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Abstract. In an applied research project on the development of a pulsed microwave sulfur lamp prototype
of 1 kW, we have discovered an amazing phenomenon in which the plasma forms a ball staying at the
center of the bulb despite gravity, thus protecting the glass from melting. In this paper, it is shown that
this results from an acoustic resonance in a spherical mode. Measurements of the plasma response to short
pulses are presented showing beats at the spherical resonance. It is demonstrated that the beats could
result from the simultaneous excitation of two normal modes with a frequency difference of approximately
1%. One of the two frequencies matches precisely the microwave pulses repetition, a little below 30 kHz.
Thus this one is due to a forced oscillation, whereas the other one is due to a free oscillation. The phase
velocity of sound was calculated as a function of temperature in order to find the series of temperatures at
which a resonance would occur if the bulb were an isothermal solid sphere. The mean temperature inside
the actual bulb was determined from the only doublet of this series, that has characteristic frequencies
close enough to cause the observed beats. In addition, one of these two modes has a spherical symmetry
that can explain the plasma ball formation. The obtained mean temperature is consistent with the direct
measurements on the bulb surface as well as with the temperature in the core of a similar plasma found
in the literature. We have also proposed a model of the resonance onset based on the acoustic dispersion
and the sound amplification due to electromagnetic coupling.

Key words. molecular plasma – pulsed microwave plasma – plasma confinement – acoustic resonance –
acoustic dispersion – sound amplification due to electromagnetic coupling – plasma of sulfur – electrodeless
light bulb – high-pressure lamps – light sources

1 Introduction

In the frame of an applied research project on a pulsed
microwave sulfur lamp, we have discovered a phenomenon
of resonance in which the plasma forms a ball centered
in the electrodeless bulb. This publication aims to report
this discovery and to give a first interpretation of it. The
setup has not been designed to investigate the physics of
this phenomenon, but rather to build a demonstrator of
this lamp. However, we have developed a physical model
to give an interpretation of the observations, calculate the
average temperature in the bulb from the measurement of
the resonance frequency and ease the resonance search as
this phenomenon is very furtive. Our experiments of heat-
ing interruption have in addition shown that the molecu-
lar dissociation can be governed by the pure vibrational
mechanisms [1].

The light bulb is filled with a small quantity of sulfur,
which is in solid state at room temperature, and argon
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gas at low pressure in order to ignite the lamp by the
electrical breakdown of the gas. The warm-up is obtained
as the sulfur evaporates, producing a weakly ionized va-
por which efficiently absorbs the microwaves. Indeed, the
vibrational excitation of the polyatomic molecules might
enhance liberation of electrons by a stepwise ionization
[2]. The higher the temperature, the higher the vibrational
excitation. The resulting additional ionization contributes
to raise the microwave absorption since it is due to the
collisions of free electrons with molecules. The microwave
absorption is then an increasing function of temperature
as well as of pressure, as observed during the warm-up
phase. In the operational conditions the main chemical
reaction is S2 ↔ 2 S [3]. The sulfur recombination pro-
duces diatoms in an electronic excited state of radiative
de-excitation 2 S → S∗2 → S2 + γ [4]. This is the main
mechanism of the light emission [5].

The microwaves are produced with a 2.45 GHz stan-
dard magnetron whose emission is confined in a cylindri-
cal grid surrounding the spherical quartz bulb. The lamp
Solar-1000 working on the same principle, which in the
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1990s has been commercialized by an American company
[6], has a wall-plug efficiency that overpasses 110 Lm/W
at the full input power of 1.4 kW. Because the microwave
absorption is increasing with temperature, at least in the
operating conditions, a thermal avalanche occurs, result-
ing in the bulb fusion. Therefore, presently commercial-
ized sulfur lamps need to be equipped with a bulb being
in permanent rotation. The rotational motion creates con-
vection cells inside the bulb, so that plasma from the hot
central part is constantly mixed with colder gas from the
peripheral zone, close to the inner surface of the bulb [7].
However, the requirement of a constant rotation is a major
commercial drawback, since it requires an electric motor
in permanent operation.

Researchers at University of Applied Sciences and Arts
Western Switzerland (HES-SO) have found a novel way
to suppress the rotating motion [8]. If the microwave flux
is modulated in the radio frequency range (kHz), ultra-
sonic waves are produced inside the bulb and, at acoustic
resonance, the plasma stabilizes. Moreover, under certain
conditions the resonance can confine the plasma into a
sphere in the center of the bulb, which is also spherical,
see Fig. 1. The heating is then enough centralized to pre-
vent the bulb from fusing. In addition the light emission
is isotropic. Since the impinging microwaves can be de-
scribed as plane waves, the E×B drift pushes the plasma,
so that it forms a flame unless the duty-cycle is reduced.
Even then the asymmetry tends to prevent the excita-
tion of the spherically symmetric acoustic waves. The free
convection also reduces the symmetry. In absence of mod-
ulation, the brightest part of the plasma settles down in
the upper part of the bulb, because of the density gradi-
ent, but in the opposite case, when the modulation is well
tuned it settles down in the central part [9]. This susten-
tation effect is due to the ultrasonic wave produced by the
modulation. In that condition, the oscillation of pressure
is the greatest in the centre of the bulb. Hence, if the mi-
crowave pulses are released at the moments the pressure
in the centre reaches its maximum, most of the delivered
energy is absorbed there, because the microwave absorp-
tion is an increasing function of pressure. In this way, a
standing acoustic wave is driven. Furthermore, since most
of the heat is released in the centre, the risk of melting
the bulb is much reduced. This allows, therefore, increas-
ing greatly the maximum power a bulb can admit, as well
as the luminous efficiency as a result [10].

The paper is organized as follows: The experimental
setup is briefly described in Sect. 2 and measurements of
the plasma dynamics are presented in Sect. 3, showing a
transformation at resonance that gives rise to beats. In
order to determine the mean temperautre in the bulb, in
Sect. 4 we calculate the velocitiy of sound in the plasma
as a function of its temperature by means of a thermo-
dynamic model that notably allows us to take into ac-
count dispersion. Sect. 5 examines the electromagnetic
coupling of sound, because the interplay of acoustic os-
cillations with the electromagnetic induction governs the
resonance onset. In Sect. 6, we propose an interpretation
of our discovery which gives us a way to measure the mean

temperature by using the fact that there is only one pos-
sible pair of normal modes of oscillation that can cause
the observed beats. Finally we are able to assess the mean
plasma characteristics and discuss the optimization of the
luminous efficiency, the stability of the spherical resonance
and how it onsets.

2 Experimental setup

The experimental installation constitutes of the main parts
shown in Fig. 2. The magnetron is a 2.45 GHz domestic
microwave source with an added RLC anti reflection filter.
The high tension unit, feeding the magnetron, has been
designed and constructed in-house [11]. It is controlled by
a high frequency pulse generator, whose design is based on
a digital signal processor (DSP). Pulses can be produced
with the tension of 4.5 kV, having a modulation frequency
up to 70 kHz and a duty-cycle down to about 10%. The
photo-sensor is of the type Hamamatsu C6386-01, whose
bandwidth was set to 10 MHz. They are connected to a
PC with data acquisition cards with a maximum acquisi-
tion frequency above 60× 106 samples/s. The samples are
averaged by blocks, lowering the sampling frequency, in or-
der to improve the signal-to-noise ratio. The installation
is computer controlled via Matlab, enabling the operator
to change the modulation frequency and the duty-cycle on
the fly. The PC is connected to the pulse generator with
a RS232 connection. In addition, the bulb surface tem-
perature is monitored with a high temperature infrared
camera. The bulb is a hollow sphere, made of pure silica,
with an inside volume of 15.6 cm3. It is filled with argon
gas and an amount of sulfur having a concentration of
1.8 mg/cm

3
. The argon content is much smaller than that

of sulfur, because the argon pressure at ambient temper-
ature is tens of millibars. The bulb is enclosed inside a
metal mesh which acts as a Faraday cage, preventing any
harmful leak of the microwave field.

3 Experimental results

3.1 Observations

In order to qualitatively appreciate the optical thickness
of the plasma, we have installed a helium-neon laser of
15 mW of emitted power, pointing to the center of the
bulb. The principle is to observe the red brightness of
the laser spot, projected onto a white diffusive screen,
placed behind the bulb. It was observed that the spot
declines progressively during the warm-up phase. The op-
tical thickness therefore increases extensively during the
evaporation of sulfur, as it is expected, since the number
density of the molecules in the vapor becomes much larger.
When the steady regime is reached, the laser red spot
cannot be distinguished anymore on the screen strongly
illuminated by the white light coming from the plasma,
confirming that its core in operating condition is optically
thick (optical depth is about 10µm according to [12]). In
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contrast, the vapor around the plasma core remains trans-
parent, since one can see the rear grid through it.

Moreover, we have observed the motions of the plasma
with an ultra fast camera (Vision Research Phantom) film-
ing in color at 105 fps with a resolution of 256× 256 (see
Fig. 3). After the warm-up phase, the electromagnetic cou-
pling becomes much stronger [13]. If no acoustic resonance
stabilizes the plasma, it shows stochastic shakings. To the
human eye, the light is vibrating, meaning that the vibra-
tion spectrum goes below 70 Hz, the upper bound of the
human vision bandwidth. We have, furthermore, observed
the plasma evolution in smaller time scales by viewing the
film in slow motion. Neither its shape nor the brownish or
bluish color of its sheath appears to vary in the duration
of a modulation period (≈ 40µs). The only events visible
at this time scale were plasma filaments usually located
along the bulb wall (see Fig. 3) when the plasma was not
in spherical resonance. The filaments were blinking at the
modulation frequency of the magnetron, in concordance
with the pulse duty-cycle; they were certainly occurring
when the magnetron was switched on. The occurrence of
these electric arcs, close to the bulb wall, seems to confirm
the importance of the stepwise ionization in the electro-
magnetic coupling of the plasma. Indeed, the vibrational
relaxation can be slow with respect to the microwave mod-
ulation, especially in the cold zones according to (2) (see
Sect. 3.2). And as a result, the convection might produce
currents of high vibrational temperature streaming out of
the plasma core. Stepwise ionization might enrich them
with free electrons so much that paths of electrical cur-
rent constriction appear.

Furthermore, we note that in all the experiments where
the plasma ball has been formed, its size was always about
half the bulb size (see Fig. 1). This feature can be ex-
plained by acoustic reflections on the bulb wall, since the
magnetron switching modulates the pressure. When en-
ergy is supplied and the pressure is locally peaking at
some point, called source point, a large amount of heat
is released there, because the collision frequency of free
electrons into the molecules is a growing function of pres-
sure. As a result, from each of the source points an acoustic
wave is emitted. The question is: Under which conditions
the reflections on the bulb wall may produce new source
points at next pulses? There is of course a matter of syn-
chronization, as confirmed by experiments (see Fig. 18,
Sect. 6.6). However, acoustic reflections lead also to geo-
metric conditions, which are now analyzed.

We consider the acoustic emission towards the clos-
est wall to the source point separately from the emission
towards the opposite wall (see Fig. 4). These spherical
domes form two concave mirrors facing each other, each
having a focus point laying at half of the bulb radius (a/2)
symmetrically to the other, in the Gauss approximation.
It is well-known that the image of a source point is real
only if its distance to the mirror is greater than the focal
distance. Otherwise, the image is virtual and the absence
of a pressure peak prevents this wave from regaining en-
ergy during the next microwave inflow. Assuming the gas
is homogeneous and non dispersive, we assess the image

position using of the Spherical Mirror Equation,
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where y is the source distance and y′ its image distance
to the mirror. If the source point lies in a centered sphere
of half radius, y > a/2 for both mirrors, both of its im-
ages will be real, y′ > 0, and thus the wave will be fully
recharged at the next pulse. On the contrary, if the source
point lies out of the sphere with half-radius, it will have
only one real image, the one made by the reflection in the
furthest mirror, i.e. in the case 3a/2 ≤ y ≤ 2a. Then, ac-
cording to (1), 2a/3 ≤ y′ ≤ 3a/4, giving a/2 ≤ y′. Hence,
this real image is lying inside the sphere with half-radius.
So virtual images put apart, the secondary image of the
sphere with half-radius is real and included in itself, al-
lowing to localize the heat release to this spatial domain.
This is certainly the reason why the plasma ball expands
to half of the bulb radius.

3.2 Plasma dynamics measurements

Fig. 5(a) shows the AC component of the photo signal of
the plasma, which is not in spherical resonance. The AC
component is the signal minus the DC component, i.e.,
its mean value during one cycle. In this experiment the
magnetron modulation frequency was fc = 26.1 kHz and
the duty-cycle was 24.7%. The modulation frequency is
defined as fc = 1/Tc, where Tc is the duration of one mod-
ulation cycle, as shown in Fig. 5(a), and the corresponding
angular frequency is ωc = 2π fc. As can be seen, the photo
signal has a regular triangular shape, and on each modu-
lation period the signal consists of two distinct parts, as
shown below.

During the discharge, i.e. in the switched-on periods
as shown by the gray line, which is the normalized ampli-
tude command signal, the photo signal usually increases
linearly. The rise rate, normalized to the DC value of the
tension, is in this example about 104 s−1. Because of the
applied electromagnetic field, the ionization may locally
reach high peak values. It is known that a large fraction
of electron energy from non-thermal discharges in several
gases goes mostly into the vibrational excitation at elec-
tron temperatures ranging from 1 eV to 3 eV [14]. Indeed,
the vibrational excitation occurs in such plasmas at much
lower electron energies than required by the electronic ex-
citation (> 10 eV) [15]. So the vibrational energy may
reach high values at ionization peaks [16]. The vibrational
excitation by electron impact may occur over the whole
vibrational ladder, through resonant interaction, like in
the case of the pulsed discharges in atmospheric nitro-
gen studied by Colonna et al. [17]. Besides a preceding
study of the lamp has shown that the pulsed mode of mi-
crowave induction increases strongly the mean light flux
in comparison to the continuous mode [10]. So, as a mat-
ter of fact the recombination rate is higher in the pulsed
mode and, since the upper electronic energy level is fed
by the recombination process, it appears that the pulses
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pump the vibrational excitation. In situations as shown in
Fig. 5, where the light flux is much modulated, the dis-
sociation - recombination kinetics is certainly affected by
the pulse mode. The amplitude of the photo signal mod-
ulation is however changing, as one can observe on Fig. 7;
this is probably due to the instability of the vibrational
relaxation.

At the turn-off, the electron temperature drops faster
than the temperature of the neutral component [18]. The
dissociation rate from the pure vibrational mechanisms,
in which only heavy particle collisions are involved, may
become competitive with the direct electron impact dis-
sociation mechanisms, as in the case study of Pietanza et
al. on a CO2 microwave plasma, based on a model of the
coupling of the electron energy distribution with the vi-
brational kinetics [19]. The afterglow decay might be very
fast, as long as the electron temperature lays above the
vibrational temperature, as it has been found by Capitelli
et al., also in numerical modelizations of a CO2 plasma
[20]. In a model of the triangular response to short mi-
crowave pulses, the decay is composed of two successive
exponential parts:

– First a fast exponential decay occurs. As long as the
gas is still enriched in highly excited or dissociated
molecules, the vibrational relaxation might be accel-
erated as a result of the elevation of the vibrational
ditribution as well as of the chemical interactions be-
tween colliding reactants [21]. In this part of the decay
process, seen as the remanence of the electromagnetic
coupling, the characteristic relaxation time is τe.

– In the subsequent period of time, the vibrational ki-
netics might be governed by the superelastic collisions
with both vibrational and electronic excited states, as
derived by D’Ammando et al. [22] and analysed by
Colonna et al. in the case of high pressure hydrogen
plasmas [23]. As a matter of fact, the relaxation time
lengthens often ; a second characteristic value τv is
measured.

Johnston et al. have measured the characteristic de-
cay time of the electron temperature to be less than 10 ns
[24]. The experimental conditions such as the bulb size
and its content, the microwave frequency and the mean
power, were similar in our experiments. They used a con-
tinuous plasma heating and a rotating bulb. In our lamp,
in contrast, the energy is supplied to the plasma by short
pulses. As the degree of ionization peaks locally during
such pulses, the vibrational relaxation is temporarily fast,
which leads to the characteristic time τe.

The photo signal of the spherical resonance plasma is
shown in Fig. 6(a). In this experiment the duty-cycle was
12% and fc = 28.2 kHz. The photo signal is almost a per-
fect sinusoid. In addition, a phase shift appears between
the magnetron command signal, shown in gray in nor-
malized units, and the photo signal. In this sampling, the
plasma brightness is at maximum when the magnetron
power is switched off. This shows that the molecular dis-
sociation is then governed by the pure vibrational mech-
anisms, i.e. by the collisions between vibrationally ex-

cited molecules, dominating the electron impact dissoci-
ation mechanisms like in the study of Capitelli et al. on
other molecular plasmas [25]. The behavior is different
from the non-spherical case of Fig. 5(a) in two main as-
pects. First, the photo signal shape is different; second,
the photo signal and the command signal are not in the
same phase. In Fig. 6(a), the definition of the frequency of
the photo signal is also shown. The period of oscillations
is Tp and the frequency is fp = 1/Tp. The angular fre-
quency of the photo signal is ωp = 2π fp. Fig. 6(b) shows
the photo signal over a period of 50 ms. In gray is shown
a beating signal, which is the sum of two sine waves dif-
fering 1% in frequency, i.e. sin(2π fc t)+sin(2π(fc−∆f)t)
with ∆f = 282 Hz. As one can see, this sum of two sine
waves produces a similar beat as in the measured photo
signal. As a matter of fact, the photo signal spectrum,
obtained by Fourier transform of 50 ms samples, shows
several peaks in the neighborhood of the pulse repetition
frequency. The spectrum of the photo signal of Fig. 6(b) is
presented in Fig. 6(c). Clearly two dominating modes ex-
ist, one is exactly at fc, while the other is at 0.991 fc. With
fc = 28.2 kHz the separation of the peaks is 250 Hz, which
is equal to the beat frequency up to the measurement accu-
racy. We, therefore, make a hypothesis that in the spher-
ical resonance there are actually two normal modes si-
multaneously excited with a frequency difference of about
250 Hz or 1%.

The transition of two plasmas into the spherical res-
onance is shown in Fig. 7. In Fig. 7(a) is the AC com-
ponent of the photo signal. The signals are horizontally
shifted such that the transitions are at t = 17 ms for both
plasmas. At this moment the amplitude decreases during
only one period from 220 mV to 70 mV and from 86 mV
to 30 mV for the plasma marked with the gray and black
line, respectively. The transition is accompanied with a
sudden increase of the characteristic time τe. The product
τe ωp is shown in Fig. 7(b). When the plasma is not in
the spherical resonance, this product is typically ranging
between 0.5 and 3, as one can also see in Fig. 5(b). How-
ever, it increases in the transition; values above 4 have
been measured. In the spherical resonance, the response
becomes sinusoidal and no exponential decay can be found
anymore. But, from the trends observed at the start of the
resonance, it seems that τe ωp rises much above 5 as one
can see in Fig. 7(b). Moreover, as shown by Fig. 7(c), the
vibrational relaxation time τv also undergoes a sharp rise
at the very moment the amplitude decreases. Neverthe-
less, it does not rise much above the values it showed long
before the transition. In these experiments, the resonance
was not stable and the response fell back into the trian-
gular type after about 6 ms.

Tests of heating interruption have also been performed,
in where the microwave pulses are stopped for a num-
ber of periods, as shown in Fig. 8. The DC component of
the photo signal decreases with a time constant of about
9 ms for all plasmas; the measurements of Fig. 8 give
8.7 ± 0.5 ms in the case ‘in resonance’ and 8.6 ± 0.5 ms
in the opposite case. Comparing with the measurements
of τv, which vary in the range of 1µs− 30µs in the cases
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of Fig. 5(b) and Fig. 7(c), we observe that the character-
istic time of the exponential decay model increases as the
plasma cools down. This is in qualitative agreement with
the general theory of chemical and vibrational nonequi-
librium. Indeed, molecular thermal relaxation is due to
collisions between molecules. A much larger number of
collisions is required for vibrational relaxation than for
the other degrees of freedom. The required number of col-
lisions depends moreover on the relative kinetic energy
between the two colliding particles; the lower the tem-
perature, the greater is the number of required collisions
for vibrational energy exchange. Indeed for most diatomic
gases, τv is a decreasing function of the translational tem-
perature T (simply called ‘temperature’), at a given pres-
sure p, as shown by the Landau-Teller rate model [26]

p τv = C1 exp

[(
C2

T

)1/3
]
, (2)

where C1 and C2 are two physical constants of the gas.
Although this model does not take into account the vi-
bration - vibration energy transfer as well as the anhar-
monic pumping [27], it is used as a first approximation for
most polyatomic gases in vibrational nonequilibrium [28],
admitting three basic assumptions [29]: (a) the transitions
occur only between the neighboring vibrational states, (b)
the transition rates are proportional to the vibrational
quantum number, and (c) the levels are populated ac-
cording to a Boltzmann distribution. Solving numerically
the master equations for nonequilibrium distribution func-
tions is out of scope in the present work, but we refer to
(2) in qualitative discussions.

Furthermore, according to kinetic theory, the collision
frequency is proportional to pressure and inversely pro-
portional to the square root of temperature. Those two
parameters are bound in our case, because the gas volume
is constant, and the collision frequency decreases when the
plasma cools down. This rarefaction of the collisions is still
enhanced by the recombination, which reduces the num-
ber density of particles, as well as by the condensation.
In addition, the required number of collisions increases as
temperature and pressure decreases, see (2). Each of these
effects lengthens the characteristic time of the vibrational
relaxation. Lastly, the heat of recombination and conden-
sation is progressively released back, which slows down
the decrease of temperature. In this respect, our values of
decay time are not inconsistent with the ones measured in
[24], laying around 20 ms, thus significatly above ours, as
the switch-off period in [24] was longer.

The tests of long power interruption also allowed us
to measure the acoustic quality factor of the bulb, Q. If
the plasma is initially in the spherical resonance, the sinu-
soidal AC component of the photo signal attenuates very
slowly, see Fig. 8 (a). In contrast, the beats mentioned
above disappear immediately after the power cut-off, see
Fig. 8 (b). Therefore, it seems that one of the two normal
modes is forced and, consequently, its frequency is equal to
fc, whereas the other is a free oscillation. In order to deter-
mine the quality factor in the remaining freely oscillating

mode, we have measured the decrease of the AC ampli-
tude of the photo signal. Assuming an exponential decay

∆s(t) = ∆s0 e
−t/τa where ∆s0 is the initial amplitude,

see Fig. 6(a) for the amplitude definition, and measuring
the amplitude after n oscillations, ∆sn, the attenuation
time is given as τa = ∆t/ ln(∆s0/∆sn). The quality fac-
tor is then

Q =
ωp τa

2
=

nπ

ln(∆s0/∆sn)
(3)

with ωp = 2π n /∆t. We have measured the quality factor
in several experiments. When the plasma was in spherical
resonance, we found a value Q = 500 ± 100 which cor-
responds to the attenuation time of τa = (6 ± 1) ms. In
contrast, we could not make any conclusive measurement
when the plasma was not in the spherical resonance. So it
appears that, in this case, the electron impact dissociation
mechanisms have a determinant effect, in contrast to the
opposite case, where it is the pure vibrational mechanisms
that are governing dissociation, like in the case study [20].

4 Velocity of sound

A model is developed for the phase velocity of sound, tak-
ing into consideration the dispersion due to vibrational
relaxation. The temperature dependence of the velocity
then allows us to find the gas temperature in the reso-
nance.

During each microwave pulse, the degree of ioniza-
tion may momentarily and locally rise, but the fraction
of charged particles remains low. In a weakly ionized gas,
the collisions involving at least one neutral particle are
so much dominating, that the ions and the electrons are
forced to follow the neutrals in the acoustic oscillations
[30]. In this respect, we assume that the sound propagates
like in a non ionized vapor. In addition the ideal gas model
is valid since the pressure in the bulb is in the range of
3 to 6 bar [24], far below 182.1 bar, which is the critical
pressure of sulfur vapor [31]. In the present work, we have
moreover adopted a one-node-lumped model as the objec-
tive is the interpretation of the photo signal variations in
time, i.e., the global response of the plasma.

4.1 Thermodynamic basis

Measurements of the dissociation energy of disulfur by
photoionization and thermochemistry give the same value
of 4.38 eV [32]. We use D = 4.38 eV from the zero-point
energy of vibrations (cf. Fig. 22). Regarding ionization,
its energy is more than twice as high, 9.36 eV, according
to [32]. As a result, the main chemical reactions in oper-
ating condition, that occur inside the bulb, are the dis-
sociation and the recombination of disulfur. Taking into
account this only chemical cycle, we consider a collection
of molecules, composed of three chemical species:

1. NA atoms of argon Ar, of molar mass MA,
2. N1 atoms of sulfur S1, of molar mass MS ,
3. N2 diatoms of sulfur S2, of molar mass 2 MS .
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The volume taken by the gas (15.6 cm3) and the enclosed
mass are given constants. The contribution of argon to
the total mass density, ρ = ρA + ρS , is in the magnitude
order of one percent. The content in Sulfur is ρS = 1.82 ±
0.02 kg/m

3
.

Furthermore, if no dissociation occurred, the number
of sulfur diatoms would be constant and equal to N0 =
N2 +N1/2. The proportion between the two sulfur chem-
ical species is given by the degree of dissociation α

N2 = N0 (1− α) and N1 = 2N0 α. (4)

As a result the mean molecular mass is a function of α

M̄ =
NAMA + 2N0MS

NA +N0 (1 + α)
. (5)

Besides we assume that the sound wave process is adi-
abatic as the quality factor of the spherical resonance is
high (see Sect. 3). The Laplace relation gives, hence, the
phase velocity of sound in an ideal gas of mass density
ρ at pressure p or translational temperature T , which is
simply called ‘temperature’. (T is homogeneous to energy
in order to lighten the algebraic notation)

v2 = γ
p

ρ
= γ

T

M̄
, (6)

where γ is the isentropic coefficient, defined as the follow-
ing partial derivative at constant entropy [33]

γ =

(
∂ ln(p)

∂ ln(ρ)

)
S

. (7)

This parameter can be expressed as a function of the
degree of dissociation, α, and the isobaric and isochoric
heat capacities per unit mass, respectively cp and cv

γ = Zd
cp
cv
, (8)

where

Zd =
2

(1 + α) (2− α)
(9)

is the correction factor due to dissociation/recombination,
which is lying between 1 and 8/9, i.e. its value at half-
dissociation α = 0.5 [34]. In the case of a non-reacting gas
Zd = 1.

4.2 Dispersion

We note that the Laplace relation (6) shows no depen-
dence on the sound frequency. However, dispersion is neg-
ligible only if the thermal changes, which take place as
the gas is submitted to compression/expansion cycles, oc-
cur so slowly that the changes in the energy of all the
degrees of freedom of the molecules follow with no signif-
icant time lag. For the vibrational energy in the opera-
tional frequency range, 20 kHz-70 kHz, where the criti-
cal time is 2µs− 8µs and the measured relaxation times

are also of the order of microseconds (see Fig. 7), this is
certainly not true. Therefore, in order to take the disper-
sion into account, we must regard the heat capacity as
a complex function of frequency, the imaginary part cor-
responding to the phase difference between the pressure
and density fluctuations. As this outphasing is small in
cases of practical importance we have, to a good approx-
imation, Re[

√
γ] ≈

√
Re[γ] [35]. So, to obtain the sound

velocity v, i.e. the real part of the complex sound velocity,
the Laplace relation (6) is rewritten as follows

v =

√
Re[γ]

p

ρ
, (10)

where the coefficient γ is now the following complex num-
ber

γ = Zd +
1

M̄

Zd + i ω τv
(
1− M̄ c∞ (Zd − 1)

)
c?0 + i ω τv c∞

, (11)

where c∞ is the limit of cv when ω → ∞. The two lim-
its, at low and high frequency, are labeled as equilibrium
and frozen, respectively. Hence, the equilibrium isentropic
coefficient is given by the low frequency limit of (11)

γ0 = Zd

(
1 +

1

M̄ c?0

)
. (12)

The factor Zd holds for the coupling between the chem-
ical reaction and the vibrational relaxation. The molecules
that are lying in high vibrational energy levels are indeed
more readily dissociated. But if the vibrational degree
of freedom is frozen, the coupling has no impact on the
sound propagation. And indeed, Zd vanishes at the high
frequency limit of (11), see (21).

By matching (12) with (8), we get the effective iso-
choric equilibrium heat capacity per unit of mass c?0 by

1 +
1

M̄ c?0
=

cp
cv
, (13)

This ratio is derived in Appendix A, see (67), giving hence

c?0 = c0
2 + 3α

2 + α (7/2−D?/T )
, (14)

where c0 is the equilibrium value of cv; this parameter is
derived in Appendix B.

4.3 Degree of dissociation

It is known that vibrational pumping can enhance the
dissociation rate, but to take this dynamics into account,
it would be necessary to solve numerically the Boltzmann
equation for the electron energy distribution function with
nonequilibrium vibrational kinetics [19]. In the present
study, we assume that the degree of dissociation is in the
average governed by the mean temperature in the bulb.
We use the classical equilibrium thermodynamics, with
the equilibrium constant, as defined in Appendix A by
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(59). We have first assessed it by the following expression
[36]

Ke(T ) = p0 exp

(
∆S0 −

D

T

)
, (15)

where ∆S0 is the molar entropy of dissociation under the
standard pressure, p0 = 105 Pa. According to our calcu-
lations, which are based on a thermodynamic properties
data base [37], (15) leads to the values of the equilibrium
constant of dissociation shown in Fig. 9.

For comparison, we have also calculated Ke(T ), using
the expression given in [38],

Ke(T ) = Cst
√
T exp

(
−D
T

)
. (16)

We have determined the constant of this expression, Cst =

9.9513 × 1020 Pa J−1/2, by fitting published data of a 1
kW microwave sulfur lamp, calculated by applying a one-
dimensional local thermodynamic equilibrium model [39].
Even if in that study the magnetron was in the continuous
mode, the luminous efficiency is close to values measured
in our system [40], as the bulb was rotating in this lamp.
The fit should therefore allow us to approach the effective
DC value, reached in the operating conditions of our lamp.
As shown in Fig. 9, the two curves are almost superposed
and, therefore, the two models are in agreement. From
now on we use (16), because the derivative in respect to
temperature will be required.

Furthermore introducing the ideal gas law and (4) in
the definition of Ke (see (59)) leads to

Ke(T ) =
4α2

1− α
n0 T. (17)

The degree of dissociation is then found as the solution of

4n0 T α
2Ke(T )−1 + α− 1 = 0, (18)

with the positive solution being

α =
2

1 +
√

1 + 16 n0 T/Ke(T )
. (19)

Figure 10 shows the obtained dissociation versus tempera-
ture in the present enclosed vapor (n0 = 1.69×1019 cm−3).

4.4 Frozen phase velocity of sound

Ultrasounds are produced inside the bulb by the mag-
netron switching. The acoustic intensity certainly peaks at
the turn-off as the variation of electromagnetic induction
is then the most abrupt [41]. Hence, the relevant character-
istic time for the acoustic resonance onset is τe, according
to our analyse of the transition from triangular to sinu-
soidal response (Sect. 3.2). In addition, ω τe < 3, when the
plasma is not in spherical resonance, but ω τe > 5, when
the resonance is at onset (see Fig. 7(b)). In a first approach
of the resonance conditions, we therefore approximate the

phase velocity of sound by its frozen value given by the
high frequency limit of (10)

v∞ =

√
γ∞

p

ρ
=

√
γ∞

T

M̄
, (20)

where γ∞ is the frozen isentropic coefficient given by the
high frequency limit of (11)

γ∞ = 1 +
1

M̄ c∞
. (21)

In addition, neglecting the electronic degrees of freedom,
the frozen mass isochoric heat capacity of sulfur is approx-
imated as [42]

cS∞ ≈
7− α
4MS

, (22)

whereas the corresponding heat capacity of argon is cA =
3/(2MA). There is indeed no electronic excitation signifi-
cantly involved for argon nor for atomic sulfur, since none
of their emission lines peaks out of the spectrum. More-
over using (5), we obtain the following approximation

M̄ c∞ ≈
7− α

2 (1 + α)
+

3NA
2N0 (1 + α)

, (23)

which gives

1

M̄ c∞
≈ 2 (1 + α)

7− α+ 3NA/N0
. (24)

Finally, substituting this result into (21), we get

γ∞ ≈ 1 +
2 (1 + α)

7− α+ 3NA/N0
. (25)

Combining this result with (19) and (5), we obtain
from (20) the phase velocity of sound, approximated by
its frozen value, as a function of temperature (see Fig. 11).

4.5 Volume average of the phase velocity of sound

From the preceding analysis, illustrated in Fig. 4, we see
that a stationary wave would preferably build up, if the
reflections in the closest and the farthest parts of the bulb
wall are synchronized, i.e. they reach their image points
at the same time, during the magnetron is switched on,
because otherwise they would not regain energy. We now
look more closely at this issue, in considering again the
plasma ball formation, see Fig. 1.

The part of the wave emitted towards the closest wall
is propagating first through the cold layers of the periph-
ery, where the degree of dissociation (α) is lower than in
the average. In contrast, the part of the wave emitted to-
wards the farthest wall is propagating first through the
hot core, where α is much higher since this is occurring
when the magnetron is switched on. As seen in Sect. 4.4,
the frozen velocity of sound is a growing function of tem-
perature, see (20). Moreover, the mean molar mass (M̄)
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decreases when α increases, see (5), adding to the accel-
eration of the wave. Furthermore, the frozen isentropic
coefficient (γ∞) is a decreasing function of the product
M̄ c∞, see (21), which reinforces the sound acceleration
in the hot zones, see (23). Thus, if the velocity of sound
was only a growing function of temperature and of dis-
sociation, the echo on the closest wall would probably be
often late in regard to the other, as this one goes through
the plasma core mainly when the magnetron is switched
off, as illustrated in Fig. 12. However, dispersion would
have a counteracting effect, if the plasma core is closer to
the thermodynamic equilibrium, see (11) and Fig. 20. This
would be in agreement with the temperature dependence
of τv, see (2). Moreover, this equation shows that τv is
inversely proportional to pressure at given temperature.
So it seems that when the spherical resonance is occur-
ring, the plasma is not all the time frozen everywhere in
the bulb. The value of τv in the plasma ball drops down,
when the pressure is high here. As a result, the plasma
ball would be going back and forth from the equilibrium
state to the frozen state.

Moreover, both vibrational and chemical nonequilib-
rium are existing and therefore, there is a coupling be-
tween the chemical reaction and the vibrational excita-
tion: the dissociation of a molecule is stimulated by its
vibration. If somewhere in the bulb the vibrational en-
ergy is higher than its equilibrium value, the dissociation
of this volume of gas is boosted as well as the light pro-
duced at its boundary by molecular recombination. Con-
sidering the strong contrast of radiance that marks the
plasma ball boundary (see Fig. 1), we admit that the vi-
brational internal degree of freedom is frozen outside the
ball and active inside, when the pressure at the center is
high. Hence, assessing the maximal effect of dispersion on
the average velocity of sound, the plasma is supposed to
remain in the equilibrium state inside the ball and in the
frozen state outside.

We derive from (10)

v = v∞

√
Re[γ]

γ∞
. (26)

where γ is given by (11). The equilibrium velocity of sound
v0 is hence

v0 = v∞

√
γ0
γ∞

, (27)

where γ0 is obtained by the zero-frequency limit of (11)

γ0 =
2

(1 + α) (2− α)

(
1 +

1

M̄ c?0

)
. (28)

Substituting (20) into (27), as expected we obtain

v0 =

√
γ0
p

ρ
=

√
γ0

T

M̄
. (29)

In addition, by assessing the acoustic average of the
velocity by its volume average, we are lead to

v̄ ≈ 7

8
v∞ +

1

8
v0 (30)

as the plasma ball size is an eighth of the total bulb vol-
ume. Substituting (27) into (30), we obtain the following
correction ratio

v̄

v∞
≈

7 +
√
γ0/γ∞
8

. (31)

This ratio is necessarily less than unity, because γ0 < γ∞.
Furthermore, by considering a diatomic ideal gas (γ0 =
9/7 and γ∞ = 7/5) a lower bound is obtained

1 >
v̄

v∞
> 0.995. (32)

Hence, in approximating the volume average of the phase
velocity of sound by its frozen value (see Fig. 11), the
error is less than a percent, which is of no significant con-
sequence in the present framework.

5 Sound amplification due to electromagnetic
coupling

The frequency shift, that occurs when the spherical reso-
nance appears, suggests that a spontaneous excitation is
involved in the plasma ball formation. A theoretical ex-
planation of this type of phenomenon has been given by
P. M. Morse and K. U. Ingard, in the case of plane waves
in a rectangular tube [44]. We adapt here their model to
the case of spherical cavities.

The sound produced at the magnetron turn-off by the
sudden fall in the heating of the neutral component mod-
ulates the declining electron density at the acoustic fre-
quency [41]. The interaction between acoustic density vari-
ations and thermal energy from the electrons is taken into
account, in the Appendices C and D. Indeed, as the col-
lision frequency between electrons and molecules is an in-
creasing function of the acoustic density, the coupling to
the electromagnetic field might produce a positive feed-
back on the acoustic wave. Hence, the sound can be am-
plified by the thermal energy supplied to the neutrals by
the electrons. This effect is taken into account by adding
to the damped wave equation (89), see Appendix D, a
source term proportional to the rate of change of the elec-
tron energy, thus proportional to the time derivative of
the pressure [43]

v2∇2p − 1

τa

∂p

∂t
+

1

τe

∂p

∂t
− ∂2p

∂t2
= 0, (33)

where τa is the attenuation time and τe is the caracteristic
time of the electromagnetic coupling, which corresponds
to our measurements of the inital decay time of the after-
glow (see Sect. 3.2) because the sound is mainly produced
at the turn-off instants as long as the resonance is not on.

Proceeding with the same mathematical treatment as
in Appendix D, we obtain from (33) the complex angular
velocity Ω defined in (90), as the solution of an equation
equivalent to (91) with the rate constant τ−1a −τ−1e instead
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of τ−1a . We transpose the results of Appendix D, finding
for the imaginary part

β = (τ−1a − τ−1e )/2. (34)

If the mode is growing, β needs to be negative

τe < τa, (35)

which is the condition of spontaneous excitation. This
means that the electrons must deliver their energy to the
neutral component faster than the damping of the mode.

Regarding the actual angular velocity of the plasma
response, (95) is still formally true if β is calculated ac-
cording to (34). We obtain

ωp = ω

√
1−

(
τ−1a − τ−1e

2 ω

)2

. (36)

The actual angular velocity ωp is still lower than ω, the
resonance angular velocity if there were no damping.

For the mode to exist, the argument of the square root
of (36) has to be positive. With the negative condition
to the imaginary part (35), the condition of spontaneous
excitation is

0 < τ−1e /2− τ−1a /2 < ω (37)

If τe � τa in addition, we obtain

1/2 < ω τe � ω τa, (38)

which states that an acoustic resonance can be sponta-
neously excited only if the electromagnetic coupling is not
fast with respect to the acoustic oscillation.

In Fig. 5(b) the measured ωc τe ≈ 0.6 > 1/2. Thus
the plasma should be in the spherical resonance, which is
not the case. Probably condition (38) is not relevant here
because the condition τe � τa is not applicable to the
time interval shown in Fig. 5(b). As a matter of fact, the
transition took place about 20 ms later. It might be that
the resonator quality factor is very low when the plasma
is not in the centralized spherical mode. In this case, it is
possible that τe & τa, so that β > 0 and no spontaneous
excitation occurs. Even though the vanishing of a free os-
cillation would require the quality factor to be very small,
it might be sufficient that τa drops down temporarily to
break the free oscillation.

6 Interpretation

6.1 Involved normal acoustic modes

Analytical models give the normal modes of oscillation in
the case of a small amplitude in a homogeneous isother-
mal perfectly rigid solid sphere and they can be found
in textbooks, e.g. [45]. Even though in the experiments
the medium of propagation is not solid, such a model is
meaningful for the resonance analysis, because the plasma
is motionless at the time scale of the resonance period,

as we have observed thanks to an ultrafast camera (see
Sect. 3.1). Nevertheless, the medium is not homogeneous
nor isothermal in the experiments, and the acoustic cav-
ity boundary is not perfectly rigid, but the comparison
with the measurements is justified when comparing rela-
tive frequencies. Used as background framework of Sect. 5,
Appendix C recalls the basis of the standard formalism of
these analytical solutions to the wave equation for spheri-
cal boundary conditions. It is now used again to determine
the involved normal modes.

From the frequency fres, at which the spherical reso-
nance occurs, we calculate for each value of χl,n given in
Table 2 (see Appendix C) the value of phase velocity the
sound should have if the resonance were due to the ex-
citation of this particular mode, so assuming fres = fl,n
in (88), see Appendix C. Even though the photo signal
oscillates at a slightly lower rate than the pulse repetition
frequency fc in the spherical resonance, since no phase
locked loop was put in the control, we suppose here for
simplicity that it oscillates at the frequency fc, within an
approximation error of around 1%, see Fig. 6(c). Thereby
using fres ≈ fc, it follows that the sound velocity on each
mode is according to (88)

vl,n ≈
2π a

χl,n
fc. (39)

Mapping the resulting series to the volume average of the
phase velocity of sound, which is approximated by the
frozen velocity (error < 1%, see Sect. 4.5), we finally
obtain the spectrum of the possible normal modes, see
Fig. 13. In the figure the horizontal axis is the spherical
Bessel function order l (see Appendix C) and the verti-
cal axis is the gas temperature. For each l, the extremum
order of the spherical Bessel function n, which can exist
at the temperature larger than 0 ◦C, are shown. The mea-
sured bulb outer surface temperature of 900 ◦C is shown
by the dashed line. As shown by the black bars, there is
only one possible pair of normal modes that can cause
the beats we have observed, see Fig. 6(b): (l = 0, n = 2)
and (l = 3, n = 1). The first is indeed spherical as l = 0,
unlike the second. More details on them are given in the
next sections.

6.2 Plasma temperature

Above all, from Fig. 13 we have obtained an important
thermal assessment: the mean acoustic temperature in the
bulb was about 1930 ◦C, whereas the mean magnetron
power consumption was 905 W, corresponding to an ab-
sorbed microwave flux in the average of about 630 W.
Note that the mean acoustic temperature, i.e., the acoustic
mean of the plasma temperature, is defined as the temper-
ature of a homogeneous isothermal non deformable sphere
of same radius and same resonance frequency, filled with
an equivalent ideal gas, i.e. of molar mass equal to M̄ and
of isentropic coefficient equal to γ∞.

Johnston et al. have measured the temperature in the
plasma core using three sulfur atomic lines in the spec-
trum above 800 nm, where the spectral emission is weaker
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than in the visible part [46]. Even though they operated
the magnetron in the continuous mode, the input power
was in the same range as in our experiments, but with a
rotating bulb. On average, they have found temperatures
of 4100 K ± 150 K. Nevertheless, their measured value is
the core temperature, whereas our value is the volume-
averaged temperature inside the whole bulb, which is given
similarly with (30)

T̄ ≈ 7

8
TPeri +

1

8
TCore. (40)

Using TCore = 3900 ◦C and a rough estimate in the perime-
ter TPeri = 1600 ◦C results in T̄ ≈ 1900 ◦C. Thus, there is
no disagreement between the result of Johnston et al. and
ours. With these values of the core and perimeter temper-
atures we get for the volume average of the sound velocity
v̄∞ ≈ 620 m/s, i.e. less than 3 % above the value obtained
with our isothermal model (see Table 1). This assumption
is therefore acceptable.

6.3 Characteristics of the plasma

The DC characteristics of the plasma at the mean acous-
tic temperature are given in Table 1. The characteristic
frequencies of the two involved modes are calculated with
(88), see Appendix C. The spherical mode (l = 0, n = 2)
has a characteristic frequency very slightly lower than the
non spherical mode (l = 3, n = 1), respectively 28208 Hz
and 28338 Hz, showing a difference of 130 Hz, i.e. only
0.5%! A Fourier transform of the photosignal shows that
the actual difference is approximately 1 %, see Fig. 6(c).
The reason of this discrepancy of frequency shift is prob-
ably the non uniformity of the temperature in the bulb.
Furthermore, this result reveals the inherent difficulty to
excite only the spherical mode.

6.4 Optimization of the luminous efficiency

The optimization of the luminous efficiency is now re-
garded as a matter of nonequilibrium chemistry: the mean
degree of dissociation would be optimal if the dissociation-
recombination cycle was going as fast as possible, in the
average throughout the bulb. This situation should be met
when the peripheral layer is dominated by the recombina-
tion and the central core by the dissociation. In the frame
of a one-node-lumped model, we admit that a half dis-
sociated plasma would be optimal, i.e. if the probability
of drawing from the bulb one monoatomic sulfur is twice
greater than the probability of drawing one diatomic sul-
fur. The degree of dissociation at the mean acoustic tem-
perature would then be α = 1/2 since N0 α = N0 (1− α)
according to (4).

Moreover, Fig. 10 shows that this ideal situation would
be met at a mean acoustic temperature of circa 4100 ◦C.
This is much above its actual value (see Table 1). It seems
thus that, if the plasma could be heated up to a higher
temperature, its luminous efficiency could be significantly

improved. But this is limited by the mechanical resistance
of the bulb at high temperature. In this regard, the for-
mation of a stable off-wall plasma ball is certainly a key
allowing to push up this limit.

6.5 Pressure distribution

As mentioned in the introduction, the microwave absorp-
tion is an increasing function of pressure, as observed when
the sulfur evaporates during the warm-up phase. The mi-
crowave absorption is indeed due to the collisions between
free electrons and molecules. This feature explains also
why the plasma heating can be confined away from the
bulb wall by acoustic resonance. The heat is mainly re-
leased where the pressure is a maximum at the arrival of
the energy into the bulb.

Besides, mathematical modeling allows to assess the
pressure distribution in each normal modes involved in
the beat (see Appendix C). Using (77), (83), (84) and
(86), we have graphed the nodal surfaces, see Fig. 14. It
appears clearly that the non spherical mode (l = 3, n = 1)
does not fit to the plasma confinement, unlike the spher-
ical mode (l = 0, n = 2). In the first, indeed, the nodal
surface is formed by cones with the vertex in the bulb
center. So the heat release cannot be focused there, if this
mode is dominating. In contrast, the nodal surface of the
other mode does not pass by the bulb center, which is
then the main pressure antinode, see Fig. 15. As a re-
sult, the phenomenon of sound amplification due to the
electromagnetic coupling (see Sect. 5) is certainly much
weaker in the non-spherical mode than in the spherical
one. This would explain why stable free oscillations in the
non spherical mode have not been met, see Fig. 8. And so
we assume that spontaneous excitation plays a role in the
resonance onset. This issue will be further developed later
(see Sect. 6.8).

6.6 Beats

The plasma ball formation is always accompanied with a
beat of the two excited normal modes. The ratio of their
frequencies is according to (88) and Table 2 (Appendix C)

f0,2
f3,1

=
χ0,2

χ3,1
= 0.9954. (41)

The comparison of the measured ratio of the plasma re-
sponse frequency fp in the spherical resonance with the
pulse repetition frequency fc (see Fig. 16) gives a very
good agreement. In the figure, the measured value is shown
with the solid line and the theoretical result with the hor-
izontal dashed line. As a result, we can state that the
pulse repetition frequency is equal to the highest charac-
teristic frequency of the two excited modes, so of mode
(l = 3, n = 1), which is therefore a forced oscillation,
whereas the other (l = 0, n = 2) is a free oscillation. And,
therefore, the actual mean acoustic temperature is taken
at the characteristic temperature of the mode (l = 3, n =
1) (see Fig. 13).



Gilles Courret et al.: On the plasma confinement by acoustic resonance 11

Fig. 16 shows pointing down peaks that look like pe-
riodic stalactites, where the ratio fp/fc decreases signif-
icantly during a few periods of the magnetron modula-
tion, with minimum values in the range of 0.94 to 0.98,
corresponding to an amplitude below 40% of the sample
maximum value (cf. Fig. 17). These stalactites occur ex-
actly when the oscillation amplitude is shrank by the beat
nodes, so when the phase shift of the microwave pulse, in
respect to the plasma oscillation, lies around 225◦ of ad-
vance shift (see Fig. 18). In these situations, the pulses of
induction are recreating a new out-phased standing wave,
making destructive interference. Furthermore the periodic
decreases of fp/fc is certainly due to the acoustic damp-
ing. Actually the damping slows down the oscillation, as
shown mathematically in Sect. D. With (95) of Appendix
D, we have assessed the attenuation time by comparing
the slow-down of the free oscillation in respect to the un-
damped resonance, which is given by (41),

τ−1a = 4π f0,2

√
1− fp/fc

0.9954
. (42)

From the minimum values reached by the ratio fp/fc (see
Fig. 16), one can estimate that τa is typically falling be-
tween 8 µs and 17 µs during the beat nodes. So we come to
the conclusion that, for a plasma in spherical resonance,
τa depends on the phase shift of the magnetron. When
the microwave pulses are in a favorable phase with the
free oscillation of the plasma, its forced oscillation build
a constructive interference and τa reaches a maximum,
around 6 ms according to tests of long power interruption
(see Sect. 3). In contrast, when the microwave pulses are
out phased, the interference is destructive and, as a result,
τa passes by a minimum around 10 µs.

If the resonance survives the periods of outphasing as
a result of spontaneous excitation, according to (35) the
characteristic time of the electromagnetic coupling (τe)
would have to be less than 8 µs. However, during the
transitions to spherical resonance depicted in Fig.7 (b),
τe rises above this value, so probably above the minimal
value of τa. Looking more carefully at this graph, never-
theless, we see that τe is in continuous decrease before the
resonance onset; it rises abruptly at the very moment the
photo signal modulation shrinks, which marks the reso-
nance onset. So τe is actually smaller than 6 µs at the
onset, a value below the minimum value of τa, according
to our preceding estimation; and thus, the spontaneous
excitation might play a key role in the resonance onset.

Moreover, a closer examination of Fig. 16 shows that
the frequency ratio fp/fc rises sometimes above 0.9954,
the theoretical value it should have at undamped reso-
nance, according to (41). In this situation the oscillation
amplitude is maximum, its time derivative is consequently
zero, giving momentarily a quasi steady response. Hence,
τe and τa are then equal and, according to the power in-
terruption tests reported in Sect. (3), lying in the range of
milliseconds. This condition is met when the phase shift
between the microwave pulse and the plasma oscillation
lies around 40◦ of advance shift (see Fig. 18). The over-
speed of the oscillation in respect to the undamped reso-

nance could be due to the growth of the free oscillation,
which reinforces the non uniformity of the actual temper-
ature in the bulb, increasing the modeling error by as-
sessing fp/fc in undamped resonance (see Sect. C). As
seen in Sect. 6.5, the pressure distribution in the spherical
normal mode is favorable to the sound amplification by
electromagnetic coupling, which should steepen the radial
profile of temperature. The phase shift giving the larger
modulation amplitude corresponds to the situation of Fig.
6, where the magnetron is switched ON when the photo-
signal is in the middle of its rising. We think that the
oscillating pressure at the center of the bulb is then pass-
ing through its maximum, localizing here the microwave
absorption. Regarding the optical radiation, we think that
its maximum occurs when the core expands, since the ra-
diation results from the molecular recombination, whose
rate is strengthened by cooling. At the opposite-phase,
thus when the radiation is minimum, the compression that
occurs could be a strong mechanism of lag vibrational ex-
citation as most diatomic gases have large bulk viscosities
[47].

Hence we can formulate the following scenario. As seen
in Fig. 7 when the standing wave builds up, τe rises sharply.
Therefore τa rises also if condition (35) is true. As seen
above this might happen if the phase shift of the mag-
netron is favorable. Then the sound amplification due to
electromagnetic coupling goes on until the steady state is
reached, i.e. when the variations of τa and τe cross each
other in the range of 10 milliseconds. Then the outphas-
ing reduces progressively τa which results in a shrinking
of the modulation amplitude. The beat node is reached as
τa and τe cross each other again, but this time at a value
of about 10µs, before the sound amplification restarts as
(35) is fulfilled again. Hence, τe would vary cyclically at
the beat frequency like τa, but with some backward phase
lag. The variation of τe would be due to the change in
pressure distribution, which is very different in the two ex-
cited modes, as we have seen in Sect. 6.5. Indeed, τe would
pass by a minimum when the spherical mode is dominant
and by a maximum in the outphasing periods, when the
non spherical mode is at its highest level of excitation and
tends to break the plasma ball (see Fig. 14).

6.7 Stability of the spherical resonance

In the case depicted on Fig. 19, the plasma fell back out
of resonance after a few milliseconds, like in the case of
Fig. 7, having accomplished only three beat cycles. The
lower graph shows the time evolution of the phase shift.
As expected, this parameter is constant as long as the
plasma is not in resonance and starts to change at the
resonance onset. One can see, in addition, that its time
derivative lies around 1 kHz. The beat is here faster than
in the stable cases we met (see Fig. 6 for instance). The
frequency matching seems to be not so good in this case
and possibly this is the reason why the resonance did not
really settle down.

In addition, as one can also see in Fig. 19(b) the phase
shift starts to oscillate shortly after the timestamp 33 ms,
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before the resonance is lost. This pattern has been ob-
served in other experiments, and it seems therefore to be
characteristic for the vanishing of the resonance. In con-
trast, in stable beats, like the one of Fig. 6, the pulse repe-
tition frequency fc is equal to f3,1 (non spherical mode in
forced regime) and the response frequency fp lies close to
f0,2 (spherical mode in free regime), see Sect. 6.6. As long
as fp is lower than fc, the phase shift is growing contin-
uously, like in the beginning of the resonance time shown
in Fig. 19, as indeed, the time derivative of the phase shift
is by definition

φ̇ = 2 π (fc − fp). (43)

When the phase shift is decreasing, fp is greater than fc.
As the spherical mode has a high Q factor, unlike the non
spherical one, see Sect. 3, the response (fp) is certainly
locked in the free oscillation, so more or less below f0,2
(see Appendix D). As fc was constant (open loop con-
trol), the change in variation was certainly due to a rise of
fp, caused by an increase of temperature. This has proba-
bly been the result of a strong excitation of the spherical
mode, since f0,2 has exceeded fc. As a matter of fact this
new regime is not stable, the temperature decreased again
and the characteristic frequencies also, as a result. Then
the next matching is for the spherical mode as f0,2 < f3,1,
and the temperature raised again. The less excited the
spherical mode is, weaker is the electromagnetic coupling
(see Sect. 6.5). Hence, probably, the magnetron remained
finally too long out of phase. This analysis led us to the
idea that a Phase-Lock Loop control should allow to sta-
bilize the spherical resonance on the long term.

Furthermore, vibrational relaxation might play a role
in the stabilization of the plasma ball. Indeed, there might
be streams of high vibrational energy everywhere through-
out the bulb, as it seems to appear in the ultrafast movies,
see Sect. 3.1. Thus convection might transport vibrational
energy out from the ball. This is certainly a major cause of
instability, because then the microwave absorption would
increase in the periphery, in reason of stepwise ioniza-
tion. But as seen in Sect. 4.5, the plasma ball passes into
the thermodynamic equilibrium state when the wave con-
verges back into the center, in agreement with the temper-
ature dependence of τv as well as its pressure dependence,
see (2). Thus as long as the vibrational relaxation in the
ball is fast enough

∀r < a/2, ω τv < 1, (44)

the vibrational energy exported out of the ball will be
cooled down before that the next pulse of microwave comes
into the bulb; then we can expect a steady energy confine-
ment. A true confrontation of this statement to measure-
ment is not possible here, because our examination tech-
nique is based on the analysis of the photosignal, which
cannot probe into the depth of the plasma ball. Never-
theless, the light is mainly produced at the ball boundary
and the measures reported on Fig. 7 show that (44) was
fulfilled at the resonance onset, and it became false shortly
after: the resonance did not last more than 6 ms.

The condition (44) might not be met during the heat-
ing periods, if the magnetron is wrongly synchronized to
the plasma oscillation. Indeed, as seen in Sect. 6.5, the
bulb center is a pressure antinode in the spherical mode
of resonance, and the lower the pressure the slower the vi-
brational relaxation, see (2). So if the magnetron is not in
phase with the pressure at the center, the condition (44)
might not be met during the heating. Again we come to
the conclusion that we should be able to stabilize the ball
formation thanks to a Phase-Lock Loop control.

6.8 Spherical resonance onset

Most of the observed plasma balls have been obtained in
pulsed forced regimes with a duty-cycle in the range 20 -
10%. This parameter plays a key role for a given average
power. The lower the duty-cycle, the more likely is the
resonance onset. This can be explained by two facts:

– There is a strong shape mismatch between the bulb,
which is spherical, and the microwaves, which can be
regarded as plane waves.

– The acoustic growth rate, 1/(2τe), is proportional to
the electron temperature [48]. Therefore, increasing
the power of the pulses is favorable to the amplifica-
tion of the spherical oscillation as long as ωp τe > 1/2
according to (38). And indeed the frequency shift that
appears during the resonance shows that the heavy
particles become decoupled from the electrons, which
means that τe increases after the transition, as our
measures tend to show (see Fig. 7).

In addition, the plasma ball has been found by sweep-
ing the repetition frequency of the microwave pulses. The
criterion of spontaneous excitation (35) does not involve
any frequency. In contrast, this is a determinant parameter
for resonance. As seen earlier, spherical pressure distribu-
tions provide stronger electromagnetic coupling, as long
as the magnetron modulation is correctly synchronized to
the plasma vibration. Therefore, it seems that the spon-
taneous excitation is seeded by the spherical resonance,
which might indeed reduce the amount of entropy con-
tained in the bulb and, as a consequence, rises τa enough
to satisfy the condition of spontaneous excitation (35).

Nevertheless, the plasma inhomogeneities could pre-
vent the resonance, because the phase velocity of sound de-
pends on temperature and dissociation, as seen in Sect. 4.5.
Therefore, by its compensating effect, dispersion might
play also a major role in the onset of the spherical res-
onance. Indeed, the phase velocity of sound is a growing
function of ω τv and, as one can see on Fig. 20, the disper-
sion is strongest at the transition from the equilibrium to
the frozen state. Moreover the imaginary part of γ is very
small with respect to its real part, as shown in Fig. 21(b).
Consequently, the slope of the dispersion curve is steepest
at

ω τv = c?0/c∞. (45)

according to (26) and (11) [49]. The strongest compen-
sation is expected to happen when condition (45) is met
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because the vibrational dispersion is then at its maximum.
Introducing the plasma DC characteristic (Table 1) into
(14), combined with (68), (73) and (74), see Appendix B,
we obtain c?0/c∞ = 1.5. The comparison with the mea-
sures (see Fig. 7(c)) shows good agreement.

7 Conclusions

Researchers at the University of Applied Sciences and Arts
Western Switzerland (HES-SO) have discovered a phe-
nomenon that allows to confine a microwave plasma in a
spherical electrodeless glass bulb. If the microwave flux is
pulsed in the radio frequency range (kHz) ultrasonic waves
inside the bulb are produced and, at acoustic resonance,
the plasma stabilizes. In a particular resonance mode the
plasma forms a centered ball of about half bulb radius.
In that condition, the oscillation of pressure is largest in
the centre of the bulb. Hence, if the microwave pulses are
released at the moments the pressure is maximal in the
centre, most of the delivered energy is absorbed there, be-
cause the microwave absorption is an increasing function
of pressure. This allows to release most of the heat in the
centre and the risk of melting the bulb is highly reduced.
Therefore, this mode of operation permits to greatly in-
crease the maximum power a bulb can admit ; the lumi-
nous efficiency should consequently be increased.

The present work focuses on the study of the plasma
dynamics, the onset, and the stability of plasma ball for-
mation. A fast photo sensor was used to measure the time
variation of the emitted light flux. When the plasma is not
in spherical resonance, the modulation of the photo sig-
nal has a regular triangular shape. On each modulation
period a quasi exponential decay can be observed when
the microwave power is turned off. This decay is due to
the vibrational molecular relaxation. From this measur-
ments, we can find the vibrational relaxation time, τv, as
well as its initial value τe to reveal the activation effect of
the highly excited or dissociated molecules on vibrational
relaxation.

Tests of long power interruptions have shown a charac-
teristic time of decay of about 9 ms, whether the plasma
is in resonance or not. Comparing with [24] and with
our measurements of τv ≈ 15µs, we come to the conclu-
sion that the characteristic time of the exponential decay
model increases greatly as the plasma cools down, which is
in qualitative agreement with the general theory of chem-
ical and vibrational nonequilibrium.

In spherical resonance, the photo signal modulation
is almost a perfect sinusoid. In addition to this change of
shape, a phase lag between the microwave modulation and
the plasma oscillation appears and grows continuously:
the angular frequency of the plasma oscillations ωp is not
anymore locked to the modulation frequency. A clear low
frequency beat can be furthermore observed in the plasma
response. We, therefore, made a hypothesis that in spher-
ical resonance there are actually two normal modes si-
multaneously excited with a frequency difference of about
1%; one has the same frequency as the microwave pulses

and, thus, is in forced regime, whereas the other is in free
regime.

We have calculated the phase velocity of sound as a
function of temperature in order to find the series of tem-
peratures at which a resonance would occur if the bulb
were an isothermal solid sphere. There is only one pair
of close characteristic frequencies in the measured tem-
perature range, that can explain the observed beats. In
addition, their frequencies agree very well with the ratio
of the two beating frequencies. One of these two modes
has a spherical symmetry. The comparison to the mea-
sured resonance frequency gives a mean acoustic temper-
ature of 1930 ◦C, whereas the mean magnetron power
consumption was 905 W and the maximum of the bulb
surface temperature 900 ◦C. Furthermore, by estimating
that half-dissociation would maximize the rate of the dis-
sociation/recombination cycles throughout the bulb, we
have been lead to speculate that, if the plasma would be
heated up to a higher temperature, the luminous efficiency
could reach much higher values. However, the mechanical
resistance of the bulb sets a high temperature limit for its
operation. In this regard, the stable formation of a plasma
ball at distance from the wall is certainly a key to push
up this operation limit.

For the development of an automatic control system,
we have studied the transition into the spherical reso-
nance. The transition is marked by a sudden shrinking of
the modulation amplitude of the photo signal. At this very
moment, a sudden rise of τe can be observed, as the prod-
uct ωp τe sharply increases from its initial value of about
1 to a value larger than 5. In addition, the frequency shift
that appears at the resonance shows that the heavy par-
ticles become decoupled from the electrons which means,
too, that τe increases. This observation is theoretically
confirmed, since we have shown mathematically that an
acoustic resonance can be spontaneously excited by sound
amplification, due to electromagnetic coupling, only if the
coupling is slow with respect to the acoustic oscillation.

We have shown, also theoretically, that any normal
mode of a spherical cavity can be spontaneously excited
by electromagnetic coupling, if the attenuation time τa is
greater than τe. It was estimated through tests of long
power interruption that ωp τa is in the range of 103 at the
beat antinodes and around 2 at the beat nodes. It seems,
therefore, that the condition mentioned above, τa > τe,
was fulfilled in the spherical resonance. Thus, we can pos-
tulate the following scenario. The resonant free oscillation
is onset due to the spontaneous excitation. Its mode is
favorable to sound amplification by electromagnetic cou-
pling, because the pressure antinode is at the bulb cen-
ter. In contrast, the forced oscillation is a non spherical
mode, which has a pressure node at the center. At the
beat antinode the variations of τa and τe cross each other
in the range of 6 ms. Then the outphasing reduces pro-
gressively τa resulting in a compression of the modulation
amplitude. The beat node is reached when τa and τe cross
each other again, this time around a value of 10µs, be-
fore the sound amplification restarts, since the condition
τa > τe is fulfilled again.
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Furthermore, the acoustic growth rate due to the elec-
tromagnetic coupling, τ−1e /2, is proportional to the en-
ergy of free electrons. Thus, increasing the power of the
pulses is favorable to spontaneous excitation, as long as
τ−1e /2 < ω + τ−1a /2, because otherwise the mode would
not exist. Indeed, the duty-cycle plays actually a role. For
a given average power, the lower was the duty-cycle, the
more likely was the resonance onset.

The strong contrast in the light emission on the plasma
ball boundary is certainly due to the interplay between the
chemical reactions and the vibrational relaxation. We can
consider the plasma ball formation as the separation of two
gases. Outside the boundary is a gas of frozen vibrational
internal degree of freedom, while inside the boundary a
weakly ionized plasma is oscillating between the equilib-
rium state and the frozen state. Through the resulting
’pumping’ effect, occurring inside the plasma ball, the vi-
brational degree of freedom reaches there high levels of ac-
tivation. Simultaneously, the stepwise ionization enhances
the molecular dissociation, if the magnetron modulation is
in phase with the pressure oscillation. The strong contrast
in light emission can then be understood as the effect of
diffusion of monoatomic sulfur at the ball boundary, as
the photons are generated by the electronic relaxation of
recombined diatomic sulfur. Therefore, dispersion might
play also an important role in the onset of the spherical
resonance. On one hand, the sound propagation is slower
when the gas is in the equilibrium state than when it is
in the frozen state. But on the other hand, the rise of
temperature and dissociation during the heating periods
tends to accelerate the propagation through the plasma
ball. Thereby, dispersion may compensate this effect. The
strongest compensation is expected at ω τv = c?0/c∞. In
our experiments, see Table 1, c?0/c∞ = 1.5, which is in
agreement with the measurements performed at the tran-
sition to the spherical resonance.

We think that the vibrational relaxation also plays
a role in the stabilization of the plasma ball formation.
Indeed, convectional transport of vibrational energy out
from the plasma is certainly a major cause of instability,
because the microwave absorption would then increase in
the periphery. The plasma is thought to settle in the ther-
modynamic equilibrium, when the central pressure is high.
Thus, as long as the vibrational relaxation in the ball is
fast enough the vibrational energy exported out of the ball
is cooled down before the next pulse of microwave and we
can expect a steady energy confinement. However, this
condition might not be fulfilled anymore when the mag-
netron is badly synchronized with the plasma oscillation.
Hence, we arrive to conclude that the ball formation could
be stabilized on the long term by the use of a Phase-Lock
Loop control.

Finally, we want to emphasize that this work is much
related to interpretations. There is still a lot of work to be
done. Modeling the excited state kinetics is necessary to
describe fully the complex phenomena that occur in the
bulb. Such a task is out of scope in the present study, but
we hope that it will be achieved in the future, as nowadays
the distribution functions of the electron energy, as well as

the vibration and electronic states, can be calculated by
numerical simulation taking into account optical thickness
and plasma geometry [20]. Deeper understanding of the
interplay between the plasma chemistry and the acoustics,
as required in our analysis of the plasma ball formation,
might lead to futher discoveries in plasma sonochemistry.
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A Thermodynamic model

The gas in the bulb is assumed to be a chemically react-
ing mixture of ideal gases. Therefore, in contrast to the
mass, the number of molecules in the bulb is not constant
and, according to the first principle of thermodynamics,
it follows that [50]

cp − cv =

(
∂e

∂ρ−1

∣∣∣∣
T

+ p

)
· ∂ρ

−1

∂T

∣∣∣∣
p

, (46)

where e is the internal energy per unit of mass. Using in
addition the ideal gas law leads to

cp
cv

= 1 +
1

M̄ cv

(
1

p

∂e

∂ρ−1

∣∣∣∣
T

+ 1

)
. (47)
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We model the internal energy of sulfur as a three-
levels system (see Fig. 22). Sulfur molecules are sorted
in three categories: diatoms in the ground electronic state
X3
∑−
g , diatoms in the excited electronic state B3

∑−
u ,

and monoatoms, whose respective numbers are N◦2 , N
?
2 ,

and N1.
Adopting the rigid-rotator model for the rotational en-

ergy of the diatomic molecules [51], the internal energy of
the gas is (see Fig. 22):

E = (5N2 + 3 (N1 + NA)) T/2 +

N?
2 (Evb + hνm) +N◦2 Evb +N1D/2,

(48)

where Evb is the average vibrational energy of the diatoms
that are in the ground electronic state and hνm the aver-
age of the emitted photon energy (see Fig. 22), where h is
the Planck constant and νm the corresponding frequency.

Let us consider now the term of (48) that does not
explicitly depend on temperature:

EelS = ξ N0 hνm +N2Evb +N1D/2 (49)

where ξ = N?
2 /N0 is the degree of excitation. Besides,

measuring the decay rate of the fluorescence at 370 nm,
McGee et al. have determined the lifetime of the excited
state B3

∑−
u to be τB = 45 ns [53], whereas in [54] a value

20 ns was given. Hence, we can assess the number of ex-
cited diatoms from the emitted optical flux Φopt by the
following approximation [55]

N?
2 ≈

Φopt τB
h νm

. (50)

Our measurements give Φopt τB ≈ 5µJ. Besides, the inte-
gration of the emission spectrum, when the acoustic res-
onance is onset (see Fig. 23), gives hνm = 2.19 eV. This
value is however slightly higher, at 2.25 eV, in absence of
resonance. Such spectral shifts were already observed in
the case of non spherical resonances [56]. This might result
from the acoustic absorption due to the vibrational degree
of freedom. Indeed, the more vibrations in a diatom, the
larger its mean internuclear distance. The energy diagram
of disulfur shows that the higher the vibrational excitation
level, the closer to the ground state the excited electronic
state is [57]. And so, because of the Franck-Condon prin-
ciple, the higher the vibrational excitation, the lower the
energy of the emitted photon is. As a result, the vibra-
tional excitation of disulfur yields a red shift of the max-
imum of the spectrum, like in the effect of pressure rise
[58].

As one can see, furthermore on Fig. 23, the profile of
the emission spectrum does not fit to the Planck’s law,
whatever the black-body temperature is. This may ap-
pear inconsistent with the conclusion of Sect. 3.1, in re-
gard to the optical thickness of the plasma. But in fact,
there is at least one cause for such a mismatch with the
black-body radiation: strong absorption occurs for reso-
nance lines, which are due to transitions between the fun-
damental electronic level and the first excited electronic
state [59]. The radiation of disulfur in the optical spectral

range is composed by a series of resonance lines, so close
to each other, that they form a continuous spectrum, as in
addition, the high-pressure operating condition broadens
the lines [60].

So substituting hνm = 2.19 eV into (50), we have as-
sessed the mean density of excited diatoms, N?

2 /V , which
is about 1012 cm−3, being seven orders of magnitude below
n0, the molar density of sulfur if there were no dissocia-
tion (n0 = N0/V : 1.7 × 1019 cm−3 in the present case).
The value ξ < 10−7 results and, consequently, ξ hνm is
negligible with respect to Evb. Hence, using also (4), we
simplify (49) as follows

EelS /N0 = (1− α)Evb + αD. (51)

As the mass of gas is given by ρ V , the internal energy per
unit mass is obtained by dividing (48) by this quantity

e =
(5N2 + 3(N1 +NA)) T/2 + EelS

ρ V
. (52)

Since argon is only present as a trace

NA � N0 (53)

we get, making use of (4),

ρ

n0
e = (α+ 5)T/2 + (1− α)Evb + αD. (54)

The partial derivative of the internal energy per unit
of mass can be decomposed as follows

∂e

∂ρ−1

∣∣∣∣
T

=
∂α

∂ρ−1

∣∣∣∣
T

∂e

∂α

∣∣∣∣
T

. (55)

Using (54), we have

∂e

∂α

∣∣∣∣
T

=
n0
ρ

(
T

2
+D − Evb

)
. (56)

Regarding the first term in the product on the right
hand side of (55), we derive the ideal gas law at a constant
temperature with respect to the degree of dissociation

M̄ p
∂ρ−1

∂α

∣∣∣∣
T

= −M̄ ρ−1
∂p

∂α

∣∣∣∣
T

− p ρ−1 ∂M̄

∂α

∣∣∣∣
T

. (57)

Besides, for a total pressure p, α is given by [61]

α =

√
Ke(T )

4 p+Ke(T )
, (58)

where

Ke(T ) =
p21
p2

(59)

is the equilibrium constant, which depends on tempera-
ture, but not on pressure. Since it is constant at constant
temperature, the inverse of the first partial derivative on
the right hand side of (57) is

∂α

∂p

∣∣∣∣
T

=
−2α

4 p+Ke(T )
. (60)
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Moreover, the pressure is high, so p� Ke(T ) in the major
part of the bulb (see Table 1) and, consequently,

∂p

∂α

∣∣∣∣
T

≈ −2 p

α
. (61)

The second derivative on the right hand side of (57) is
obtained from (5)

∂M̄

∂α

∣∣∣∣
T

=
−N0 M̄

NA +N0 (1 + α)
. (62)

We finally obtain for (57)

∂ρ−1

∂α

∣∣∣∣
T

= ρ−1
(

2

α
+

N0

NA +N0 (1 + α)

)
. (63)

Applying (53), we arrive at

∂α

∂ρ−1

∣∣∣∣
T

≈ ρ α (1 + α)

2 + 3α
. (64)

Substituting (64) and (56) into (47) yields

cp
cv
≈ 1 +

1

M̄ cv

(
1 +

n0 α (1 + α)

p (2 + 3α)

(
T

2
+D?

))
, (65)

where the effective dissociation energy is

D? = D − Evb. (66)

Neglecting the partial pressure of argon, the ideal gas
equation gives p ≈ n0 (1 + α)T and (65) simplifies to

cp
cv
≈ 1 +

1

M̄ cv

(
1 +

α

2 + 3α

(
1

2
− D?

T

))
. (67)

B Dispersion due to vibrational relaxation

The gas is dispersive, as discussed in Sect. 4.2: the phase
velocity of sound is a function of the relaxation time τv
through the dependence of the isentropic coefficient to this
parameter, see (11). Indeed, the heat capacity at thermo-
dynamic equilibrium is the sum of the reactive and the
frozen ones,

c0 = cr + c∞, (68)

where c∞ is given by (24). On the other hand, the reactive
heat capacity, cr, is due to the dissociation reaction of
sulfur [42]

cr =
∂e

∂α

∣∣∣∣
V,T

∂α

∂T

∣∣∣∣
V

. (69)

To calculate this component, we first make use of (56)

cr =
n0
ρ

(
T

2
+D?

)
∂α

∂T

∣∣∣∣
V

. (70)

Derivation of (19) leads to

∂α

∂T

∣∣∣∣
V

=
α3

2− α
4n0
Ke(T )

(
1− T K ′e(T )

Ke(T )

)
, (71)

and derivation of (16) results in the ratio

K ′e(T )

Ke(T )
=

1

T

(
1

2
+
D

T

)
. (72)

Applying (23) and (1 + α) M̄ ≈ ρ/n0, we arrive at

cr
c∞
≈ 2n0 (2D? + T ) (2D − T ) α3

T Ke(T ) (2− α) (7− α+ 3NA/N0)
. (73)

Combining this result with (24) allows to calculate cr, as
well as c0 from (68).

In order to determine the complex isentropic coeffi-
cient, see (11), we still need to calculate the effective iso-
choric equilibrium heat capacity per unit of mass c?0, see
(14), as well as the effective dissociation energy D?, see
(66). This second parameter is known at thermodynamic
equilibrium as the vibrational energy is then a function of
temperature determined by quantum mechanics. In this
regard, we use the fundamental vibrational frequency of
disulfur, which has been measured as the ground state en-
ergy of these molecules. Spectroscopy has provided ν0 =
727.848 cm−1 [57], in consistance with the zero-point en-
ergy of vibrations given in [32] (0.089 eV, see Fig. 22).
This corresponds to a characteristic temperature of T0 =
h ν0 = 1047 K, such that the vibrational energy at ther-
modynamic equilibrium is [62]

Evb0 =
T0

eT0/T − 1
. (74)

Now, we have all the terms in (28) to calculate the phase
velocity of sound (27) at the equilibrium limit from (28)
and (29), as shown in Fig. 11, as well as at any frequency
from (10) and (11), as shown in Fig. 20.

C Acoustic resonance in a solid isothermal
sphere

We start from the standard theory of acoustic resonance
in an isothermal solid sphere in order to identify all the
normal modes as well as a geometrical equation that they
must all fulfill (78). Doing so, we have been able to remove
the spatial coordinates from the damped wave equation
(91).

The acoustic wave equation for small variations of pres-
sure p is [63]

∇2p − 1

v2
∂2p

∂t2
= 0, (75)

where v is the phase velocity of sound. In the spherical
coordinates with r (radius), θ (zenith angle), and φ (az-
imuthal angle), the Laplacian of pressure is

∇2p =
1

r2

[
∂

∂r

(
r2
∂p

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+

1

sin2 θ

∂2p

∂2φ

]
.

(76)
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In the case of small perturbations v is independent of the
wave amplitude, and we can describe the pressure as a
composition of oscillatory functions of angular frequency
ω and use the method of separation of variables

p = AR(x)Θ(θ)Φ(φ) ei ω t, (77)

where x is the non-dimensional radius x = ω r/v. Intro-
ducing (77) into (75) results in

g(R(x), Θ(θ), Φ(φ)) = −x2, (78)

where

g(R(x), Θ(θ), Φ(φ)) =
1

R(x)

d

dx

(
x2R′(x)

)
+

1

Θ(θ)

1

sin θ

d

dθ
(sin θ Θ′(θ)) +

1

Φ(φ)

Φ′′(φ)

sin2 θ
.

(79)

Introducing (79) and (78) into (76) leads to

∇2p = −p
(ω
v

)2
. (80)

For the modes of spherical symmetry, or shortly spher-
ical modes, g reduces to

g = g(R(x)) =
1

R(x)

(
x2R′′(x) + 2xR′(x)

)
. (81)

Substituting (81) to (78) we get for the spherical modes
the solution R(x) = sin(x)/x.

Furthermore we impose the boundary condition of an
nondeformable sphere of radius a

∂p

∂x

∣∣∣∣
x = ω a/v

= 0. (82)

The solutions of (78) which satisfy (82) has a sinusoidal
dependence in the azimuthal angle [45]

Φ(φ) = cos(mφ+ γm), (83)

where m is an integer constant of separation of variables
and γm is a constant angle that depends on the initial
conditions.

The dependence on the zenith angle is an associated
Legendre polynomial of the first kind of order l and degree
m where l(l + 1) is the square of the second constant of
separation of variables and it must satisfy m ≤ l [45]

Θ(θ) = Pml (cos(θ)), (84)

with Pml being the Legendre polynomial of order l and
degree m. Finally, the radial dependence is the solution of
the radial Sturm-Liouville differential equation

x2R′′(x) + 2xR′(x) +
(
x2 − l(l + 1)

)
R(x) = 0. (85)

For any spherical mode (85) reduces to l(l + 1)R(x) = 0
as (78) reduces to x2R′′(x) + 2xR′(x) = −x2R(x) and

therefore l must be zero. In the opposite case, (78) im-
plies, moreover, that the standing wave is not of spherical
symmetry.

As the pressure is finite in the origin, the radial depen-
dence can only be a spherical Bessel function of the first
kind and of order l

R(x) = jl(x). (86)

The boundary condition (82) is thus an extremum of (86)

ω

v
a = χl,n, (87)

where n is the order of the extremum. The constants χl,n
are given in table 2. All the normal modes of a single pair
(l, n) have the same natural frequency, which from (87),
is

fl,n =
v χl,n
2π a

. (88)

This equation determines the series of the characteristic
frequencies, once the sound phase velocity is known. We
have applied this in Sect. 6 to find the possible modes that
can be co-excited, in order to explain the beats that we
have observed.

D Damped acoustic oscillations

This generalization has lead us to a necessary condition
to the sound amplification by electromagnetic coupling,
whatever the excited mode (37). To add damping of the
acoustic oscillations, the wave equation (75) becomes

∇2p − 1

v2 τa

∂p

∂t
− 1

v2
∂2p

∂t2
= 0, (89)

where τa is the attenuation time. Admitting that the acous-
tic loss rate is proportional to the wave energy W , the at-
tenuation time is τa = −2W/Ẇ . Introducing into (89) the
generalized form of the pressure p = AR(x)Θ(θ)Φ(φ) ei Ω t

where Ω is now a complex angular velocity,

Ω = ωp + i β, (90)

with β being the damping rate and, as before, x = ω r/v
and (R(x), Θ(θ), Φ(φ)) being a real solution of (78) so
that (80) is applicable, we obtain

Ω2 − i

τa
Ω = ω2. (91)

According to this equation, the complex angular velocity
Ω has a non-zero real part only if

τa ω > 1/2. (92)

Omitting the negative-signed solution since a negative real
frequency is not physical, the equation (91) gives

Ω =

√
(2 τa ω)2 − 1 + i

2 τa
. (93)
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We note that the module of Ω is equal to ω and that the
sinus of its phase is 1/(2τaω). Moreover, its imaginary part

β = 1/(2τa), (94)

is positive; the oscillation is indeed damped in time at a
rate of exp(−t/(2τa)). Furthermore, its real part gives the
actual angular velocity of the response

ωp = ω

√
1−

(
β

ω

)2

, (95)

which is lower than ω, which denotes the resonance angu-
lar velocity in the absence of damping.
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Table 1

name symbol value unit

mean acoustic temperature Tm 1930 ◦C

pressure p 523 kPa

equil. constant of dissociation Ke 16.6 Pa

degree of dissociation α 0.28 %

frozen isochoric heat capa. c∞ 55.2 mol/kg

equil. isochoric heat capa. c0 78.0 mol/kg

eff. equili. isochoric heat capa. c?0 80.5 mol/kg

frozen isentropic coefficient γ∞ 1.28

equil. isentropic coefficient γ0 1.19

molar mass M̄ 63.6 g/mol

frozen phase velocity of sound v∞ 608 m/s

equil. phase velocity of sound v0 586 m/s
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Table 2

l n = 1 n = 2 n = 3

0 - 4.49341 7.72524

1 2.08158 5.94037 9.20584

2 3.34209 7.28993 10.61384

3 4.51410 8.58375 11.97272

4 5.64670 9.84045 13.29556


