] F. Michaud, D. Létourneau, M. Arsenault, Y. Bergeron, R. Cardin,
F. Gagnon, M.-A. Legault, M. Millette, J.-F. Paré, M.-C. Tremblay,
P. Lepage, Y. Morin, J. Bisson, S. Caron, Multi-modal locomotion
robotic platform using leg-track-wheel articulations, Autonomous
Robots 18 (2005) 137–156.

[25] M. Lauria, M.-A. Legault, M.-A. Lavoie, F. Michaud, Differential
elastic actuator for robotic interaction tasks, in: Proceedings of the
International Conference on Robotics and Automation, IEEE, 2008,
pp. 3606–3611.

[26] J. Frémy, F. Ferland, M. Lauria, F. Michaud, Force-guidance of a
compliant omnidirectional non-holonomic platform, Robotics and
Autonomous Systems 62 (2014) 579–590.

[27] S. Chamberland, E. Beaudry, L. Clavien, F. Kabanza, F. Michaud,
M. Lauria, Motion planning for an omnidirectional robot with steer-
ing constraints, in: Proceedings of the International Conference on
Intelligent Robots and Systems, IEEE / RSJ, 2010, pp. 4305–4310.

[28] S. M. LaValle, Planning Algorithms, Cambridge University Press,
Cambridge, 2006.

[29] J. B. Coulaud, G. Campion, Optimal trajectory tracking for differ-
entially flat systems with singularities, in: Proceedings of the Inter-
national Conference on Robotics and Automation, IEEE, 2007, pp.
1960–1965.

[30] C. P. Connette, A. Pott, M. Hägele, A. Verl, Addressing input sat-
uration and kinematic constraints of overactuated undercarriages by
predictive potential fields, in: Proceedings of the International Con-
ference on Intelligent Robots and Systems, IEEE / RSJ, 2010, pp.
4775–4781.

[31] J. M. Hollerbach, Dynamic scaling of manipulator trajectories, in:
Proceedings of the American Control Conference, IEEE, 1983, pp.
752–756.

[32] G. Campion, G. Bastin, B. d’Andréa-Novel, Structural properties and

13

classification of kinematic and dynamic models of wheeled mobile
robots, IEEE Transactions on Robotics and Automation 12 (1996)
47–62.

[33] C. P. Connette, A. Pott, M. Hägele, A. Verl, Control of an pseudo-
omnidirectional, non-holonomic, mobile robot based on an ICM rep-
resentation in spherical coordinates, in: Proceedings of the Confer-
ence on Decision and Control, IEEE, 2008, pp. 4976–4983.

[34] F. Ferland, L. Clavien, J. Frémy, D. Létourneau, F. Michaud, M. Lau-
ria, Teleoperation of AZIMUT-3, an omnidirectional non-holonomic
platform with steerable wheels, in: Proceedings of the International
Conference on Intelligent Robots and Systems, IEEE / RSJ, 2010, pp.
2515–2516.

[35] B. Thuilot, B. d’Andréa-Novel, A. Micaelli, Modeling and feedback
control of mobile robots equipped with several steering wheels, IEEE
Transactions on Robotics and Automation 12 (1996) 375–390.

[36] L. Clavien, M. Lauria, F. Michaud, Instantaneous centre of rotation
estimation of an omnidirectional mobile robot, in: Proceedings of the
International Conference on Robotics and Automation, IEEE, 2010,
pp. 5435–5440.

[37] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, A. Ng, ROS: an open-source robot operat-
ing system, in: Proceedings of the Open-source Software Workshop
of the IEEE International Conference on Robotics and Automation,
2009.

[38] C. P. Connette, C. Parlitz, M. Hägele, A. Verl, Singularity avoidance
for over-actuated, pseudo-omnidirectional, wheeled mobile robots,
in: Proceedings of the International Conference on Robotics and Au-
tomation, IEEE, 2009, pp. 4124–4130.

[39] A. Dietrich, T. Wimböck, A. Albu-Schäffer, G. Hirzinger, Singularity
avoidance for nonholonomic, omnidirectional wheeled mobile plat-
forms with variable footprint, in: Proceedings of the International
Conference on Robotics and Automation, IEEE, 2011, pp. 6136–
6142.

14

