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Abstract

The consensus that complexity begets stability in ecosystems was challenged in the seven-

ties, a result recently extended to ecologically-inspired networks. The approaches assume

the existence of a feasible equilibrium, i.e. with positive abundances. However, this key

assumption has not been tested. We provide analytical results complemented by simulations

which show that equilibrium feasibility vanishes in species rich systems. This result leaves

us in the uncomfortable situation in which the existence of a feasible equilibrium assumed in

local stability criteria is far from granted. We extend our analyses by changing interaction

structure and intensity, and find that feasibility and stability is warranted irrespective of spe-

cies richness with weak interactions. Interestingly, we find that the dynamical behaviour of

ecologically inspired architectures is very different and richer than that of unstructured sys-

tems. Our results suggest that a general understanding of ecosystem dynamics requires

focusing on the interplay between interaction strength and network architecture.

Author summary

Finding conditions leading to stable equilibria, i.e. equilibria robust to small perturbations,

is a key feature in understanding how persistent are ecological systems. The number of

species involved in the ecosystem as well as the number of relations between them has

historically been pointed out to be the prominent ingredients determining stability. The

latter is however always computed for a particular equilibrium, which needs and is usually

assumed to contain only positive abundances. This assumption has until now only barely

been tested in relation to system size. We provide here analytical results complemented by

numerical simulations which show that it is almost impossible to find equilibria containing

only positive abundances in species rich systems or, if so, the parameters are constrained

to lead to ecologically-nonsensical abundances in unstructured systems. Interestingly, only

ecologically-inspired architectures permit one to obtain feasible equilibria with a rich and

sensible dynamical behavior.
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Introduction

A central question in ecology is to understand the factors and conditions that ensure ecological

systems to persist, a requisite for the sustained provisioning of vital ecosystem services. This

question of a “balance of nature” has a long history in science [1, 2], and the consensus that

“complexity begets stability” emerged among ecologists in the fifties. MacArthur [3] had a rad-

ical view on this question, arguing that stability will increase with the two fundamental ingre-

dients of complexity, the number of species and of interactions. The argument for this claim

was borrowed from Odum [4]: stability increases with the number of paths through which

energy can flow up in a food web. Later, Elton [5] provided a suite of arguments for this posi-

tive relationship. The first one is the following: mathematical systems composed of one preda-

tor and one prey exhibit conspicuous fluctuations. Implicit in this argument is that more

complex systems should be more stable, which remained untested at that time. In the seventies,

Levins [6, 7], Ashby and Gardner [8], and May [9] showed numerically that large random sys-

tems may be expected to be stable up to a certain connectance threshold, contradicting the ear-

lier ideas that complex natural systems are more likely to be stable. In his impactful work, May

[10, 11] showed mathematically using randommatrix theory [12, 13] that large and random

ecosystems are inherently unstable. His approach was based on a mathematical study of com-

munity matrices, which represented unstructured random networks of interacting species.

He used a local-stability analysis assuming these systems were at equilibrium. He derived a

simple and elegant criterion for system stability, which is a milestone in the stability-complex-

ity debate [14]. May [11] concluded that there was no comfortable theorem assuring that

increased complexity will lead to stable systems, and that the task was therefore to “elucidate

the devious strategies which make for the stability in enduring natural systems”.

Recently, the work of May was revisited by Allesina and collaborators [15, 16]. They estab-

lished stability criteria for systems where species interact specifically via either competition,

mutualism, or predation. As such, their contribution is a refinement of May’s approach that

considered mixtures of interaction types. The general conclusion is that, in species-rich com-

munities, interactions should be moderate to ensure the stability of the equilibrium. They also

performed simulations to study stability in randomly generated systems whose architecture

mimics empirically observed food webs [17, 18]. They arrived at the counter-intuitive conclu-

sion that such ecologically-inspired structured graphs are less stable than unstructured ones.

They also focused on interaction weights, and interestingly found that weak interactions

should increase the stability for mutualistic and competitive webs, but decrease the stability of

food webs (see also [19], where more precise statements are obtained for interactions weights

of different intensity and symmetry). It was also found that more realistic structures seem to

be detrimental for stability, and that the structure alone plays a minor role for stability com-

pared to interaction weights [20, 21].

All the above approaches are local-stability analyses, where systems are linearised at the

equilibrium point and stability is evaluated only in the close vicinity of this point. In ecological

systems, this point is meaningful only if the equilibrium-abundances are all strictly positive; in

other words, if the equilibrium is feasible. Fig 1 illustrates the fact that a stable equilibrium of a

simple two-level food web can be feasible when the absolute value of the interspecific competi-

tion coefficient is small, but infeasible when it becomes too large. Hence, a stable and feasible

equilibrium can be transformed into an infeasible stable equilibrium by changing competition

coefficients. In these previous works, equilibria were simply assumed feasible, without further

analysis; basically, the true Jacobian, evaluated at the equilibrium, was replaced by a random

matrix. Interestingly, soon after the work of May [11], Roberts [22] noted that May’s approach

indeed remained silent concerning the feasibility of the equilibria. In a simulation study, he
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found that, in feasible systems, stability increased with the number of species. However, Rob-

erts did not explore the very question of the relationship between system size and feasibility

probability. This is a key issue since feasibility is a prerequisite to local-stability analysis. In

the particular case of competitive systems, this question had to await the work of Logofet [23]

who found that “equilibriumness” was vanishing with species richness. Note that already in

1970, Vandermeer [24] studied a question very related to feasibility, the expected number of

species that can coexist in competitive communities. The same question has been treated by

Rossberg [25], where the coefficient of variation of species abundance is studied in a mean-

field approach. Since then, few contributions have explored the question of feasibility, and if

so in particular systems and with regard to the characteristics of the interactions rather than

to species number (e.g., for asymmetric competition [26, 27] or for mutualism [28]). Very

recently the question of feasibility reappeared with the aim of providing general criteria lead-

ing to feasible equilibria [29], following an analogue approach as in ref. [28]. The idea of this

important work is to compute the fraction of demographic parameters leading to feasibility

under given conditions. Very interestingly, from the perspective of system complexity whose

effect on stability has been thoroughly investigated in previous works [4, 6, 8, 9, 15], keeping

this fraction well-defined (different from zero and infinity) when the number of species

increases requires that the absolute mean interaction strength is small enough [29, Fig 2].

Here, we present an extensive study of the fundamental question of equilibrium feasibility,

and expose its underlying mathematical principles in order to investigate how complexity

influences feasibility probability. Two classes of networks are studied: 1) networks which do

not possess any particular topological structure, for which we consider random, mutualistic,

competitive, and predator-prey interactions, and 2) predator-prey networks designed to cap-

ture food web architecture, following the cascade [17], niche [18] and nested-hierarchy [30]

models. We show that, in situations compatible with the above works [10, 15, 16], the existence

of a feasible equilibrium is not guaranteed, since the probability to observe such a point

decreases exponentially towards zero as the size of the network grows. Interestingly, we find

that with weak interactions, non-trivial feasible equilibria are found only in ecologically-

inspired systems, in a way that is ecologically sensible.

Models

We adopt the following strategy: for models of interacting species, we use the demographic

parameters most favourable to feasibility, and randomise the interactions to estimate the prob-

ability to find equilibria with only positive abundances. This is achieved for different species

Fig 1. Feasibility and stability for a two-level food web. (a) The network is composed of two producers and of one
consumer. (b) The time evolution of the species abundances is described by a Lotka-Volterra dynamic. The parameters
defining the dynamical system are the interspecific competition coefficient a< 0 and the intraspecific competition
coefficient θ< 0. The producers’ growth rates are set to 1, while the consumer growth rate is set to −1. (c) Abundances at
equilibrium as a function of |a| with θ = −1. The system possesses a unique stable equilibrium which is feasible when |a| is
smaller than a critical threshold. When |a| crosses this threshold, the stable equilibrium becomes infeasible.

https://doi.org/10.1371/journal.pcbi.1005988.g001
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richness, network architectures, and interaction intensities. Additionally, in cases where

the equilibrium is trivially feasible, we extend our analyses by investigating the effect of the

demographic parameters on feasibility. We provide analytical results for cases compatible with

May’s approach, and otherwise rely on simulations.

We consider a classical Lotka-Volterra model [31] for large, complex ecological networks

with S species. Mathematically, in this setting, the vector of abundances x solves the following

system of differential equations

dxi
dt

¼ xi ri þ yxi þ
1

ðCSÞd
X

S

j¼1

aij xj

 !

; for all 1 � i � S:

The per capita effect of species j on species i is encapsulated in a coefficient aij, ri denotes the

intrinsic growth rates of species i, θ is a coefficient reflecting intraspecific competition, C is the

connectance and a normalisation parameter (see below). In matrix notation, it becomes

_x ¼ x � ðr þ ðyI þ ðCSÞ�d
AÞxÞ

with I the S × S identity matrix, and where � denotes the product defined by x � y = (x1y1,. . .,

xSyS).

Web topologies

We will first focus on webs whose topologies are based on Erdös-Renyi random graphs

(unstructured webs), where edges occur with probability C, the so-called connectance of the

graph. It is given by C = L/(S � (S − 1)) with L the total number of links in the network. Next,

we will consider graphs whose topologies are drawn randomly according to the cascade [17],

Fig 2. Illustration of some predator-prey networks and adjacency matrices. (a-b) Unstructured model for predation. (c-d) The cascade
model. (e-f) The niche model. The parameters are C = 0.25 and S = 30. Thicker green arrows represent larger interaction strengths. Only
positive interactions are represented.

https://doi.org/10.1371/journal.pcbi.1005988.g002
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the niche [18] and the nested-hierarchy food web models [30] (structured webs), that capture

more accurately trophic interactions of real food webs. Fig 2 provides illustrations of these var-

ious topologies.

Interaction sign

If species i and j interact; that is if the web contains an edge between these two species, the

nature of the interaction is encoded in the sign of the coefficients aij: aij < 0 and aji < 0 for

competition; aij > 0 and aji> 0 for mutualism; aij> 0 and aji < 0 for predation of i on j. The

interactions aij form the S × S interaction matrix A.

In order to exhibit the effects of network structure on the dynamics, the aijs are randomised

with fixed mean and standard deviation. Their magnitude plays a key role for the local stability

of networks [32, 33].

Interaction strength

We introduce a parameter 0� � 1 ruling the average interaction strength. The aijs are

divided by the linkage density (a measure of complexity given by CS [10]) raised to the power

(see ref. [28, 34]). This normalisation is mathematically sensible since Wigner’s theory [12],

on which May’s and Allesina’s results are based, is built for the case = 1/2. Analytically, we

will show that three regimes emerge when S becomes large: strong (0� < 1/2), moderate

( = 1/2), and weak interactions (1/2< � 1), see Fig 3a. Intraspecific competition is included

as customarily [10, 11, 15] with a common coefficient θ< 0, separated from the interaction

matrix and unaffected by the normalisation constant.

Construction of the networks

The first type of networks (unstructured) are based on Erdös-Renyi graphs. For May’s random

model [10], an entry of the adjacency matrix is set to one with probability C, zero otherwise.

For mutualistic, competitive and predator-prey interactions, a pair (i, j), i< j, is linked such

that ji = ij = 1 with probability C. The adjacency matrices for the second type of networks

(structured networks modeling predation) are built according to the cascade [17], niche [18]

and nested-hierarchy [30] models. Their adjacency matrix indicates that i preys upon j when

ij = 1 and their connectance is set to C/2. Their detailed construction is reported in S1 Text.

See also Fig 2 for an illustration.

In May’s randommodel [10], interactions strengths are sampled from i.i.d. random vari-

ables, leading to mixture of interactions types, including also commensalism and amensalism.

Concerning models for mutualism (competition), aij and aji are independently randomly cho-

sen from a positive (negative) random variable. For predation models, any pair (i, j) such that

i< j is linked (i.e. ji = ij = 1 in the adjacency matrix) with probability C and the interactions

strengths are also independently sampled, with the restriction that sign(aij) = −sign(aji). For

the structured networks, the entries of are multiplied with positive i.i.d. values and the

entries of t, the transpose of , with negative i.i.d. values. The interaction matrix A is the addi-

tion of the two. Gaussian or folded-Gaussian random variables with standard-deviation σ are

chosen in our simulations, but our analytical results are not limited to the particular choice of

these distributions, see S1 Text. Our simulations are performed by randomly sampling A and

then computing the equilibrium x� according to Eq (1). This Monte-Carlo procedure is used

for the estimation of PS under the different scenarios.

Feasibility and stability of complex ecosystems
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Fig 3. Stability and feasibility: Outline. (a) For a system to be feasible, interaction strength has to decrease with
complexity. The Y-axis represents an interaction-strength normalizing factor that defines three regimes depending on
the parameter : strong interactions ( > 0.5), moderate interactions ( = 0.5; blue line, with C = 0.4), and weak
interactions (0� < 0.5). (b, c, d) For the three regimes, the graphs show the eigenvalues of the Jacobian J(x�) for 100
realisations of May’s randommodel (S = 150, θ = −1, σ = 0.4). Eigenvalues with a real part larger than 0 are unstable;

Feasibility and stability of complex ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005988 February 8, 2018 6 / 18



Results

Existence of feasible equilibria

A system is feasible if all abundances at equilibrium are positive. If this equilibrium exists, the

vector x� corresponds to a point for which the dynamics of the Lotka-Volterra system stops

varying, and is given by

x� ¼ �ðyI þ ðCSÞ�d
AÞ�1

r : ð1Þ

If the solution to this equation involves negative abundances, then the system is not feasible.

Since the interactions aij are random variables, it is natural to study PS, the probability to

observe a feasible equilibrium, which is given by

PS ¼ Pðx�i > 0; for all species iÞ: ð2Þ

This probability depends on θ, C, S, , A and r.

For a given , C, and type of network, we choose the growth rates vector r = (ri) most

favourable for feasibility, or, in case of trivially feasible equilibria, ri to be independent and

bounded random variables. The most favourable growth rates correspond to the deterministic

vector making the equilibrium to be, on average, as far as possible from the boundaries of the

feasibility domain. This deterministic vector is referred to as the mean structural vector. By

definition, the feasibility domain is the positive orthant of the phase space. We show in the S1

Text that this vector is related to a particular way of choosing intrinsic growth rates, which

have been used in ref [20] to avoid negative abundances.

It is now possible to compute PSwith regard to the randomness of the aijs. Extending results

on large systems of random equations [35], we develop analytical formulas for PS for our first

class of unstructured models when S tends towards infinity, and use Monte Carlo simulations

to estimate PS for the second class of structured models (see S1 Text). Before exposing our

results, we briefly discuss the link between stability and feasibility.

Link between stability and feasibility in randommodels

It is only when A is such that x� is feasible that the local-stability analysis of x� is sensible. This
analysis involves the Jacobian matrix evaluated at x� (the so-called community matrix),

Jðx�Þ ¼ diagðx�ÞðyI þ ðCSÞ�d
AÞ; ð3Þ

which of course depends on the random vector x� and on the random interactions matrix A.

The equilibrium x� is linearly stable when the real parts of all eigenvalues of J(x�) are negative.

Under May’s approach, and similarly in ref. [15, 16, 19], J(x�) is replaced by the randommatrix

~J ¼ yI þ ðCSÞ�d
A. All the information on x� and on the inherent relations between x� and A

eigenvalues of feasible systems are in blue. (b) With strong interactions, equilibria are never feasible nor stable. (c) With
moderate interactions, feasible equilibria are stable. (d) With weak interactions, all equilibria are feasible and May’s
stability criterion is trivially fulfilled. (e, f, g) Probability of feasibility for the three regimes: null under strong
interactions; decreasing under moderate interactions; null or one under weak interactions. (h) In the weak regime, the
probability of feasibility depends on the parameter values, for example the mean interaction strength (μA) and minimal
growth rates (Min(ri)). The panel shows the result of Theorem S.3.6 for θ = −1 and �r ¼ 1. Blue region: parameters
values leading to feasible equilibria (in red, to unfeasible equilibria). Note the trade-off between μA andMin(ri). (i, j)
Under weak interactions, unstructured networks and the cascade model lead to deterministic abundances at
equilibrium (in our setting, prey, predator, and intermediate species reach equal abundances). Interestingly, in
structured networks (as the niche and the nested-hierarchy model), the abundances at equilibrium remain random,
with a support depending on the trophic position of the species in the web.

https://doi.org/10.1371/journal.pcbi.1005988.g003
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(see Eq (1)) are overlooked. The problematic point is that one obtains stability results by focus-

ing on the eigenvalues of ~J even when a feasible equilibrium x� does not exist.

For example, May [10] considers that the elements of A are such that all diagonal entries are

set to 0, and that all off-diagonal random elements are independent and set to 0 with probabil-

ity 1 − C. A non-zero entry is sampled from any centred distribution with standard deviation

σ. Applying results from randommatrix theory [13], the eigenvalues of ~J will then have nega-

tive real parts for large S when

s

ðCSÞd
ffiffiffiffiffiffi

CS
p

< jyj; ð4Þ

which is May’s stability condition. We show in S1 Text, Proposition S.4.1, that May’s criterion

still holds for the matrix J(x�) under the additional assumption that x� is feasible (see Fig 3b).

Thus it appears critical to study the feasibility of such systems.

Feasibility in unstructured random web models

Strong interactions. For 0� < 1/2, the probability of finding feasible equilibria PS goes

abruptly to zero. Indeed, the variance of the abundances at equilibrium of each species grows

with species richness. Then, the probability of having negative abundances converges to one,

consequently PS! 0, as illustrated in Fig 3c. Note also that this regime of interactions violates

May’s stability criterion when S increases.

Moderate interactions. Moderate interactions ( = 1/2) correspond to the limiting case

for which May’s criterion can be asymptotically satisfied. Indeed, from Eq (4), May’s stability

criterion is now independent of S and C, and becomes σ< |θ|. However, we show that in this

case there exists asymptotically almost surely no feasible equilibria. Indeed, we prove that, for

independent and identically distributed (i.i.d.) intrinsic growth rates ri and when σ< |θ|, the

equilibrium abundances x�i are asymptotically i.i.d. Gaussian random variables

x�i � ðm�; s
2

�Þ for all i ¼ 1; . . . ; S;

where the mean and the variance are given by

m� ¼ � �r

y
and s2

� ¼
s2

r

y
2
þ r2s2

y
2ðy2 � s2Þ

;

(see Proposition S.3.2. of S1 Text). In the above formula, �r , s2

r and r
2 denote respectively

the mean, the variance and the second moment of the random intrinsic growth rate ri. When

σ� |θ|, the system becomes structurally unstable (see [36]): the randommatrix θI + (CS)− A

becomes singular and the linear system (1) is ill-conditioned, that is, the inverse of the random

matrix is dominated by large contributions associated with near zero eigenvalues.

By independence of the x�i , the probability of feasibility PS ¼ Pðx�i > 0; for all species iÞ
reduces thus to PS ¼

QS

i¼1
Pðx�i > 0Þ in the large S limit. Since every x�i is identically normally

distributed, Pðx�i > 0Þ < 1 for every 1� i� S. Thus PS decreases following a power law when

the number of species S becomes large, i.e. PS! 0 as S!1 (Figs 3c and 4a. See Theorem

S.3.3. in S1 Text for complete details). More precisely, when the intrinsic growth rate is the

mean-structural vector, the probability that an equilibrium is feasible is approximated by

PS � F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y
2 � s2

s2

s0

@

1

A

S

; ð5Þ

Feasibility and stability of complex ecosystems
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where F is the standard Gaussian cumulative distribution function. Two parameters influence

the decrease of PS; the intraspecific competition θ and the variance of the interactions σ2.

Larger θ will increase F (which becomes closer to one) and reduce the speed of decrease of PS.

Concerning the interactions, smaller variances permit a similar behavior, as illustrated in the

insert of Fig 4a. In this illustration, standard-deviations smaller than σ = 0.3 produce more

likely feasible equilibria in systems with finitely many species.

Concerning local stability within this framework, interestingly, we prove in Proposition

S.4.1 that any asymptotically feasible equilibrium is stable when σ< |θ|.

We also show numerically that similarly PS! 0 as S!1 for unstructured randommodels

for competitive, mutualistic, and prey-predator networks (see Table 1, Fig 4, and S1 Text).

Weak interactions. Consider now weak interactions among species (1/2< � 1) in

unstructured random networks. When the growth rate vector is set to the mean-structural

vector, then PS! 1 (Fig 5b). Indeed, we prove in S1 Text that the steady state x� converges
towards the feasible deterministic vector which contains all 1s as values. In other words,

any x�i converges to 1 with a variance converging to 0 and is thus trivially positive. This implies

PS! 1.

We test now different growth rates. Considering a general model where μA denotes

the mean interaction strength between interacting species, we find that PS! 1 when

ri > �r mA=ðmA þ yÞ for all i and where �r is the sample mean of the intrinsic growth rates (see

Theorem S.3.6. of the S1 Text), otherwise, PS! 0 as illustrated in Fig 3d. For example, in

May’s framework (μA = 0), PS! 1 when all growth rates are positive. Similar results will be

Fig 4. Probability of feasibility for different models in the regime of moderate interaction strength. (a) Analytical prediction for
the randommodel. Insert: the scaled colors express PS as a function of both S and σ. (b-g) Predictions (with 95% confidence
intervals) from 1000 simulations for randommutualistic networks, random competitive networks, random predator-prey networks,
the cascade model [17], the niche model [18], and the nested-hierarchy model [30], respectively. We choose aij � ð0;sÞ for any
non-zero entry of the interaction matrix A in the randommodel; in the other cases, a strictly positive interaction is randomly drawn
from a folded normal distribution such that aij � j ð0;sÞj, and a strictly negative interaction is sampled such that aij � �j ð0;sÞj.
The parameters are C = 0.25, σ = 0.4, and θ = −1.

https://doi.org/10.1371/journal.pcbi.1005988.g004
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found in S1 Text concerning other types of unstructured models. These results rely on the

fact that, when the growth rate vector has bounded components, the variance of any x�i goes

towards zero. As such, x� converges towards a deterministic vector that is feasible or not

depending on the chosen parameters values. Thus PS! 1 or 0, depending on ri, θ, and μA.

Overall, with weak interactions and for any choice of growth rates, all realisations of the

randommatrix A lead to a limiting deterministic equilibrium. Thus, abundance variability dis-

appears irrespective of particular realisations of A.

When studying the three other types of unstructured models (mutualistic, competitive, and

predator-prey networks), we find the same results as above for strong, moderate or weak inter-

actions (Table 1).

Feasibility in predator-prey structured models

May’s paradox that complexity decreases stability in mathematical models led to the explora-

tion of the effects of topological structure on systems’ dynamics. Several works have shown

that particular architectures can stabilise ecological networks [37–40]. Nevertheless, the

feasibility of different network architectures for different interaction regimes has not been

explored.

Consider for example Cohen’s cascade model of trophic networks [17], where species are

hierarchically ordered so that they feed only on lower indexed species, generating sub-triangu-

lar matrices with random structure. For the three regimes of , simulations yield similar behav-

iour of PS as for unstructured models (Table 1).

We now test two other food web models that more accurately capture the structure of tro-

phic interactions in real systems, the niche [18] and the nested-hierarchy models [30]. The for-

mer generates purely interval food webs (predators consume all species in a niche interval)

while the latter is based on evolutionary processes and relaxes this constraint. The results are

qualitatively similar to the ones of unstructured randommodels for all types of interactions.

However, two interesting features emerge. First, the mean structural vector now contains neg-

ative growth rates, which is the essence of predator-prey systems where predators will die in

the absence of prey (this feature also appears in the cascade model, but not in the unstructured

food web model, see Table 2 in S1 Text). Second, with weak interactions, each x�i no longer

converges to a deterministic limiting vector, but instead to a non-trivial random variable hav-

ing a distribution of finite support and positive standard-deviation. Thus, contrary to the

Table 1. Summary of the different results presented on PS for S!1.

Model Moderate interactions Weak interactions

(d ¼ 1

2
) (1

2
< d � 1)

Unstr. May’s model PS ! 0 PS ! 0 or 1

Competition PS ! 0 PS ! 0 or 1

Mutualism PS ! 0 PS ! 0 or 1

Predation PS ! 0 PS ! 0 or 1

Struct. Cascade PS ! 0 PS ! 0 or 1

Niche PS ! 0 x� not deterministic and PS ! 0 or 1

Nested hierarchy PS ! 0 x� not deterministic and PS ! 0 or 1

The probability PS converges towards 0 as S!1 for moderate interactions (and with the mean structural vector) in unstructured (unstr.) and structured (struct.)

networks. For weak interactions, PS ! 0 or PS! 1, depending on the parameters. The equilibrium x� is deterministic in the unstructured case and for the cascade

model. x� has a non-trivial distribution and is feasible with positive probability for the niche and nested-hierarchy models.

https://doi.org/10.1371/journal.pcbi.1005988.t001
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unstructured and cascade models, a particular realisation of the interaction matrix A will influ-

ence the equilibrium values. Indeed, these highly structured networks and their related mean

structural growth rates induce correlations among the abundances at equilibrium, which pre-

vent a convergence to a deterministic value. We find that the size of the support depends on

the hierarchical position of the species (Fig 6). We performed additional simulations based on

empirical food webs, and find similar results (Figs G and H in S1 Text).

Since the mean structural vector is constructed for the purpose of maximizing the probabil-

ity of feasibility, we have also considered random Gaussian growth rates of positive mean to

complete our analysis. For the niche and nested-hierarchy models, the standard deviations s�
i

of the abundances at equilibrium are ordered according to the trophic position of the species

within the food web (from basal autotrophs, to intermediate species that are predator and

Fig 5. Convergence of the equilibrium under weak interactions. For S = 10, 50, and 500 the distribution of max(x�), in blue, and min
(x�), in red, are represented for 1000 simulations for (a) random networks, and (c) the niche model. For S = 500, all simulations are
plotted to illustrate the support of the distribution of x�: (b) in random networks, the regime of weak interactions yields asymptotically
deterministic equilibria; (d) in the niche model, the equilibria are no longer deterministic and converge towards a distribution with a
non-trivial support. Species range from top predator (index i = 1) to basal (i = S); in (d), note that the size of the support depends on
the index of the species.

https://doi.org/10.1371/journal.pcbi.1005988.g005
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prey, and to top predators). We find s�
basal < s�

intermediate < s�
top, a result similar to that obtained

with the structural vector, see Figs 3e and 7. This effect, also visible in empirical food webs

(Figs G and H in S1 Text), disappears in two particular cases: 1) for zero mean Gaussian ran-

dom growth rates; 2) when the growth rate standard-deviation becomes large. In both cases,

the equilibria then become independent of species trophic position (Figs G and I in S1 Text).

Discussion

Our results can be summarised as follows: for the cases compatible with May’s [10] and Allesi-

na’s [15, 16] framework where = 1/2 (moderate interactions), there exist almost surely no fea-

sible equilibria in species-rich systems for any of the models considered. For weak interactions

in randomly structured systems, feasibility is granted; also, the stability criteria are trivially

asymptotically satisfied. Therefore, in such situations, the criteria are basically void of informa-

tion. However, including realistic structure in trophic systems, we find that the results are no

longer trivial.

As a general message, future work tackling dynamical stability must be preceded by a feasi-

bility analysis. In our Lotka-Volterra framework, this involves knowledge of the structure and

intensity of interactions, and of the growth rates. Feasibility can then be easily evaluated. Our

Fig 6. Behaviour of the structured models under weak interactions with the mean structural vector. In the first row, we plot for
different values of S the envelop (the maximum and the minimal value) of the equilibrium x� among 1000 simulations. The species
have been assigned a number between zero (top species) and one (basal species) corresponding to their hierarchy in the web. In the
second row, the standard deviations of x�i for i = 1 (top predator), i = S/2 (intermediate) and i = S (basal) are represented as a function
of S. The parameters are C = 0.25, σ = 0.4 and θ = −1. (a and b) In the cascade model, although hierarchically ordered, species tend to
behave similarly with regard to convergence as S grows. The equilibrium converges almost surely to the vector . (c - f) The niche and
the nested-hierarchy models keep the randomness of the equilibrium when S grows, even under weak interactions.

https://doi.org/10.1371/journal.pcbi.1005988.g006
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results indicate that sensible information on the dynamics of natural systems will be obtained

by concentrating on the interplay between ecological structure, strengths of interaction

weights, and how interaction strengths are distributed in their architecture.

There are still many other aspects that should be taken into account to reach general con-

clusions about feasibility and stability that better fit natural systems. They are very different

from unstructured systems, and many constraints affect their architecture and dynamics. A

first question simply concerns system size in terms of species richness S. Most described sys-

tems are middle sized, but large webs do exist [41, 42], so that mathematical study focusing on

large S limits can be justified. An intriguing aspect here is how smaller and well-definable webs

are dynamically embedded in larger species-rich systems. For example, it has been found that

top predators have a stabilising effect on food webs by coupling fast and slow energy channels

in natural aquatic systems [43]. This question could be framed in a general theory for the

“inverse pyramid of habitat”, which explores the consequences of the ubiquitous (but often

overlooked) observation that species located at higher trophic levels tend to have larger home

ranges [44]. In this respect, the spatial structure of the system is relevant and has non-trivial

consequences for its dynamics [45, 46], a research framework that is currently expanding (e.g.,

[47–49]).

Relevant to system size lies also the question of how network nodes are defined: taxonomic

resolution is often heterogeneous in observed food webs, with basal species being more often

pooled (e.g., phytoplankton being considered as a single species). Secondly, species richness S

and connectance C are usually treated as independent parameters, while it has been described

that C decreases with S in different systems [50], thus restricting the parameter space to be

explored. Finally, even if topology per se has been suggested to play a minor role in system sta-

bility [20], we showed that network architecture does play a non-trivial role on equilibrium

abundances. Layer architectures as those produced by the niche and nested-hierarchy models

yield ecologically sensible results; exploring other structural models [21, 51–53] and especially

natural architectures is necessary.

Fig 7. Empirical distribution of top, intermediate and basal species under a regime of weak interactions. (a) Cascade model with S = 800.
(b) Niche model with S = 800. (c) Nested-hierarchy model with S = 800. The same parameters as in Fig 6 have been used among 1000
simulations. (d) The distribution of a top, intermediate and basal species from the empirical food web Stony is illustrated (see S1 Text). The
interactions strengths have been simulated similarly as for any structured web. The mean structural vector has been simulated with Monte-Carlo
methods (200 trials).

https://doi.org/10.1371/journal.pcbi.1005988.g007

Feasibility and stability of complex ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005988 February 8, 2018 13 / 18



Apart from these structural considerations, ecologists are confronted by a more elusive

issue, the estimation of demographic parameters. To make sense, the investigation of feasibility

and stability should be based on meaningful parameter values. The growth rate vector r that

appears in Lotka-Volterra dynamics is mostly unknown or very difficult to obtain experimen-

tally. One can either keep this vector as an intrinsic free parameter or assume that such growth

rates change with interaction weights, as in [20] or with our mean structural vector. The esti-

mation of interaction parameters is also far from trivial [54–57]. Experimental studies (see,

e.g., [20, 58, 59]) choose interaction weights indirectly, according to particular methods like

predator-prey mass ratio models, biomass flux, or the Ecopath method (see, e.g., [60–62]).

Additionally, one unresolved question is how intraspecific competition scales with average

interaction strength, which is perhaps the most important ingredient for stability (e.g., [10, 15,

58, 63]), and also plays a role in feasibility (see Proposition S.3.2 in S1 Text). Also, if the magni-

tude of intraspecific competition can be assumed to be independent of S, this is likely not the

case with interspecific interactions (captured by our parameter ), which has been shown to

play a key role in mutualistic networks [28]. This question is related to the study of weak inter-

actions, which have been shown to promote stability [19, 32, 58, 59] and here feasibility.

Finally, one must consider that these parameters do scale with body size [64], which defines a

constraint between parameter values and network structure, as large-bodied species typically

populate higher trophic levels. Interestingly, this allometric relationship may underlie the

result that stability depends on the link between trophic position and interaction strength [20],

and our finding that abundance variability scales with trophic position.

For mathematical tractability, many studies on the dynamics of food webs, including ours,

rely on Lotka-Volterra models with mass-action type interactions (the so-called Holling type I

functional response). However, investigations on the number of prey eaten per predator and

unit time in simple systems do not support this modelling assumption. There exists a vast liter-

ature on the subject and the choice of a sensible functional response is still debated [65, 66]. In

Section S.5 of the S1 Text, we studied a predation unstructured model with a Holling type II

functional response. We found, independently of the choice of the regime , that the system

behaves similarly to the Lotka-Volterra model with weak interactions. Here, the saturation

inherent to Holling type II functional response makes interactions weak, irrespectively of the

parameter . It shows that interaction dynamics can strongly affect system feasibility in preda-

tor models. Other aspects related to interspecific interactions affect community dynamics, e.g.,

evolving trait-mediated direct and indirect interaction weights [67–69], ontogenetic shifts in

interactions [70], or high-order interactions whereby the interaction between two species is

modulated by one or more other species [71]. Also, it has been shown that “foraging adapta-

tion” by predators affects the dynamics of food webs [72]. Such non-linearities in species inter-

actions have been explored from the stability point of view of systems adjusted to be feasible

[73–75]. However, since the precise way interactions are modelled has non-trivial conse-

quences on system dynamics, the relationship between feasibility and complexity should also

be considered in such situations.

May’s approach considered systems with any kind of interaction and not only trophic ones.

An articulate answer on the relationship between stability and complexity should obviously

incorporate all types of interactions relevant for system dynamics (including the effects of eco-

system engineers [76, 77]). This question has been the focus of recent theoretical developments

[78, 79], and empirical studies specifically addressing this question start to emerge [80].

Science faces increasingly complex situations where high-dimensional parameters occur. A

good example is statistical mechanics, for which relevant results have been obtained for highly

complex systems without having a precise knowledge of the microscopic details of a model.

Our results like many cited here follow the same line. However, due to the complexity of
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natural systems, the gap between theoretical and empirical investigations is likely to remain

open. To attain a consensus, the feasibility of the model systems should not be forgotten [23,

24, 26–29], and more effort must be devoted to obtaining empirical and experimental time

series as necessary benchmarks.
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40. Thébault E, Fontaine C. Stability of ecological communities and the architecture of mutualistic and tro-
phic networks. Science. 2010; 329(5993):853–856. https://doi.org/10.1126/science.1188321 PMID:
20705861

41. O’Gorman E, Emmerson M. Manipulating interaction strengths and the consequence for trivariate pat-
terns in a marine food web. Advances in Ecological Research. 2010; 42:301–419. https://doi.org/10.
1016/B978-0-12-381363-3.00006-X

42. Twomey M, Jacob U, Emmerson M. Perturbing a marine food web: consequences for food web struc-
ture and trivariate terms. Advances in Ecological Research. 2012; 47:349–409. https://doi.org/10.1016/
B978-0-12-398315-2.00005-3

43. Rooney N, McCann K, Gellner G, Moore JC. Structural asymmetry and the stability of diverse food
webs. Nature. 2006; 442(20):265–269. https://doi.org/10.1038/nature04887 PMID: 16855582

44. Holt RD, Hoopes MF. Food web dynamics in a metacommunity context: modules and beyond. In:
Holyoak M, Leibold MA, Holt RD, editors. Metacommunities: spatial dynamics and ecological communi-
ties. University of Chicago Press; 2005.

45. Holt RD. The impact of non-linear functional responses on the long-term evolution of food web struc-
tures. Ecological Research. 2002; 17:261–273.

46. Green DG, Sadedin S. Interactions matter-complexity in landscapes and ecosystems. Ecological Com-
plexity. 2005; 2:117–130. https://doi.org/10.1016/j.ecocom.2004.11.006

47. Vandermeer J, Perfecto I, Philpott S. Ecological complexity and pest control in organic coffee produc-
tion: uncovering an autonomous ecosystem service. BioScience. 2010; 60(7):527–537. https://doi.org/
10.1525/bio.2010.60.7.8

48. Gravel D, Canard E, Guichard F, Mouquet N. Persistence Increases with Diversity and Connectance in
Trophic Metacommunities. PLoS ONE. 2011; 6(5):e19374. https://doi.org/10.1371/journal.pone.
0019374 PMID: 21637749

49. Gravel D, Massol F, Leibold MA. Stability and complexity in model meta-ecosystems. Nature communi-
cations. 2016; 7:ncomms12457. https://doi.org/10.1038/ncomms12457
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