
Program Understanding Using Ontologies and Dynamic
Analysis

Javier Belmonte
eKlore Srl

Rue Voltaire 12
1201 Geneva, Switzerland

javier@eklore.ch

Philippe Dugerdil
Geneva School of Business Administration, HES-SO

Rue de la Tambourine 17
1227 Carouge, Switzerland
philippe.dugerdil@hesge.ch

ABSTRACT

No maintenance activity can be performed without understanding

at least the part of the program that needs to be modi�ed. �erefore,

considering its cost, helping developers to understand programs

is a must. Consequently, our research aims at building a business-

related model of the program semantics, which is grounded in

Perkins� research in psychology. A�er a short reminder of our

model, whose performance in helping developers to understand

programs has been presented elsewhere, this paper presents the

automatic instantiation of the model. �is rests on the ontology

technology as well as on an innovative dynamic analysis technique.

We present a use case to evaluate the performance of our technique.

CCS CONCEPTS

•So�ware and its engineering → So�ware reverse engineer-

ing; Maintaining so�ware; •General and reference → Exper-

imentation; •Computing methodologies→ Ontology engineer-

ing;

KEYWORDS

Program understanding, reverse engineering, ontology, dynamic

analysis

ACM Reference format:

Javier Belmonte and Philippe Dugerdil. 2018. Program Understanding Using

Ontologies and Dynamic Analysis. In Proceedings of ACM SAC Conference,

Pau, France, April 9–13, 2018 (SAC’18), 8 pages.

DOI: 10.1145/3167132.3167298

1 INTRODUCTION

Program understanding is central to the maintenance of so�ware

systems. Indeed, no maintenance activity can be performed without

understanding at least the part of the program that needs to be mod-

i�ed [9]. Moreover, program understanding is a complex and costly

task: it represents two-thirds of the maintenance expenses [18].

Consequently, we have focused our research on increasing the e�-

ciency of the developers, particularly by helping them understand

the program’s source code during maintenance activities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

SAC’18, Pau, France

© 2018 ACM. 978-1-4503-5191-1/18/04. . . $15.00
DOI: 10.1145/3167132.3167298

According to [23, 24], program understanding is built uncon-

sciously and takes the form of some mental mapping between the

elements of the problem domain (business domain or real world)

and the elements of the system domain (source code). �is map-

ping represents the understanding of the program being developed.

Biggersta� et al.’s de�nition of program understanding [8] still

remains the reference de�nition used by the researchers in the

�eld: “A person understands a program when able to explain the

program, its structure, its behavior, its e�ects on its operational

context, and its relationships to its application domain in terms

that are qualitatively di�erent from the tokens used to construct

the source code of the program.”

Although popular, this de�nition is rather informal and can lead

to many interpretations. In particular, it is not enough to guide

us to elaborate a model to help the developers. �is is why we

complemented this de�nition with the results of Perkins’ research

in the psychology of human understanding [20]. �e corresponding

knowledge model, as well as its performance in helping developers

to understand programs, has been presented elsewhere [5]. Because

of this model’s complexity, in this article, we focus on its automatic

instantiation and on a case study to assess the performance of our

technique.

1.1 Outline

In this paper, section 2 introduces our de�nition of program un-

derstanding. Section 3 is a reminder of the understanding artifact

we proposed in [5] and presents the main ideas underlying the

automatic production of the missing connections between the com-

ponents of our artifact. Section 4 formalizes the ideas presented in

section 3 and section 5 explains their implementation. Section 6

presents two experiments to evaluate this automated procedure.

We present a survey of related works in section 7. A summary of

the contributions made by our research and some future work ideas

based on our experimental results are presented in section 8.

2 UNDERSTANDING

According to Perkins cited by Baron [3], understanding a situation

involves three elements: a purpose(s), a structure, and the argu-

mentation supporting the capacity of the structure to ful�ll the

purpose. Although the descriptions of the structure and the pur-

pose of a situation depend on pre-existing knowledge, they do not

depend on each other. But the argumentation does depend on the

knowledge of the structure and the purpose. Indeed, the facts and

beliefs that compose the argumentation connect the purpose to the

components of the structure involved in its ful�llment. In summary,

the structure and purpose are by themselves simply descriptions of

SAC’18, April 9–13, 2018, Pau, France Javier Belmonte and Philippe Dugerdil

the situation to be understood, whereas the argumentation is what

gives rise to understanding.

Program understanding in the context of maintenance activi-

ties means understanding a program’s source code. Here is the

interpretation of Perkins’ elements of understanding, in the case of

programs:

• �e structure is represented by the program’s methods

because they are the smallest block of instructions capable

of having a purpose on their own.

• �e purpose is the set of business-related functionalities

implemented by a program (the goals of the program).

• �e argumentation shows how the program’s structure car-

ries out these functionalities (purpose). �erefore, the ar-

gumentation is an explanation of the program’s source

code.

Taking all previous considerations into account, we comple-

mented Biggersta� et al.’s de�nition with Perkins’ ideas to propose

our own de�nition of program understanding: “Program under-

standing, considered not to be a process but a process’s outcome, is

achieved when three di�erent kinds of knowledge are acquired: (1)

the structure of the program, (2) the business domain functionalities

carried out by the program and (3) an explanation of the program’s

structure and behavior that justi�es its ability to perform these func-

tionalities.”

3 UNDERSTANDING ARTIFACT

Because of the big di�erence in granularity between the functionali-

ties and the elements of the source code to be explained, we realized

that the argumentation must provide a missing granularity step. In

fact, since the purpose of a program explains why it has been built

and its structure explains how the program satis�es its purposes,

the missing step should answer the following questions:

• From the perspective of the purpose: what does the pro-

gram need to do to perform each business functionality?

• From the perspective of the source code structure: what

do source code methods accomplish that helps performing

the business functionality?

Program's purpose

Source code

3rd layer: "How?"

2nd layer: "What?"

1st layer: "Why?"

Figure 1: �e understanding artifact and the hierarchy be-

tween its layers’ elements

�en, our understanding model is structured in three layers. �e

two kinds of knowledge to be connected (why and how) are repre-

sented by the �rst and third layer respectively. �e intermediary

layer contains the knowledge connecting the elements between the

�rst and third layers: the argumentation. �ese layers correspond

each to a particular level of abstraction from the source code. Fig-

ure 1 shows the three layers of our understanding model (we refer

to the elements of the second layer as “tasks” because they answer

what the program must do). �e connection between the layers are

the following:

(1) A functionality in the 1st layer is decomposed into a se-

quence of tasks in the 2nd layer. �is decomposition ex-

plains in business terms what the program needs to do to

ful�ll the functionality. �is sequence of tasks is under-

standable by domain experts.

(2) A task in the 2nd layer is linked to the source code methods

in the 3rd layer. �ese methods explain how the program

carries out (implements) the task.

�e tasks in the second layer are much more abstract than the

methods in the source code (third layer). We must, therefore, �nd a

way to close this gap. To this end, we introduced the notion of ma-

nipulations [4], representing atomic business domain information

processing activities. Each task is carried out by amanipulation and

the methods implement manipulations. Our formalization of the

notion of manipulation was inspired by the use of verbs in natural

language (NL) because business domain information processing

activities can easily be transformed into simple declarative sen-

tences. More speci�cally, the business domain processing action

would be the verb of such a declarative sentence, and the business

concept that is processed would be the sentence’s direct object.

Since the second layer’s elements result from the decomposition

of the functionalities into tasks, and since the tasks are carried out

by manipulations, each of the functionalities is now mapped to

a sequence of manipulations. Inversely, the program behavior is

represented by the tasks’ sequence which is the sequence of infor-

mation manipulation the program is supposed to perform. Now we

need a way to represent the order in which tasks must be carried

out for each functionality. We chose to use the Business Process

Model Notation (BPMN) because it is easy to understand for non-

developers. �en, this is the formalism we have used for the second

layer of our model:

(1) �e description of the program’s functionalities and the

decomposition of the la�er into BPMN models cannot be

automated. It must be performed manually with the help

of the users of the program and the domain experts. But,

the most laborious part is to connect the BPMN tasks to

the methods in the source code methods. �is is what we

automated, which is the key contribution of the paper.

(2) In summary, our model reconstructs the abstraction levels

between the purpose of the program and the source code.

4 DYNAMIC ANALYSIS

To recover the connections between the second and third layers we

relied on a dynamic analysis technique i.e. post-mortem execution

trace (XT) analysis. In our research, an XT records the sequence of

method calls as call trees. All method calls are made from within

Program Understanding Using Ontologies and Dynamic Analysis SAC’18, April 9–13, 2018, Pau, France

…
method1(…), start, thread-1
method2(…), start, thread-1
method2(…), end, thread-1
method3(…), start, thread-1
method4(…), start, thread-2
method3(…), end, thread-1
method1(…), end, thread-1
…

1

2

Figure 2: XT’s graphical representation

other method calls, with the exception of methods called by the sys-

tem itself (e.g. event listeners). Since there could be several threads

in any program execution, any XT can be represented as a “forest”

of method call trees. To visualize the hierarchies of calls in an XT

we designed our own graphical representation. Figure 2 shows an

example of such a representation: squares represent the method

calls and arrows represent the callee-caller relation (oriented to-

wards the caller). �e topmost method calls in each tree (root) are

those made by the system or by a method in another thread. �ese

root methods are grouped into threads by a horizontal do�ed line

marked on the le� with the thread number. �e vertical do�ed lines

are used to connect the calls in di�erent threads: they connect the

method called in a new thread to the calling method in another

thread.

4.1 BPMN Task Detection

4.1.1 Requirements. BPMN tasks and their sequential depen-

dencies are modeled in the second layer of our artifacts. �ey rep-

resent the sequence of tasks required to perform the corresponding

functionality. When we record the XT associated with a program

functionality, the sequence of methods called must correspond one

way or another to the sequence of tasks in the BPMN model. Now

the problem to solve is to link the methods called to the task they

implement. �is is based on two clues:

• �e kind of work carried out by a method in business terms.

�is is represented by the manipulation associated to the

task (section 3).

• �e moment in time the method is called in the XT, or

more speci�cally the relative position of the method in

the sequence of calls. �is must correspond to the task

whose position is comparable in the sequence of tasks in

the BPMN model.

4.1.2 Definitions. Unlike the connections between the function-

alities and the BPMN tasks, the connections between the BPMN

tasks and the methods are not one-to-many but many-to-many.

While the BPMN tasks might be implemented by more than one

method, methods can also be part of the implementation of more

1

2

Figure 3: Graphical notation for segments

than one BPMN task. �e �rst clue to sort-out this situation comes

from the fact that each BPMN task is implemented as a unit of work:

a set of contiguous information processing steps. �erefore, the

corresponding caller and callee methods must be close in the XT.

To represent such temporal proximity, we introduced the notion

of trace segment (or segment for short) associated to each BPMN

task. It is the part of the XT between the �rst method call and

the last method call corresponding to this task in a given thread.

Since the methods corresponding to a single BPMN task may span

several threads, it may be associated to a set of segments. �ere

must be at most one segment per thread for a given BPMN task.

A segment may contain a single method call or the multiple con-

tiguous method calls of the method call tree. Starting from the

graphical representation introduced in Figure 2, we use a pair of

vertical brackets to identify the root methods of each segment. �e

colored brackets in Figure 3 identify the root method calls in three

segments (the methods called from these methods also belong to

the segment).

Let us say that a BPMN task was carried out by the method

calls in the blue and green segments in Figure 3. �en, the set

containing those two segments would be the XT counterpart of

the BPMN task. Moreover, let SH be the set of all sets of segments,

including the empty set. �en, an XT segmentation is the a�ribution

of one segment set in SH to each task in the BPMN. Formally, be

T the set of BPMN tasks linked to a functionality. We de�ne the

segmentation as the function SS = T → SH which returns, for each

task, the set of segments corresponding to the task.

4.1.3 Manipulation Detection. We have de�ned manipulations

as pairs of an action and a business concept. A manipulation is

identi�ed in a method if each component in the pair is detected in

it. Because of their di�erent nature, actions and business concepts

are implemented di�erently in code. An action represents how

a program processes some business information. �en, the iden-

ti�cation of an action in a method involves inspecting its source

code to see if it implements the action. We perform this analysis by

comparing the methods’ source code to a record of “syntax clues”

stored in our action ontology. �is gives the possible implemen-

tations of each action. In [4] we introduced an action ontology

as a formalization of generic actions. On the other hand, business

concepts represent the business information that is processed. �eir

identi�cation in the source code is based on the widely accepted

hypothesis that business domain concepts materialize as program

identi�ers [1, 11, 21, 26]. �en, every concept in our domain on-

tology is assigned a set of terms used to identify the concept. �e

identi�ers in a method’s source code will be compared to these

SAC’18, April 9–13, 2018, Pau, France Javier Belmonte and Philippe Dugerdil

1

2

T1

T2

T0 - -0

T1 - -

T2 - -

Figure 4: Example set of initial mappings produced by ma-

nipulation detection

terms and each match will be considered an evidence of the con-

cept’s presence.

4.1.4 Initial mapping. �ere are two steps to identify the meth-

ods corresponding to a BPMN task: �rst, �nd the manipulations

and second, check the sequence of execution. Since several tasks

may involve the same manipulation, the identi�cation of the la�er

in a method is not enough to assign the method to the task. For

example, let us assume that the XT showed in Figure 4 was recorded

while executing a functionality represented by the BPMN model

at the bo�om of the �gure. �e colored dots in the tasks of the

BPMN model represent manipulations assigned to these tasks. �e

color assigned to a square means that the manipulation is found in

the corresponding method’s source code. In particular, the red and

blue manipulations are found simultaneously in two methods in

the subtree on the le�.

Such a �rst step may lead to a lot of false positives (wrong map-

ping between a task and a method). Indeed, since several methods

could implement a given manipulation, they would be mapped to

all BPMN tasks associated to that manipulation. However, the order

of execution of the methods and the tasks should be similar. �ere-

fore, the methods colored both blue and red in the �gure cannot be

mapped to T2 since they belong to the segment associated to T1

whose execution is completed when the methods associated to T2

are executed. �e false mappings (false positive) are represented

by the green connections marked with an empty circle in Figure 4.

4.1.5 Filtered Mappings. Since the segment sets in SH can be

considered to be the XT counterpart of the BPMN tasks, we can

exploit the information on the sequence of the tasks in the BPMN

model to �lter out the mappings. In other words, we will verify

that the segments mapped to the tasks are in the same order as the

tasks in the BPMN model. Under these constraints, the resulting

mapping will represent the missing links between the second and

third layers of our model. Figure 5 represent the same information

as Figure 4 but the false mappings have been removed.

Now the problem is to build the correct segmentation automati-

cally, i.e. to �nd the set of segments that truly identify the methods

1

2

T1

T2

T0 - -0

T1 - -

T2 - -

Figure 5: Example set of initial mappings �ltered using a

trace segmentation

implementing the BPMN tasks. As a summary, there are two distinct

representations of the program behavior that we need to compare:

(1) �e sequence of the BPMN tasks that model, at the business

level, the processing required to carry out functionality.

We call it the “expected behavior”.

(2) �e sequence of method calls corresponding to the execu-

tion of the program when launching the computation of

the functionality. We called it the “observed behavior”.

5 AUTOMATION

5.1 Manipulation Detection

�e two parts of a manipulation to be searched for in the source

code are the business concept and the action performed on the

concept.

5.1.1 Business Domain Concept Detection. To check for the pres-

ence of a business concept, we analyze the identi�ers used in the

methods’ source code. To perform this search, every business con-

cept in the domain ontology is assigned a set of the terms that, if

found in a method, could be an evidence of the concept’s presence

in the method. Since we usually work with preexisting domain

ontologies found on the web (we do not build our own from scratch)

the set of strings we start from to �nd the terms are built from:

(1) �e concept’s URI’s fragment identi�er. A short string of

characters that unambiguously identi�es a resource within

its ontology.

(2) �e concept’s label or name, which is provided by the

#label data property in an RDF schema.

(3) �e concept’s a�ributes’ URI fragment identi�ers and their

labels.

Next, we apply the appropriate word separation technique on

the above strings by:

• Detecting camel-casing, dashes or underscores in identi-

�ers.

• Detecting spaces and punctuation marks in NL strings.

SAC’18, April 9–13, 2018, Pau, France Javier Belmonte and Philippe Dugerdil

value in [−1, 1] ⊂ R (where TN = True Negative, TP = True Positive,

FN = False Negative, FP = False Positive):

MCC =
TP ×TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

�e principle underpinning HD is that, since BPMN tasks repre-

sent units of work, the system should also execute them as units.

HD is computed as the average, over all the BPMN tasks involved

in the XP, of the ratio of the XT events not a�ributed to a task in

the interval de�ned by the �rst and last events a�ributed to the

task. �e �nal �tness function is computed as the median of the

values returned by these heuristics.

6 EXPERIMENT

We tested our approach on JHotel [13], a small open source appli-

cation for the room management of a hotel. To assess the quality

of the recovered links between the methods and the tasks, we

compared it with a gold standard: the mapping built manually.

We decided to use JHotel as a case study since hostelry (JHotel’s

business domain) is well known and its functionalities are easy to

understand. Another reason for our choice was the limited size of

the system. JHotel is big enough to make its source code and XTs

hard to process without a tool, but small enough for us to be able to

manually build the mapping. We built a hostelry domain ontology

by importing the following ontologies into a single one:

(1) HDeO: Hotel Domain Ontology developed in [25], which

includes the concepts associated with hotels themselves,

rooms, facilities and neighboring a�ractions or services.

(2) Time Ontology: An ontology of temporal concepts being

developed by the W3C group [12] needed to describe dates

and durations.

(3) Person Ontology: An ontology of persons, needed to

model guest concepts [14].

We documented two functionalities for the case study: “Create

new reservation” and “Check-in guest”. �e �rst functionality is

more complex than the second because it involves a larger number

of options and parameters to select. Consequently, it requires more

BPMN tasks (14 vs. 5) and uses a larger variety of business domain

concepts (5 vs. 1).

Table 1: Method call tree propagation results

Check-in guest New reservation

MCC Recall MCC Recall

Simple 0.35 0.5 0.22 0.72

W/propagation 0.41 0.78 0.20 0.81

Table 1 shows the MCC and recall values computed for the

mapping generated by (1) a simple manipulation detection and

(2) by the manipulation detection enhanced with the �rst strategy

explained in section 5.1.3 (search in the full call tree).

As we can see, this strategy is able to raise the recall up to ap-

proximatively 80% for both functionalities; additionally, it does it

with just a slight negative impact on the MCC for one of the func-

tionalities. �e assessment of the second strategy, i.e. computing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
.8

1
.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
.1

0
.2

0
.3

0
.4

new reservation

reservation checkin

Figure 7: Impact of di�erent ∆S on the manipulation detec-

tion results

distances among manipulations (see section 5.1.3), requires us to

decide on the threshold (∆S). �en, we tried 10 di�erent values for

∆S , spread uniformly between 0 and 0.9. �e results of this exper-

iment are shown in Figure 7. As we can see, this strategy is able

to increase the recall value by up to 20%, starting from ∆S = 0.3.

However, while the recall rate increases monotonically, reaching

100% for both functionalities at ∆S = 0.5, the MCC measure rules

out ∆S > 0.4. Indeed, although this strategy has just a small nega-

tive e�ect on the MCC when ∆S < 0.5, the quality of the resulting

mapping drops signi�cantly at ∆S = 0.5 for both functionalities.

�en, to limit the negative impact on the MCC while still bene�t-

ing from a higher recall rate, we used ∆S = 0.3 in the following

evaluations.

In Figure 8, we show the histogram of the MCC evaluations

of the mappings �ltered using the segmentations returned by 100

executions of the algorithm for each functionality. �e height of

the bars represents the relative frequency with which the MCC

evaluation for a segmentation returned by the algorithm fell in

the bar’s interval. �e dashed line stands for the MCC of the full

segmentation (see section 5.2) which is the starting point for the

exploration of the segmentation space. �e numbers on the top

corners of each graph show the percentage of segmentations re-

turned by the algorithm having an MCC evaluation falling on each

side of the dashed line. �e top-right percentage value is that of

the segmentations found by the algorithm that are be�er than the

starting point of the exploration. While the most likely MCC value

(the highest bin) obtained by our algorithm is for both functionali-

ties be�er than the full segmentation, the segmentations returned

by the algorithm for the “Check-in guest” functionality were half

the time worse than the full segmentation (blue top-le� percentage

value in Figure 8). However, the algorithm performs be�er for the

“Create new reservation” functionality, �nding a be�er segmenta-

tion 66% of the time (red top-right percentage). It seems that having

a more complex BPMN model for a functionality makes the search

for a good segmentation easier. We consider this to be plausible

because having more tasks in the BPMN model leads to a greater

Program Understanding Using Ontologies and Dynamic Analysis SAC’18, April 9–13, 2018, Pau, France

0.08 0.10 0.12 0.14 0.16 0.18 0.20

0
.0

0
0

.1
0

34 % 66 %

0.25 0.30 0.35 0.40

0
.0

0
0

.0
4

0
.0

8
0

.1
2 50 % 50 %

new-reservation

reservation-checkin

Figure 8: Results of the segmentation algorithm

diversity in the manipulations, which could make the observed

behavior easier to segment. Indeed, an increase in the semantic

distance between the manipulations used in a BPMN model makes

the tasks more likely to be mapped to di�erent methods, which in

turn makes the la�er easier to group together.

7 RELATED WORK

Besides their de�nition of program understanding, Biggersta� et

al. also introduced the term “concept assignment” as a general

approach to tackling the understanding problem [7]. Concept as-

signment refers to the search and assignment of “human-oriented”

concepts to the elements of the program code. Biggersta� et al.

explained that during program understanding, the so�ware engi-

neer must discover the reference to human-oriented concepts in the

program’s elements and interrelate them into a “human-oriented

expression of computational intent,” something similar to what

Perkins called the argumentation part of understanding [20]. What

Biggersta� et al. called “concepts” could be understood in multiple

ways. But most of the research in concept assignment focuses on

the search for reference to domain concepts in the source code

through identi�ers. Recently, works in so�ware comprehension

tend to concentrate on the building of models of so�ware under-

standing. �is represents a change in the program understanding

community from the earlier days, where tools to analyze code were

more frequent in the literature. For example, Benomar et al. [6]

noted that research on so�ware comprehension was generally split

into two distinct areas: program design understanding and program

evolution understanding. Hence, they proposed a uni�ed model en-

compassing the time-dimension to address both areas: the dynamic

aspects of so�ware execution and the evolution over time of the

so�ware. Nosal et al. [19] observed through controlled experiments

that the whole understanding process is hypothesis-based and con-

sists in matching elements found in source-code (solution domain)

to the so�ware requirements (problem domain). �e authors claim

that the understander’s current knowledge and prior experiences

about the problem and the solution domains is the base on which

mapping hypotheses are constructed to recover the mental model

used by the original developers. But to �nd works on tools and

techniques to actually build these models, one must go a bit ear-

lier in the literature. For example, identi�ers and comments were

analyzed by Anquetil [1] to study whether they could be used to

recover traceability links between the domain concepts and the

implementation components. Haiduc and Marcus [11] analyzed the

likelihood for di�erent developers to use the same terms to refer to

the same concepts. �ey found that, although in general the proba-

bility of two people choosing the same term to refer to the same

concept is around 20%, in the case of developers, the probability

is as high as 63%. �is shows that there is an important level of

agreement in the choice of terms made by developers. �erefore,

it makes sense to use a formal representation of the concepts of

the domain, e.g., an ontology, as a source of information during

so�ware reengineering activities. However, the explicit representa-

tion of ontologies in so�ware engineering emerged only recently.

Djuric and Devedzic [10] explain that this might have been the case

because the e�orts in developing ontology languages and tools were

focused on developing the Semantic Web rather than on program-

ming or so�ware engineering practices. Ratiu and Deienbck [22]

describe an ontology-mapping approach for the concept location in

programs. �ey started from two ontology-like graphs: �rst, they

used WordNet, the famous lexical database, second, they used a

graph representation of the identi�ers found in the source code.

�en, the authors applied their mapping procedure on JFreeChart2,

an open source Java library for drawing charts. �ey were able to

map 20% of the identi�ers in the source code to a WordNet concept.

However, because of the imprecise de�nition of what is meant by

“program understanding” in the literature, it is generally not clear

to what extent the published works contribute to this research goal.

For example, Asadi, F. et al. [2] consider concept location as the de-

tection of cohesive and decoupled fragments of an execution trace

using Latent Semantic Indexing (LSI). But it is not clear how the

concepts a�ached to the fragments would help with program un-

derstanding. Indeed, the “concepts” in this context are sets of terms

that do not necessarily represent a single notion or a single concept

in the sense of Biggersta� et al. But Medini, S. et al. [17] seem to

have identi�ed the problem since they introduced a technique to

label the fragments of the execution trace. Although this technique

does improve the quality of fragments in terms of cohesion and

decoupling, it fails to address the main issue.

8 CONCLUSION

Although the usefulness of our model in helping developers under-

stand programs has already been shown elsewhere [5], the problem

that remained to be solved was its automatic generation. Indeed,

the model is too complex to produce manually and the hardest part

is by far the production of the mapping between the BPMN tasks

and their implementation methods. In this article, we identi�ed

two techniques to automate this mapping. First, we introduced

the idea of manipulation to represent the information processing

activities carried out by the BPMN task. Second, we leveraged the

correspondence between the position of a task in the BPMN model

and the sequence of execution of the corresponding method in the

execution trace. From this background, we presented the way we

SAC’18, April 9–13, 2018, Pau, France Javier Belmonte and Philippe Dugerdil

implemented those ideas and speci�cally the two strategies aimed

at increasing the recall of the manipulation detection: method call

tree propagation and a distance threshold between manipulations.

Using these strategies, we achieved high recall rates in our exper-

iments: 100% for the “Check-in guest” functionality and 93% for

the “Create new reservation” functionality. �en, we used a �tness

function in a hill-climbing search algorithm to �lter out the results.

�e la�er are encouraging but mixed. Indeed, while the mapping

obtained for a rather complex BPMN model was good (“Create new

reservation” functionality), it was not very good for a simple one

(“Check-in guest” functionality). �is suggests that having a more

complex BPMN model for a functionality makes the search for a

good segmentation easier.

Future work should therefore explore this �nding. In particular

we may focus on studying the segmentation space because its prop-

erties could be key to the identi�cation of more e�ective search

algorithms. Finally, it must also be highlighted that the perfor-

mance of our approach is comparable to state of the art techniques

as reported in the literature. We expected nonetheless some extra

performance that we unfortunately did not reach so far. We may

however improve the technique in the proposed future work.

REFERENCES
[1] Nicolas Anquetil. 2001. Characterizing the informal knowledge contained in sys-

tems. In �e 8th Working Conference on Reverse Engineering. Stu�gart, Germany,
166–175.

[2] Fatemeh Asadi, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. 2010. A Heuristic-Based Approach to Identify Concepts in Execution
Traces. In 14th European Conference on So�ware Maintenance and Reengineering.
31–40.

[3] Jonathan Baron. 2009. �inking and Deciding (4th ed.). Cambridge University
Press, Cambridge.

[4] Javier Belmonte and Philippe Dugerdil. 2010. Using domain ontologies in a
dynamic analysis for program comprehension. In 2nd International Workshop on
Ontology-Driven So�ware Engineering. ACM, Reno, NV, USA.

[5] Javier Belmonte, Philippe Dugerdil, and Ashish Agrawal. 2014. A three-layer
model of source code comprehension. In 7th India So�ware Engineering Confer-
ence. ACM Press, Chennai, India.

[6] Omar Benomar, Houari A. Sahraoui, and Pierre Poulin. 2015. A Uni�ed Frame-
work for the Comprehension of So�ware’s Time.. In 37th IEEE International
Conference on So�ware Engineering. Florence, Italy.

[7] Ted J. Biggersta�, Bharat G. Mitbander, and Dallas E. Webster. 1993. �e concept
assignment problem in program understanding. In 15th International Conference
on So�ware Engineering.

[8] Ted J. Biggersta�, Bharat G. Mitbander, and Dallas E Webster. 1994. Program
understanding and the concept assignment problem. Commun. ACM 37, 5 (May
1994), 72–82.

[9] Richard Clayton, Spencer Rugaber, and Linda Wills. 1998. On the knowledge
required to understand a program. In 5th Working Conference on Reverse Engi-
neering. 69–78.

[10] Dragan Djuric and Vladan Devedzic. 2011. Incorporating the Ontology Par-
adigm Into So�ware Engineering: Enhancing Domain-Driven Programming
in Clojure/Java. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 42, 1 (May 2011), 3–14.

[11] Sonia Haiduc and Andrian Marcus. 2008. On the Use of Domain Terms in Source
Code. In �e 16th IEEE International Conference on Program Comprehension. 113–
122.

[12] Jerry .R. Hobbs and Feng Pan. 2006. Time Ontology in OWL. (2006). Retrieved
December 12, 2017 from h�p://www.w3.org/TR/2006/WD-owl-time-20060927/

[13] JSo�-Munich. 2004. JHotel. (June 2004). Retrieved December 12, 2017 from
h�ps://sourceforge.net/projects/jhotel/

[14] D. King and M. Hall. 2003. Person Ontology. (2003). Retrieved September 2, 2010
from h�p://orlando.drc.com/semanticweb/daml/ontology/person/person-ont/

[15] B. W. Ma�hews. 1975. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein
Structure 405, 2 (Oct. 1975), 442–451.

[16] Laurent Mazuel and Nicolas Sabouret. 2008. Semantic Relatedness Measure Using
Object Properties in an Ontology. In �e Semantic Web - ISWC 2008. Springer
Berlin Heidelberg, Berlin, Heidelberg, 681–694.

[17] Soumaya Medini, Giuliano Antoniol, Yann-Gaël Guéhéneuc, Massimiliano
Di Penta, and Paolo Tonella. 2012. SCAN: An Approach to Label and Relate
Execution Trace Segments. In 19th Working Conference on Reverse Engineering.
135–144.

[18] Hausi A. Müller, Sco� R. Tilley, and Kenny Wong. 1993. Understanding so�ware
systems using reverse engineering technology perspectives from the Rigi project.
In 3rd Conference of the IBM Centre for Advanced Studies. Toronto, ON, Canada.

[19] Milan Nosal and Jaroslav Poruban. 2015. Program comprehension with four-
layered mental model. In 13th International Conference on Engineering of Modern
Electric Systems. Oradea, Romania.

[20] David N. Perkins. 1986. Knowledge As Design. In Knowledge As Design. 1–19.
[21] Daniel Ratiu. 2009. Reverse Engineering Domain Models from Source Code. In

International Workshop on Reverse Engineering Models from So�ware Artifacts.
[22] Daniel Ratiu and Florian Deißenböck. 2006. How Programs Represent Reality

(and how they don’t). In 13th Working Conference on Reverse Engineering. 83–92.
[23] Margaret-Anne D. Storey. 2005. �eories, methods and tools in program com-

prehension: past, present and future. 13th International Workshop on Program
Comprehension (2005), 181–191.

[24] Anneliese von Mayrhauser and A. Marie Vans. 1995. Program comprehension
during so�ware maintenance and evolution. Computer 28, 8 (Aug. 1995), 44–55.

[25] Donghee Yoo, Gunwoo Kim, and Yongmoo Suh. 2009. Hotel-Domain Ontology
for a Semantic Hotel Search System. Information Technology & Tourism 11, 18
(Jan. 2009), 67–84.

[26] Hong Zhou, Feng Chen, and Hongji Yang. 2008. Developing Application Speci�c
Ontology for Program Comprehension by Combining Domain Ontology with
Code Ontology. In 8th International Conference on�ality So�ware. 225–234.

