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Abstract. We consider the Dirichlet problem for a partial differential equation involving the
Jacobian determinant in two dimensions of space. The problem consists in finding a vector-valued
function such that the determinant of its gradient is given pointwise in a bounded domain, together
with essential boundary conditions. This problem was initially considered in Dacorogna and Moser
[Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1900), pp. 1–26], and several theoretical generaliza-
tions have been derived since. In this work, we design a numerical algorithm for the approximation
of the solution of such a problem for various kinds of boundary data. The proposed method relies
on an augmented Lagrangian algorithm with biharmonic regularization, and low order mixed finite
element approximations. An iterative method allows us to decouple the nonlinearity and the differ-
ential operators. Numerical experiments show the capabilities of the method for benchmarks and
then for more demanding test problems.
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1. Introduction. Numerical methods for fully nonlinear equations have received
wide attention for the last decade and half. In particular, various approaches have
been proposed for the numerical solution of second order equations (see, e.g., [9, 20,
21, 22, 24, 27, 33]), including the Monge–Ampère equation, followed by other second
order equations, such as Pucci’s [10, 26, 27] or the curvature equations [4, 35, 39, 40].
First order fully nonlinear equations, including the Eikonal equation [7, 16] or the
Hamilton–Jacobi equation [37], have also been used in various mathematical models in
science and engineering, e.g., in optics, wave propagation, material science, differential
geometry (geodesics), geophysics, and image processing. Both classes of equations can
be summarized into the prototypical form F (u,∇u,D2u,x) = 0, for some function F
given, together with boundary conditions.

In this work, we focus on the Dirichlet problem for a particular equation involving
the Jacobian of an unknown function. More precisely, inspired by [15, 17], and for
a given datum f , we want to find u such that det∇u = f in a bounded domain Ω,
together with Dirichlet boundary conditions. A first approach was proposed in [6] to
validate the feasibility of the approach in the standard case f = 1 and u(x) = x as
Dirichlet boundary conditions. This work is the extension to more general, possibly
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A53

nonsmooth cases.
Several works in the literature have focused on the prescribed Jacobian equation,

starting with the original article [17] that has been developed and extended in [11,
15, 36, 41]. Early regularity results for the determinant of the Jacobian of a given
function have been developed in [13]. The goal of the present work is to provide an
alternative, from the computational viewpoint, to the theoretical, explicit construction
of solutions that exists in the literature for simple cases and to design a numerical
method for the finite element approximation of the prescribed Jacobian equation for
arbitrary two-dimensional domains

Following previous work on the Monge–Ampère equation [9], we advocate a vari-
ational approach for the solution of the prescribed Jacobian equation. Indeed, we
introduce a cost function (typically a function of some distance to a given vector-
valued function, x for example) that we minimize over a set of vector-valued func-
tions verifying the prescribed Jacobian equation as a nonlinear constraint. To solve
the above variational problem, we employ an iterative method of the ADMM (for
alternating direction method of multipliers) type: with this algorithm we will have
to solve alternatively elliptic linear variational problems and nonlinearly constrained
optimization problems which can be solved pointwise (in practice trianglewise if one
uses triangulation-based finite element approximations, as done in this work). It is
worth noticing that the local minimization problems we mentioned just above are
four-dimensional, but they can be reduced to nonlinear one-dimensional problems
that we solve by Newton’s method.

The numerical validation is achieved first via the solution of simple test problems,
allowing among other things a computational investigation of the convergence prop-
erties of our methodology. Next, we investigate the solution of more demanding test
problems associated with nonsmooth data and/or nonconvex domains. Finally, we
investigate the behavior of our iterative method when applied to the solution of prob-
lems without solution. Indeed these numerical experiments illustrate the accuracy
and the robustness of the proposed computational methodology.

The solution of related problems from incompressible finite elasticity has been
addressed in [31] (see also the references therein); for these problems, the incompress-
ibility condition reads as det(Id + ∇u) = 1, Id being the identity tensor and u a
displacement field.

2. Problem formulation. Let Ω be a bounded domain of R2; we denote by Γ
the boundary of Ω; let f : Ω→ R and g : Γ→ R2 be given functions. In the present
work another assumption is made concerning f , namely

(1) f ≥ 0 a.e. in Ω.

The partial differential equation involving the Jacobian determinant (denoted in what
follows by (JAC)) that we want to solve reads as follows: find u : Ω→ R2 satisfying

(2)
{

det∇u = f in Ω,
u = g on Γ. (JAC)

In particular, we are interested in the identity boundary condition (i.e., u(x) = x for
x ∈ Γ) that has been considered in [6], and in [11, 17] from a theoretical point of view,
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A54 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

that is for problems of the following type:

(3)
{

det∇u = f in Ω,
u(x) = x a.e. x on Γ.

Note that the case when f has enough regularity (f ∈ C0,α(Ω) for some α ≥ 0) has
been addressed in [17]; we will also consider numerically right-hand sides with less
regularity (typically f ∈ Lp(Ω) for some p ≥ 0). Problem (3) corresponds to finding
a mapping u that preserves both the boundary data and some kind of volume (up
to some stretching of the mapping). Note that the solution to (3) is not necessarily
unique (and a fortiori, the same remark holds for (2)). Indeed, let us consider (3)
with f = 1 and Ω the unit disk centered at the origin; in this case, u(x) = x is an
obvious solution. However, when using the polar coordinates (ρ, θ), one can see that
v defined by v(ρ, θ) = (ρ cos(θ + 2kπρ2) , ρ sin(θ + 2kπρ2))T is also a solution.

The proof of existence of a solution to (2) (via the divergence theorem) requires
data to be compatible with the geometrical domain [17]. When the boundary condi-
tions are given by u(x) = x on Γ, this compatibility condition reads as

(4)
∫

Ω
fdx = measure (Ω).

Condition (1) is useful from an analytical point of view to prove existence results;
however, it has been recently loosened (slightly) to accept locally negative data (see
[15] for details). Condition (1) makes problem (2) elliptic, an important feature
for the solution methodology discussed in this work. From now on we will assume
that both assumptions (4) and (1) hold; however, in sections 5 and 6, we will study
computationally the behavior of the solution methods investigated in the present work
when these conditions are not satisfied.

Remark 2.1. After suitable transformations, one can show (see [17]) that (2) is
equivalent to the following inverse divergence problem: find v : Ω→ R satisfying

(5)
{
∇ · v = f − 1 in Ω,
v = 0 on Γ.

This problem has been studied in [1, 2], and the authors of the present work have
proposed in [5] a numerical method for the solution of a closely related problem.

In order to enforce the uniqueness of the solution to (2), we use a variational
approach relying on the following constrained minimization problem:

(6) min
v∈E

J(v),

where

(7) J(v) =
1
2

∫
Ω
|∇v − Id|2 dx

and

(8) E =
{
v ∈ H1(Ω)2 , det∇v = f , v|Γ = g

}
;

here, Id denotes the 2× 2 identity matrix (other functionals than the one in (7) may
be used). From now on, we will denote by u the solution to (6). The Frobenius norm

D
ow

nl
oa

de
d 

01
/1

0/
18

 to
 1

28
.1

78
.6

9.
18

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A55

and inner product are respectively defined by |T| = (T : T)1/2, S : T =
∑2
i,j=1 sijtij

for every S = (sij), T = (tij) ∈ R2×2. The choice of the objective function is made
in order to find the solution that is the closest to the identity function x → x,
which corresponds to the least deformation inside the domain. It is not necessarily
compatible with the boundary conditions, which may lead to a nonzero value of the
objective function even at optimum, but it still allows us to enforce the uniqueness of
the solution (see also Remark 2.2).

Remark 2.2. As stated before, the choice of the term Id in the objective function
(7) to enforce uniqueness is actually arbitrary. It could be replaced with another
tensor-valued function (including the zero tensor) without modifying the proposed
algorithm.

Remark 2.3. The term Id in the objective function could be replaced by the gra-
dient of an harmonic extension of the boundary data g into the domain Ω. This
choice would increase the smoothness (in the neighborhood of the boundary) of the
minimiser “chosen” by the algorithm.

3. Augmented Lagrangian framework and iterative algorithm.

3.1. Regularization and augmented Lagrangian approach. First we intro-
duce a biharmonic regularization of the variational problem (6). This regularization
of our problem by introducing a higher order operator is reminiscent of viscosity so-
lutions [14, 32]. Let us consider a parameter δ > 0. The biharmonic regularized
problem reads as

(9) min
v∈Ẽ

[
1
2

∫
Ω
|∇v − Id|2 dx +

δ

2

∫
Ω

∣∣∇2v
∣∣2 dx]

with

(10) Ẽ =
{
v ∈ H2(Ω)2 , det∇v = f , v|Γ = g

}
.

Let us introduce p ∈ L2(Ω)2×2 and relax (9) by introduction of an auxiliary variable.
Thus, (9) becomes equivalent to

(11) min
(v,q)∈Ê

[
1
2

∫
Ω
|∇v − Id|2 dx +

δ

2

∫
Ω

∣∣∇2v
∣∣2 dx]

with

(12) Ê =
{

(v,q) ∈ H2(Ω)2 × L2(Ω)2×2 , det q = f , v|Γ = g , ∇v = q
}
.

Remark 3.1. Since Ω is bounded in R2, it follows from the Sobolev imbedding
theorem (see, e.g., [34]) that

v ∈ H2(Ω)2 ⇒ ∇v ∈ H1(Ω)2×2 ⇒ det∇v ∈W 1,s(Ω), ∀s ∈ [1, 2)

and that
v|Γ ∈ H

3/2(Γ)2.

It follows from the above properties that f ∈W 1,2(Ω) and g ∈ H3/2(Γ)2 are necessary
(but not sufficient) conditions for Ẽ and Ê to be nonempty.
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A56 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

Remark 3.2. The addition of the biharmonic regularization term in (9) requires
the solution to be in H2(Ω)2. However, the solution to (6) has the H1(Ω)2-regularity.
Following this initial requirement, the additional variable p has to have the L2(Ω)2×2

regularity. From the discrete point of view, the design of the mixed finite element
method does not depend on this initial choice at the continuous level.

We advocate an augmented Lagrangian algorithm for the solution of (11). Namely,
for r > 0 a given parameter, we want to find a saddle-point of the augmented La-
grangian functional

L(v,q;µ) =
1
2

∫
Ω
|∇v − Id|2 dx +

δ

2

∫
Ω

∣∣∇2v
∣∣2 dx(13)

+
r

2

∫
Ω
|∇v − q|2 dx +

∫
Ω
µ : (∇v − q)dx.

More precisely, let us define the function spaces

Vg =
{
v ∈ H2(Ω)2 , v|Γ = g

}
,(14)

Q = L2(Ω)2×2,(15)
Qf = {q ∈ Q , det q = f} ;(16)

then our goal is to find {u,p,λ} ∈ Vg ×Qf ×Q such that

(17) L(u,p;µ) ≤ L(u,p;λ) ≤ L(v,q;λ)

for all {v,q,µ} ∈ Vg ×Qf ×Q since, if (17) holds, u is a solution of problem (11)
and p = ∇u.

Sufficient conditions for the existence of a multiplier λ for the augmented La-
grangian function (13) can be found in [19, 23]. For the finite dimensional discretized
problem, since the constraints are linear (∇vh = qh) and with sufficient regularity,
the constraint qualification for equality constraint holds.

3.2. A primal-dual algorithm. In order to solve the saddle-point problem
(17) we advocate a primal-dual algorithm belonging to the ADMM (for alternating
direction method of multipliers) family. To the best of our knowledge, this type of
method has been introduced in [28, 29] and further discussed and applied to a large
variety of convex and nonconvex variational problems in, e.g., [3, 23, 25, 27, 31] (see
also the many references therein).

In order to apply such an algorithm, let (u0,λ0) be given in Vg ×Q. Then, for
n ≥ 1, (un−1,λn−1) being known, we compute pn,un, and λn as follows:

1. To obtain pn, solve the nonlinearly constrained minimization problem

pn = arg min
q∈Qf

L(un−1,q;λn−1),

which is equivalent to

(18) pn = arg min
q∈Qf

[
r

2

∫
Ω
|q|2 dx−

∫
Ω

Xn−1 : qdx
]
,

where Xn := r∇un+λn ∈ Q. Since problem (18) does not involve derivatives
of q, it can be solved pointwise (in practice, for example, for each element of
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A57

a finite element triangulation). It reads, namely, as follows: for a.e. x ∈ Ω,
find pn(x) ∈ R2×2 verifying

(19) pn(x) = arg min
q∈Qx

[r
2
|q|2 −Xn−1(x) : q

]
with

(20) Qx =
{
q ∈ R2×2 , det q = q11q22 − q12q21 = f(x)

}
.

2. To obtain un, solve the linear variational problem

un = arg min
v∈Vg

L(v,pn;λn−1),

which is, more explicitly,
(21)

un = arg min
v∈Vg

[
δ

2

∫
Ω

∣∣∇2v
∣∣2 dx +

1 + r

2

∫
Ω
|∇v|2 dx−

∫
Ω
∇v : Yndx

]
,

where Yn := Id + rpn − λn−1 ∈ Q. Written in variational form, the Euler–
Lagrange equation associated with the minimization problem (21) reads as
follows: find u ∈ Vg satisfying

(22) δ

∫
Ω
∇2u · ∇2vdx + (1 + r)

∫
Ω
∇u : ∇vdx =

∫
Ω

Yn : ∇vdx

for all v ∈ (H2(Ω) ∩ H1
0 (Ω))2. Assuming that g ∈ H3/2(Ω)2, the linear

variational problem (22) is well-posed.
3. To obtain λn ∈ Q, update λn−1 via

(23) λn = λn−1 + r(∇un − pn).

3.3. On the numerical solution of the local nonlinearly constrained min-
imization problems. Problem (19), namely

pn(x) = arg min
q∈Qx

[
r

2
|q|2 −Xn−1 : q

]
with Qx =

{
q ∈ R2×2 , det q = q11q22 − q12q21 = f(x)

}
, is clearly of low finite di-

mension (dimension 4 in fact). After division by r and dropping of the superscript n,
problem (19) becomes a particular case of the following nonlinear constrained mini-
mization problem in R4 (after suitable renumbering of the variables):

(24) min
q∈Ec

[
1
2
|q|2 − b · q

]
with Ec =

{
q ∈ R4 , q1q2 − q3q4 = c(> 0)

}
. Actually, here, c = f(x) and b =

1
r (Xn−1

11 ,Xn−1
22 ,Xn−1

12 ,Xn−1
21 ). Let us denote by S the 4× 4 orthogonal matrix

(25) S =


1/
√

2 1/
√

2 0 0
1/
√

2 −1/
√

2 0 0
0 0 1/

√
2 1/

√
2

0 0 1/
√

2 −1/
√

2
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A58 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

We then introduce the new variables z = Sq and β = Sb. The minimization problem
in (24) is then equivalent to

(26) min
z∈Fc

[
1
2
|z|2 − β · z

]
with Fc =

{
z ∈ R4 , z2

1 − z2
2 − z2

3 + z2
4 = 2c(> 0)

}
. Actually this problem arises also

in incompressible finite elasticity (see, e.g., [31]); in order to solve it, let us thus
introduce the associated Lagrangian functional

(27) L(z, µ) =
1
2
|z|2 − β · z− µ

2
(z2

1 − z2
2 − z2

3 + z2
4 − 2c).

If y is a solution of (26), and λ is a related Lagrange multiplier, the first order
optimality conditions read as follows:

y1 − β1 = λy1,

y2 − β2 = −λy2,

y3 − β3 = −λy3,

y4 − β4 = λy4,

y2
1 − y2

2 − y2
3 + y2

4 = 2c.

An alternative formulation of the optimality conditions is

y1 =
β1

1− λ
,

y2 =
β2

1 + λ
,

y3 =
β3

1 + λ
,

y4 =
β4

1− λ
,

β2
1 + β2

4

(1− λ)2 −
β2

2 + β2
3

(1 + λ)2 = 2c.

It can be shown (see, e.g., [38]) that the solution of (26) corresponds to the unique
solution of

(28)
β2

1 + β2
4

(1− λ)2 −
β2

2 + β2
3

(1 + λ)2 = 2c

belonging to the interval (−1,+1). In order to obtain a numerically well-posed prob-
lem solvable by a Newton method, we rewrite (28) as

(29) 1− λ =

√√√√ β2
1 + β2

4
β2
2+β2

3
(1+λ)2 + 2c

or, equivalently,

(30) φ(λ) := 1− λ− (1 + λ)
√
β2

1 + β2
4√

β2
2 + β2

3 + 2c(1 + λ)2
= 0.

Problem (30) is solved by a Newton method with initial guess λ0 = 0.
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A59

Remark 3.3. Actually, direct calculations for the implementation of the Newton
method show that

φ′(λ) = −1−
√
β2

1 + β2
4

F 2

(
F − 2c(1 + λ)2

F

)
with F =

√
β2

2 + β2
3 + 2c(1 + λ)2. The numerical experiments always show conver-

gence to a root in (−1,+1), except for the first iterate of the outer iterative algorithm,
when the initial data are far from the solution. However, this lack of convergence
during the transient phase does not jeopardize the global convergence of the ADMM
algorithm; indeed, good convergence properties are recovered after a few outer itera-
tions.

3.4. Numerical solution of the linear variational problems. The first or-
der optimality conditions related to (21) are the following: find un+1 ∈ Vg such
that

(31) δ

∫
Ω
∇2un+1 · ∇2vdx + (1 + r)

∫
Ω
∇un+1 : ∇vdx =

∫
Ω

Yn : ∇vdx

for all v ∈ V0, where V0 =
{
v ∈ H2(Ω)2 , v|Γ = 0

}
. Problem (31) is a classical

biharmonic problem. Note that biharmonic problems closely related to (31) have been
encountered when solving the elliptic Monge–Ampère equation in [9]. We observe that
this problem is equivalent (if Ω is convex or Γ smooth enough) to the following second
order variational system:

(32)


wn+1 ∈ (H1

0 (Ω))2,

δ
∫

Ω∇wn+1 : ∇vdx + (1 + r)
∫

Ω wn+1 · vdx =
∫

Ω Yn : ∇vdx,

∀v ∈ (H1
0 (Ω))2

together with

(33)


un+1 ∈ (H1(Ω))2, un+1

∣∣
∂Ω = g,∫

Ω∇un+1 : ∇vdx =
∫

Ω wn+1 · vdx,

∀v ∈ (H1
0 (Ω))2.

Both problems (32) and (33) are nothing but well-posed linear second order elliptic
problems formulated in a variational way. Nowadays, the solution of such problems
is routine: if, for example, one uses well-chosen finite element approximations of
problems (32) and (33) (an issue to be addressed in section 4), the resulting finite
dimensional problems are linear systems associated with matrices which are symmetric
positive definite and sparse; from these properties, sparse Cholesky solvers are obvious
candidates for the solution of the discrete analogues of problems (32) and (33).

4. Finite element approximation. The methodology described in sections 2
and 3 has a variational nature; it therefore makes perfect sense to use a finite element–
based methodology to implement it. Indeed, the finite element approximation that
we are going to use is closely related to those discussed in, e.g., [9, 25, 27] for the
solution of closely related biharmonic problems. To approximate the variable v (re-
spectively, q) we will make use of finite element spaces of vector-valued (respectively,
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A60 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

2× 2 tensor-valued) functions, globally continuous and piecewise affine (respectively,
possibly discontinuous and piecewise constant) over a triangulation; the spaces used
to approximate q will also be used to approximate ∇v and the Lagrange multipliers.
Such finite element spaces are described below.

Let h > 0 be a space discretization step. A family {Ωh}h of polygonal approx-
imations of the domain Ω is introduced such that limh→0 Ωh = Ω, together with
limh→0 Γh = Γ (if Ω is polygonal, we take Ωh = Ω for all h). We consider a family
{Th}h of conforming triangulations of Ωh, verifying the classical assumptions (see,
e.g., [25, Appendix 1]). From Th, we approximate the spaces Q and Qf , respectively,
by

Qh =
{
q ∈ L2 (Ω)2×2

, q|T ∈ R2×2, ∀T ∈ Th
}

and

Qfh =
{
q ∈ Qh , det q|T = f̄T , ∀T ∈ Th

}
,

where, for all T ∈ Th, f̄T = 1
|T |
∫
T
f(x)dx, |T | being the measure of T (if f is continu-

ous over T̄ , we advocate the trapezoidal rule to approximate the above integral). On
the other hand, we approximate the space Vg by

Vg,h =
{
v ∈ C0 (Ωh)2 , v|T ∈ (P1)2, ∀T ∈ Th, v|Γh

= gh
}

with P1 the space of the two-variable polynomials of degree ≤ 1 and gh an approx-
imation of g (if g is continuous, which is definitely the case if g ∈ H3/2(Γ)2, one
should replace the boundary condition v|Γh

= gh by v(P ) = g(P ) for all the vertices
P ∈ Th belonging to Γh; this supposes that the vertices of Th belonging to Γh also
belong to Γ, an assumption we will ever make). To approximate the Sobolev spaces
H1

0 (Ω)2 and (H2(Ω) ∩H1
0 (Ω))2 we will employ V0h defined by

V0h =
{
v ∈ C0 (Ωh)2 , v|T ∈ (P1)2, ∀T ∈ Th, v|Γh

= 0
}
.

We equip Qh (and Qfh) with a discrete inner product and norm, respectively,
defined by

((p,q))0h =
∑
T∈Th

|T | p|T : q|T , |||q|||20h =
√

((q,q))0h.

Similarly, we equip Vg,h (and V0h) with a discrete inner product and norm, respec-
tively, defined by

(u,v)0h =
1
3

∑
T∈Th

|T |
3∑
j=1

u(PTj ) · v(PTj ), ||u||20h =
√

(u,u)0h,

PT1 , PT2 , and PT3 being the three vertices of triangle T . The associated discrete
analogue of the ADMM algorithm described in section 3.2 reads as follows: Let
(u0
h,λ

0
h) ∈ Vg,h × Qh be given. Then, for n ≥ 1, (un−1

h ,λn−1
h ) being known, we

compute pnh,u
n
h, and λnh as follows:
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A61

1. To obtain pnh, solve

(34) pnh = arg min
qh∈Qfh

[
r

2
|||qh|||20h − ((Xn−1

h ,qh))0h

]
,

where Xn−1
h := r∇un−1

h + λn−1
h (∈ Qh). Since no derivative of q is involved,

problem (34) can be solved trianglewise using the method we employed in
section 3.3 to solve problem (18) (of course, now f(x) has to be replaced by
f̄T ) .

2. To obtain unh, solve

(35) unh = arg min
vh∈Vg,h

[
δ

2
||θ||20h +

1 + r

2
|||∇v|||20h − ((Yn

h ,∇vh))0h

]
,

where Yn
h := Id + rpnh −λ

n−1
h (∈ Qh), and where θ (the discrete Laplacian of

−v) is uniquely obtained from v, via the solution of

(36)

{
θ ∈ V0h,

(θ,ϕ)0h = ((∇v,∇ϕ))0h, ∀ϕ ∈ V0h.

The Euler–Lagrange equation (a system in fact) associated with the mini-
mization problem (35), (36) reads as

(37)



(unh,ω
n
h) ∈ Vg,h ×V0h,

δ(ωnh,θ)0h + (1 + r)((∇unh,∇v))0h = ((Yn
h ,∇v))0h,

∀(v,θ) ∈ V0h ×V0h,

(ωnh,ϕ)0h = ((∇unh,∇ϕ))0h, ∀ϕ ∈ V0h.

The variational system (37) is nothing but the mixed variational formulation
of a discrete biharmonic problem. Similar problems have been encountered
in, e.g., [9, 27] when solving the two-dimensional Monge–Ampère equation by
least-squares methods operating in subsets of H2(Ω). Solving problem (37) is
quite simple since relation (36) implies the equivalence between (37) and the
following system of discrete second order linear elliptic problems (a discrete
analogue of system (32), (33)):

(38)


ωnh ∈ V0h,

(1 + r)(ωnh ,v)0h + δ((∇ωnh,∇v))0h = ((Yn,∇v))0h,

∀v ∈ V0h,

(39)


unn ∈ Vgh,

((∇unh,∇v))0h = (ωnh,v)0h,

∀v ∈ V0h.

Solving numerically problems like (38) and (39) is routine nowadays.
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A62 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

3. Finally we update the multiplier λn−1
h via

λnh = λn−1
h + r(∇unh − pnh).

The convergence of the proposed algorithm is discussed in sections 5 and 6 from a
numerical viewpoint, based on the evidence provided by numerical experiments. The
convergence of Uzawa-type algorithms such as the one proposed here have been dis-
cussed in [25]. However, due to the nonconvexity of the minimization problem under
consideration, a mathematical proof of the convergence of the ADMM algorithm we
employ still seems to be out of reach. Individually, the algebraic problems (34) are
local problems that are identical at both the continuous and discrete levels. Conver-
gence is ensured by the underlying properties of Newton methods. The convergence
of finite element methods for biharmonic problems such as (37) is discussed, e.g., in
[12].

Remark 4.1. As well-documented (see, e.g., [30] for further details and refer-
ences), a critical issue with ADMM-type algorithms is the proper choice of the aug-
mentation parameters, particularly for nonconvex problems. Least-squares/relaxation
methods are an existing alternative to ADMM algorithms (see, e.g., [9] for the appli-
cation to the Monge–Ampère equation in two dimensions of space). Concerning the
finite element approximation of the prescribed Jacobian equation, possible extensions
are higher order finite element approximations and adaptive mesh refinement methods
(to better track the possible singularities of the solution, see section 6).

5. Numerical experiments I. Benchmarks and validations.

5.1. Generalities. In order to validate the numerical methodology discussed in
the preceding sections, we consider first test cases with known exact solutions. Then
we investigate situations where solutions are unknown or do not exist, and study
the behavior of our ADMM algorithm for those situations. In particular, if solutions
do not exist, we are interested to know whether the algorithm converges, in some
sense, to some generalized solution, as close variants of it do when applied to the
solution of the Dirichlet problem for the Monge–Ampère equation detD2u = f , when
no classical solution exists, due to the incompatibility between f and the boundary
data (see [18] for details). The first numerical experiment is borrowed from [6] for
validation purposes and convergence study. The initial guess is {u0,λ0} = {0,0},
unless specified otherwise.

Remark 5.1. The stopping rule used by default is the distance between succes-
sive iterates

∣∣∣∣uk − uk+1
∣∣∣∣

0h. It provides the robustness required when there is no
guarantee of a classical solution. Alternative stopping criteria have been used in what
follows for test cases with an exact solution; typically one can consider the residual
|det∇uk − f |, or the difference with an exact solution

∣∣∣∣uk − uexact
∣∣∣∣

0h. Numerical
results are similar.

5.2. The identity mapping solution. We consider the open unit disk

Ω =
{
x ∈ R2 , ||x||2 < 1

}
(with Γ = ∂Ω) and take as exact solution the vector-valued function u verifying
u(x) = x in Ω (that is, u is the identity mapping). The related (JAC) problem reads
as follows: find u : Ω→ R2 satisfying

(40)
{

det∇u = 1 in Ω,
u(x) = x a.e. x on Γ.

D
ow

nl
oa

de
d 

01
/1

0/
18

 to
 1

28
.1

78
.6

9.
18

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A63

From the introduction, we know that problem (40) has solutions other than the iden-
tity mapping. The set of numerical parameters is given by r = 10−6 and δ = 10−6.
The outer loop iteration stops if the tolerance between successive iterates uk and
uk+1 satisfies

∣∣∣∣uk − uk+1
∣∣∣∣

0h < ε = 10−8. When computing pnh (via the solution of
problem (34)), we took 10−5 as tolerance for Newton’s method solving the associated
discrete analogues of problem (24) and limited ourselves to 100 the number of New-
ton’s iterations (a number which was never reached). The mesh is an unstructured
Delaunay triangulation of Ω (see Figure 1). The algorithm we employed (namely
the discrete analogue, described in section 3, of the ADMM algorithm (18), (21), (23))
was always converging in fewer than 20 outer iterations (between 17 and 19 iterations,
depending of the mesh size).

Fig. 1. Typical finite element triangulations used for the discretization of the unit disk and the
unit square.

Figure 2 visualizes the solution on one particular mesh (with h ' 0.0161). The
most natural solution u(x) = x is correctly approximated, and the radial invariance is
appropriately tracked even though the mesh does not guarantee such a symmetry. The
determinant of ph is exactly equal to one on each element (by construction), while
the determinant of ∇uh is nearly everywhere equal to one (between 0.999998 and
1.000009), suggesting that the constraint ∇uh = ph is accurately satisfied (indeed our
computations showed that |||∇uh − ph|||0h / |||ph|||0h = 2.42 · 10−4 in the particular
case visualized in Figure 2).

Fig. 2. The identity mapping on the unit disk. Visualization of the approximate solution
obtained with the augmented Lagrangian approach after 19 iterations (h ' 0.0161). Left: norm
||uh||2; Right: vector field uh;

The numerical results are similar when considering the unit square Ω = (0, 1)2.
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A64 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

Figure 3 visualizes the numerical results on the unit square for an unstructured mesh
(similar to the one illustrated in Figure 1). Note that the results are actually similar
when using structured meshes and thus independent of the type of mesh used.

Figure 4 illustrates the convergence of the error between the numerical solution
uh and the exact solution u(x) = x for the unit disk and the unit square (with
both structured and unstructured types of meshes). All configurations lead to the
convergence with error approximation order O(h). The number of outer iterations of
the algorithm is quite stable with respect to the mesh size, but depends on the test
case considered.

Fig. 3. The identity mapping on the unit square. Visualization of the approximate solution on
the unit square obtained with the augmented Lagrangian approach after 24 iterations (h ' 0.0220).
Top left: norm ||uh||2; Top right: vector field uh; Bottom left: Determinant det ph; Bottom right:
Determinant det∇uh.

Remark 5.2. Actually, for all test cases presented in this benchmark section, we
could have taken δ = 0, meaning that the regularization term is not necessary when
the test problem has a smooth solution.

6. Numerical experiments II. Extensions. During the second part of our
numerical experiments, we consider more stringent (JAC) test problems in order to
investigate the capabilities of our ADMM-based methodology. These test problems
include (i) perturbations of problems with known exact solutions, (ii) problems with
discontinuous data f (including Dirac measures), and even (iii) problems where the
nonexistence of solutions is known a priori since the compatibility condition (4) is not
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A65

Fig. 4. The identity mapping for the unit disk and the unit square. Convergence of the L2

approximation error ||uh − u||0h for the unit disk (with unstructured mesh) and the unit square
(with structured and unstructured meshes).

satisfied. In this section, the number of outer iterations for the augmented Lagrangian
algorithm, typically of the order of 100 (unless otherwise specified), is chosen to be
large enough to guarantee that the algorithm reaches a stationary state. Convergence
can be reached faster in some cases.

6.1. A perturbation of the identity mapping. Let us consider again the
unit square Ω = (0, 1)2 (with coordinates denoted by x1 and x2). The (JAC) problem
we consider now reads as follows: find u : Ω→ R2 satisfying

(41)
{

det∇u = f in Ω,
u(x) = x on Γ

with

f = 1 + απ [cos(πx1) sin(2πx2) + sin(2πx1) cos(πx2)]
+α2π2 [cos(πx1) cos(πx2) sin(2πx1) sin(2πx2)
− 4 sin(πx1) sin(πx2) cos(2πx1) cos(2πx2)]

and
α = ± 1

5π
.

With this choice of the coefficient α, it is easy to show that the right-hand side f is
positive on Ω and that an exact solution is the following perturbation of the identity
mapping:

u(x1, x2) =
(
x1 + α sin(πx1) sin(2πx2)
x2 + α sin(2πx1) sin(πx2)

)
.

We have visualized in Figure 5 the results obtained for a particular triangula-
tion with h = 0.0354 (the triangulation being a structured one where the square
cells have been split into two triangles along the first diagonal). The constraint
∇u = p is satisfied up to the approximation errors, as illustrated by |||∇uh − ph|||0h /

D
ow

nl
oa

de
d 

01
/1

0/
18

 to
 1

28
.1

78
.6

9.
18

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A66 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

|||ph|||0h ' 0.4151 · 10−2. The convergence, for h = 0.0354 given, is quantified by∣∣∣∣u50
h − u

∣∣∣∣
0h ' 0.449 ·10−2. Figure 6 shows the order of convergence for the L2-norm

of the approximation error u−uh; we observe again an O(h) (first order) convergence,
significantly better results being obtained with structured mesh (probably due to a
better fit between the shape of the exact solution on the domain and the preferred
direction of the mesh).

Fig. 5. Perturbation of the identity mapping on the unit square. Visualization of the approx-
imate solution obtained with the augmented Lagrangian approach after 50 iterations (h ' 0.0354).
Top left: norm ||uh||2; Top right: vector field uh; Bottom left: Determinant det ph; Bottom right:
Determinant det∇uh.

Increasing sufficiently the value of the parameter α leads to a right-hand side
function f that is no longer strictly positive. Actually, as soon as the parameter α
makes the function f nonpositive, the algorithm does not converge.

Remark 6.1. For nontrivial test cases, including the nonsmooth test cases pre-
sented later, we advocate taking δ ' (1 + r)h2 to account for boundary effects on the
solution of (31) (and to balance the main diagonals of the two matrices associated
with (31)). Taking δ = 0 does not allow the algorithm to converge.

6.2. A test problem with noncompatible data. Let us consider the unit
disk Ω =

{
x ∈ R2 , ||x||2 < 1

}
and the following (JAC) problem:

(42)
{

det∇u = 4 in Ω,
u(x) = x on Γ.
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A67

Fig. 6. Perturbation of the identity mapping on the unit square. Convergence of the approxi-
mation error ||uh − u||0h (with structured or unstructured triangulations of the unit square).

This particular problem has no solution since it does not satisfy the compatibility
condition (4); indeed we have here that∫

Ω
fdx = 4π 6= π = measure (Ω).

We apply the discrete ADMM algorithm discussed in section 4, with r = 10−1,
δ = 10−3, and {u0,λ0} = {0,0}, to approximate the solution of (42). We observe the
following behavior:

1. We have un(x) = x for all x ∈ Ω and for all n ≥ 1, which is the solution of
det∇u = 1 in Ω with u(x) = x on Γ.

2. The determinant of pn oscillates between the values 1 and 4.
In this case, it is interesting to see that, from the incompatibility tracked by

the augmented Lagrangian algorithm and the bad choice of the parameters r and δ,
the algorithm does not converge. More precisely, the attractor for the solution uh is
given by uh(x) = x and remains constant throughout all the iterations (and satisfies
the boundary conditions). On the other hand, the determinant of the solution ph
oscillates between the values 1 and 4; these oscillations show that the algorithm does
not converge to any attractor point. The oscillations for pnh are natural, in the sense
that they select an approximate solution that satisfies the differential equation (as
planned) and an approximate solution that is influenced by the enforced boundary
conditions.

In this case, the additional equality constraint ∇uh = ph cannot be satisfied
and numerical oscillations are created. The results and behavior of the algorithm are
similar if we take for Ω the unit square (0, 1)2.

In order to reduce, if not eliminate, the above oscillatory behavior, we increased
the value of the augmentation parameter r, taking it equal to r = 100 (with the
corresponding δ equal to δ = 0.1 ' (1 + r)h2). With this value of r, the oscillations
were significantly reduced and the following behavior was observed concerning the
convergence of the sequence {unh,pnh}n generated by the ADMM algorithm: (i) The
sequence {pnh}n verifies (by construction) det pnh = 4 for all n ≥ 1 and converges to a
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A68 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

limit ph. (ii) unh(x) = x for all x ∈ Ω and for all n ≥ 1. (iii) The convergence is still
oscillatory, but the oscillations are of smaller amplitudes.

6.3. Test problems with some radial symmetry. Assuming that Ω is still
the unit disk Ω =

{
x ∈ R2 , ||x||2 < 1

}
, we consider the following (JAC) problem,

where f is radial symmetric, namely

(43)
{

det∇u(x) = f(||x||2) in Ω ,
u(x) = g(x) on Γ,

where

g(x) =
√

2

 1
2
(
x2

1 − x2
2
)

x1x2

 .

Assume that
f(ρ) = 2ρ2;

we verify that, in this particular case, an exact solution of the determinant equation
is given by

u(x) =
√

2

 1
2
(
x2

1 − x2
2
)

x1x2

 ,

which is not a radial function. The uniqueness is a priori not guaranteed. The solution
u of problem (43) is accurately approximated since, after 100 outer iterations, with
r = 10−4 and δ = 10−6 ' (1 + r)h2, we have

∣∣∣∣u100
h − u

∣∣∣∣
0h ' 7.74 · 10−4 (while∣∣∣∣u100

h − u99
h

∣∣∣∣
0h ' 3.0 · 10−6). The solution is not radial, but its Euclidean norm is a

radial function (since ||u||22 = 0.5x4
1 + 0.5x4

2 + x2
+x

2
2 = 0.5(x2

1 + x2
2)2), a property well

satisfied in Figure 7(right). Note that this approximate solution is actually obtained
after five outer iterations and remains stationary without oscillations afterwards.

Fig. 7. Test problem with radial data. Visualization of the approximate solution on the unit
disk obtained with the augmented Lagrangian approach after 100 iterations (h ' 0.0461, r = 10−4,
δ = 10−6). Left: vector field uh. Right: norm ||uh||2.

When the value of the parameter r is increased to r = 10 (or anything larger), the
parameter δ is set to δ = 10−2 ' (1+r)h2, and the ADMM algorithm bifurcates to find
an approximation of another branch of solutions. This second solution satisfies the
boundary conditions, but its Euclidean norm is no longer radial. This illustrates the
nonuniqueness of the solution to the (JAC) problem for this particular set of data and
the capability of the algorithm to capture multiple solutions if properly monitored.
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This bifurcation effect is classical for augmented Lagrangian algorithms and has been
observed already in, e.g., [8]. Numerical results are visualized in Figure 8.

Fig. 8. Test problem with radial data. Visualization of the approximate solution on the unit
disk obtained with the augmented Lagrangian approach after 100 iterations (h ' 0.0461, r = 10,
δ = 0.01). Left: vector field uh. Right: norm ||uh||2.

When considering g(x) = x in (43), an exact solution of the (JAC) problem is

u(x) = ||x||2

(
x1

x2

)
,

which is a radial function. With r = 10 and δ = 10−2 ' (1 + r)h2, the ADMM
algorithm presented in section 4 approximates the above exact solution after about
100 iterations with

∣∣∣∣u100
h − u

∣∣∣∣
0h ' 9.99 · 10−3. Results are illustrated in Figure 9.

Fig. 9. Test problem with radial data and g(x) = x. Visualization of the approximate solution
on the unit disk obtained with the augmented Lagrangian approach after 100 iterations (h ' 0.0461,
r = 10, δ = 10−2). Left: vector field uh. Right: norm ||uh||2.

6.4. Test problems for some nonconvex domains with re-entrant cor-
ners. The solution of (JAC) for nonconvex domains has not been addressed in the
literature. Let us consider first the pie-shaped domain obtained by removing from the
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unit disk a piece of angular size 2α (as shown in Figure 10, where α = π/4 degrees):

(44)

{
det∇u = 1 in Ω,

u(x) = x on Γ.

An exact solution of problem (44) is given by

u(x1, x2) =
(
x1
x2

)
.

Taking r = 104 and δ = 1, we initialize the ADMM algorithm of section 4
with λ0 = 0 and u0(x) = 0 in Ω, and u0(x) = x on Γ. In Figure 10 we have
visualized the results obtained after 100 iterations, using a triangulation refined in
the neighborhood of the re-entrant corner (we observed, not surprisingly, that such a
refinement enhances the convergence of our iterative method). The exact solution is
accurately recovered (since

∣∣∣∣u100
h − u

∣∣∣∣
0h ' 0.323 · 10−3).

Fig. 10. Test problem for a pie-shaped domain (with α = π/4 degrees) and f = 1. Visualization
of the approximate solution obtained with the augmented Lagrangian approach after 200 iterations
(h ' 0.0263). Top left: norm ||uh||2; Top right: vector field uh; Bottom left: determinant det ph;
Bottom right: determinant det∇uh.

Then we replace f = 1 by f(ρ) = 2ρ2 in (44), taking r = 10, δ = 10−3, λ0 = 0,
and u0(x) = x in Ω, and u0(x) = 0 on Γ. In Figure 11 we have visualized the
results obtained after 300 iterations on the same triangulation. Results are extremely
consistent with those obtained on the unit disk in Figure 7.

We consider next the same pie-shaped domain with α = π/100 degrees, as illus-
trated in Figure 12. This (JAC) problem is defined as follows:
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A71

Fig. 11. Test problem for a pie-shaped domain (with α = π/4 degrees) and f(ρ) = 2ρ2.
Visualization of the approximate solution obtained with the augmented Lagrangian approach after 200
iterations (h ' 0.0263). Top left: norm ||uh||2; Top right: vector field uh; Bottom left: determinant
det ph; Bottom right: determinant det∇uh.

(45)

{
det∇u = 1 in Ω,

u(x) = x on Γ.

Again, the triangulation we employed was refined around the re-entrant corner.
Taking r = 105, δ = 1, we initialize the ADMM algorithm of section 4 with λ0 = 0
and u0 = 0, leading to the results reported in Figure 12, obtained after 100 iterations.
The exact solution has been correctly recovered (since

∣∣∣∣u100
h − u

∣∣∣∣
0h = 0.371 · 10−3

when h = 0.0480); the convergence is more oscillatory than when the re-entrant angle
is larger (which was expected).

6.5. Two test problems with nonsmooth right-hand sides. Let us consider
now test problems involving discontinuous data f . The lack of regularity of the
following data is expected to lead to low regularity solutions to problem (2), if any
(see, e.g., [17]). With Ω being the unit disk Ω =

{
x ∈ R2 , ||x||2 < 1

}
, we consider

first the following problem:

(46)
{

det∇u = f in Ω,
u(x) = x on Γ

with

(47) f(x) =
{

1.8 if x1 > 0,
0.2 if x1 ≤ 0.
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A72 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

Fig. 12. Test problem for a pie-shaped domain (with α = π/100 degrees) and f = 1. Visu-
alization of the approximate solution obtained with the augmented Lagrangian approach after 100
iterations (h ' 0.0480). Top left: norm ||uh||2; Top right: vector field uh; Bottom left: determinant
det ph; Bottom right: determinant det∇uh.

We observe that f is compatible in the sense that
∫

Ω fdx = π =measure(Ω).
Starting from {u0,λ0} = {0,0}, and using r = 10 and δ = 0.0001, the ADMM
algorithm converges after 100 iterations to the solution uh, shown in Figure 13. We use
a triangulation refined along the vertical axis in the neighborhood of the singularity
of the right-hand side. The function det(ph) is equal to f by construction (up to
mesh effects), but significantly different from det(∇uh), since uh is smoother due to
the biharmonic regularization.

Remark 6.2. The effect of the parameter δ on the solution uh is quantified as
follows. Let us take δ = 1, 10−2 and 10−4 (r = 10 being fixed). Figure 14 shows
||uh||0h and det∇uh for these values of δ on a nonrefined mesh. We can observe that,
when δ is too large, the solution and the determinant of its gradient are smoothed
drastically. When δ decreases, we recover the sharpness of the solution. When δ
becomes too small, the quality of the solution does not improve significantly, but the
convergence of the iterative algorithm deteriorates.

The second test problem with a nonsmooth right-hand side that we consider is
defined by

(48)
{

det∇u = f in Ω,
u(x) = x on Γ,

where, once again, Ω is the unit disk Ω =
{
x ∈ R2 , ||x||2 < 1

}
and

(49) f(x) = πδ(0),
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A73

Fig. 13. Test problem with a discontinuous right-hand side (with f given by (47)). Visualization
of the approximate solution obtained with the augmented Lagrangian approach after 100 iterations
(h ' 0.0461, r = 10, δ = 0.01). Top left: norm ||uh||2; Top right: vector field uh; Bottom left:
determinant det ph; Bottom right: determinant det∇uh.

δ(0) being the Dirac measure at 0 = (0, 0). An exact solution to problem (48) is given
by

(50) u0(x) =
x
||x||2

.

The function u0 /∈ H1
loc(R2), implying that problem (48) is not relevant (directly, at

least) to the framework detailed in [17]. To overcome this difficulty, we proceed by
regularization as in [9], replacing f by fη defined by

(51) fη(x) =
(1 + η2)η2

(η2 + ||x||22)2
,

where η is a positive parameter; indeed,

lim
η→0

fη = πδ(0)

in the sense of distributions. The corresponding approximation of problem (48) reads
as

(52)

{
det∇uη = fη in Ω,

u(x) = x on Γ
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A74 ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

Fig. 14. Test problem with a discontinuous right-hand side. Visualization of the approximate
solution obtained with the augmented Lagrangian approach after 100 iterations (h ' 0.0461, r =
10, f = f2), on a triangulation not refined along the singularity. Top: norm ||uh||2; Bottom:
determinant det∇uh. Left: δ = 1, middle: δ = 10−2; Right: δ = 10−4.

and has uη defined by

(53) uη(x) = x

√
1 + η2

η2 + ||x||22

as an exact solution. We clearly have uη ∈ C∞(Ω̄) for all η > 0 and can (relatively)
easily show that

||uη − u0||L2(Ω) = O(η).

For large values of η, the function uη does not exhibit strong gradients in Ω̄ and, not
surprisingly, the ADMM algorithm proves efficient and accurate. On the other hand,
uη develops, as expected, a singularity with strong gradients near (0, 0) as η → 0+
requiring global or local mesh refinement to resolve this singularity.

We have visualized in Figure 15 the computed solution obtained at the 100th
iteration of the discrete ADMM algorithm discussed in section 4, taking h = 0.005, r =
10, δ = 0.01, and η = 1/8 and using (u0,λ0)) = (0,0) as initializer. The exact
solution of the regularized problem (defined by (52)) is approximated accurately, as
shown in Table 1, the same conclusion holding for the other values of η, as shown also
in Figure 16. Indeed, Figure 16 suggests ||uη,h − uη||L2(Ω) = O(h) approximately
(and possibly better as h decreases), implying ||uη,h − u0||L2(Ω) ' O(η + h).

Figures 15, 17, and 18 show also that for η << 1 and h sufficiently small the
properties ||u0(x)||2 = 1 and det∇u0(x) = 0 for all x ∈ Ω̄\{(0, 0)} are accurately
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NUMERICAL SOLUTION OF A JACOBIAN-PRESCRIBED PDE A75

Fig. 15. Test problem with f = πδ(0). Visualization of the approximate solution obtained by
the augmented Lagrangian approach after 100 iterations (h ' 0.005, r = 10, δ = 0.01, η = 1/8).
Top left: norm ||uh||2; Top right: vector field uh; Bottom left: determinant det ph; Bottom right:
determinant det∇uh.

satisfied, the lack of convergence due to the singularity at (0, 0) being localized in a
small patch of triangles centered at (0, 0) and whose area converges to 0 as (h, η) →
(0, 0), as particularly well reported in Figure 18.

Remark 6.3. When approximating sgnξ by ξ√
ξ2+η2

the jump at ξ = 0 is replaced

by a continuous layer, centered at 0, of thickness ' 2η. A similar result holds when
approximating u0 by uη, implying taking h � η in order to resolve this transition
layer.

To conclude this section, let us mention the following bifurcation phenomenon
we observed when applying ADMM to the finite element approximation of problem
(52). Suppose that r, δ, and the triangulation Th are fixed and that one decreases η:
below a critical value of η (the bifurcation threshold here) ADMM stops converging
to (an approximation of) uη but converges instead to the function x → x. Refining
the mesh decreases the above bifurcation threshold. Similar bifurcation phenomena
have been previously observed (see, e.g., [9]) when applying ADMM to the solution
of nonconvex minimization problems.
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Table 1
Test problem with f = πδ(0). Variations with η and h of the approximation error∣∣∣∣uη,h − uη

∣∣∣∣
0,h. The function uη,h has been obtained at the 100th iteration of the ADMM al-

gorithm using r = 10 and δ = 0.01. ∣∣∣∣uη,h − uη
∣∣∣∣

0h
η h ' 0.0461 h ' 0.0058 h ' 0.0032
1 0.123378 · 10−2 0.315747 · 10−3 0.124853 · 10−3

1/2 0.458005 · 10−2 0.138321 · 10−2 0.277669 · 10−3

1/4 0.101486 · 10−1 0.272539 · 10−2 0.502128 · 10−3

1/8 0.225558 · 10−1 0.568670 · 10−2 0.933829 · 10−3

1/16 0.446432 · 10−1 0.703255 · 10−2 0.320679 · 10−2

1/32 0.877680 · 10−1 0.425320 · 10−1 0.733439 · 10−1

Fig. 16. Test problem with f = πδ(0). Convergence of the discrete L2 approximation error
||uh − u||0h for various values of the regularization parameter η.

6.6. Test problems with a singularity on the boundary. Let us consider
Ω = (0, 1)2 and the problem

(54)

{
det∇u = 0 in Ω,

u(x) = x/ ||x||2 on Γ\{(0, 0)},

whose exact solution u(x) = x/ ||x||2 presents a singularity in the corner of Ω. Note
that this singularity is rather strong since the solution does not even exist in (0, 0).
Therefore, we do not enforce Dirichlet boundary conditions in (0, 0), and we consider
the regularized problem, where f is given by (51), which admits the exact solution
(53).

Taking r = 10−6 and δ = 10−6, we initialize the ADMM algorithm of section 4
with λ0 = 0 and u0(x) = 0 in Ω. The parameter η is set to 10−2 (of the order of h),
and the initial condition u0(x) is given by (53) on Γ. In Figure 19 we have visualized
the results obtained after 10 iterations (having reached stationarity of the algorithm),
using a triangulation refined in the neighborhood of the corner hosting the singularity
of the solution. One can observe that the singularity induces a dissipation in the wake
of the point (0, 0). Nevertheless, the approximation of det∇uh is correct up to the
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η = 1 η = 1/2 η = 1/4

η = 1/8 η = 1/16 η = 1/32

Fig. 17. Test problem with f = πδ(0). Visualization of
∣∣∣∣uη,h∣∣∣∣

0h (top) and det∇uη,h (bottom)
after 100 iterations for various values of η (h ' 0.0461, r = 10, δ = 0.01).

mesh size (the same remark holds for det ph, not represented here). Not imposing
Dirichlet boundary conditions at the point (0, 0) is crucial to making the numerical
algorithm converge.
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Fig. 18. Test problem with f = πδ(0). Visualization of
∣∣∣∣uη,h∣∣∣∣

0h (left) and det∇uη,h (right)
after 100 iterations. (η = 1/64, r = 100, δ = 0.0025). For this computation we have used a mesh
locally refined around (0, 0), so that minK hK = 0.0001, while maxK hK = 0.005.

Fig. 19. Test case on the L-shaped domain. Visualization of the approximate solution obtained
with the augmented Lagrangian (h ' 0.01). Left: norm ||uh||2; middle: vector field uh; right:
Determinant det∇uh.
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Society, Zürich, 2009.

[27] R. Glowinski, Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems,
SIAM, Philadelphia, 2015, https://doi.org/10.1137/1.9781611973785.

[28] R. Glowinski and A. Marrocco, Sur l’approximation par éléments finis d’ordre 1 et la
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[34] J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley & Sons,
Chichester, 1986.

[35] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag,
New York, 2003.

[36] T. Rivière and D. Ye, Resolutions of the prescribed volume form equation, NoDEA Nonlinear
Differential Equations Appl., 3 (1996), pp. 323–369.

[37] J. A. Sethian, Fast marching methods, SIAM Rev., 41 (1999), pp. 199–235, https://doi.org/
10.1137/S0036144598347059.

[38] D. C. Sorensen and R. Glowinski, A quadratically constrained minimization problem arising
from PDE of Monge-Ampère type, Numer. Algorithms, 53 (2010), pp. 53–66.

[39] X.-C. Tai, J. Hahn, and G. J. Chung, A fast algorithm for Euler’s elastica model using
augmented Lagrangian method, SIAM J. Imaging Sci., 4 (2011), pp. 313–344, https://doi.
org/10.1137/100803730.

[40] C. WU and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman
iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010),
pp. 300–339, https://doi.org/10.1137/090767558.

[41] D. Ye, Prescribing the Jacobian determinant in Sobolev spaces, Ann. Inst. H. Poincaré Anal.
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