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ABSTRACT 
In the reverse engineering of a software program, one of the key difficulties is 
actually to understand the software. While the published techniques work top 
down or bottom up, our approach works middle-out: before trying to 
understand the low level code, we first rebuild a hypothetical analysis model 
from the use-cases of the system. This model then represents the target of the 
understanding task. In fact we try to map the code elements to the analysis 
objects. For this approach to be useable in large industrial software systems, 
it must be supported by a powerful tool. This paper presents the Eclipse plug-
in we developed to support our methodology, as well as a reverse engineering 
scenario using this tool. We then discuss the technology we used and the 
result we obtained. 
Keywords: Analysis tool, Dynamic analysis, Eclipse, Reverse engineering, 
Software understanding.  

 

1- INTRODUCTION  
To extend the life of a legacy system, to manage its complexity and decrease 
its maintenance cost, one option is to reengineer it. Recently, we developed a 
reverse-engineering process based on the Unified Process which rests on the 
dynamic analysis of program execution. The theoretical framework of our 
technique has been presented elsewhere [1][2]. The first experiments with this 
reverse engineering process have been performed by hand. Although these 
were encouraging, the size of real world industrial software asks for the sup-
port of a powerful tool. 

The goal of this paper is to present the tool we have developed as well as the 
way it can automate the most difficult task of the process: the mapping from 
low the level source code elements to the analysis model elements. In the 
following text, section 2 presents a short summary of our methodology and 
section 3 justifies our approach with respect to the software understanding 
effort. Section 4 presents the engine that maps the source code elements to 
the analysis model elements and section 5 present the tool itself with its user 
interface. Section 6 presents a reverse engineering scenario that uses the tool 
and section 7 discusses the results obtained so far and the future work. Sec-
tion 8 presents the related work. 
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2-  SUMMARY OF OUR METHODOLOGY
Generally, legacy systems documentation is at best obsolete and at worse 
non-existent. Often, its developers are not available anymore to provide in-
formation of these systems. In such situations the only people who still have a 
good perspective on the system are its users. In fact they are usually well 
aware of the business context and business relevance of the programs. 
Therefore, our iterative and incremental methodology, which is based on the 
Unified Process [3], starts from the recovery of the system use-cases from its 
actual users. Its main steps are [2]: 

• Re-documentation of the system use-cases; 

• Design of the analysis models associated to all the use-cases; 

• Re-documentation of the visible structure of the code; 

• Execution of the system according to the use-cases and recording of the 
execution trace; 

• Analysis of the execution trace and identification of the classes involved 
in the trace; 

• Mapping of the classes in the execution trace to the objects of the analy-
sis model. 

• Re-documentation of the architecture of the system by clustering the 
classes based on their role in the use-case implementation. 

In the absence of any documentation on the system to reengineer, the Unified 
Process’ analysis model associated to each use-case represents our best 
hypothesis on the actual architecture of the system. Fig. 1 presents an exam-
ple of an analysis model with the stereotypical classes (analysis object) that 
represent software roles for the classes. These roles are: the boundaries (in-
terface with the outside world, i.e. screens), the entities (information contain-
ers) and the control objects (coordinators of the use-case execution) [3]. 

 
Figure 1 Use-case and analysis model 

Besides, we must re-document the visible structure of the code based on 
syntactic clues such as module, package and class declarations, as well as 
the directory structure in which the elements of the code are stored. This let 
us identify the code element that we must understand. Therefore, as the next 
step, we must find the classes in the actual implementation that play the roles 

 



 
 

of the objects in the analysis model. Then, we run the system according to 
each use-case and record the execution trace i.e. the functions and proce-
dures called during execution (Fig. 2). 
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Figure 2 Use-case and the associated execution trace 

The execution trace is obtained by instrumenting the source code of the lega-
cy system. This allows us to trace the application classes only and to obtain 
an execution trace whatever the legacy programming language used. The 
trace format is the following: 

[package][class][process][signature][returned type] 
If the legacy language to be instrumented is not Java or C#, these concepts 
are mapped to the corresponding constructs of the language. [class] represents 
the entities in which the functions and procedures are declared. We may use 
UNITS in Cobol or Module in VB. [package] represent whatever structure that 
would group entities in larger chunks. [signature] is the signature of the function 
or procedure. [returned type] is the type of the object returned by the functions. 
With this format we always know the class or module whose methods or func-
tions have been called. These represent the classes and modules that actual-
ly implement the use-case. Then the source code of these functions and pro-
cedures is analyzed to find evidence of database access and screen display. 
The classes and modules containing database access functions will be 
mapped to entities and the ones containing screen display functions to boun-
daries [2]. The remaining classes are mapped to control role. At this step, we 
know the role of the classes in the implementation, but not the exact analysis 
objects they can be mapped to. 

To perform this last step, we analyze the sequence of involvement of the anal-
ysis objects in the use-case and compare it to the sequence of occurrences of 
the identified implementation classes in the execution trace. The first issue we 
encountered was that the involvement of analysis objects is never docu-
mented in association with the use-case themselves. Indeed, that’s the case 
despite the fact that the main application of analysis models is the verification 
of the use-case’s flow of events for business logic soundness [3]. We have 
then proposed to enhance the description of the use-case’s flow of interac-
tions in order to document such references. With this extension we must as-
sign the analysis objects to each interaction they are involved in. This en-
hanced model can be referred as Enhanced Use Case Flows (EUCF). In Fig. 
3 we present the UML model of such enhanced use-cases flows. 

 



 
 

 
Figure 3 Model of the Enhanced Use-Case Flow (EUCF) 

Once the EUCF is built, the sequence of involvement of the analysis objects 
during a use-case execution is straightforward. Fig. 4 presents a use-case 
with its main flow that is enhanced: to each of the steps (interaction) the in-
volved analysis objects are referenced. 

 
Figure 4 Use case and involved objects 

By comparing the sequence of analysis object involvements in the use-case 
flow with the sequence of implementation classes’ occurrences in the corres-
ponding execution trace, we can map the objects as showed in Fig. 5. 

 
Figure 5 Mapping implementation classes to analysis object based on sequence 

 



 
 

To strengthen the mapping between the classes of the analysis model and the 
implementation model, we also compare the associations in the analysis 
model to the ones in the implementation classes as showed in Fig. 6. 

 
Figure 6 Comparison of association 

Once the first results were obtained, it became clear that having a single con-
trol object per use-case as suggested by the Unified Process, was too coarse 
grained for us to end up with a useful mapping for control objects. We there-
fore tried out another extension, this time on the process itself, to allow for 
more than a single control object per use-case. Each of them would now bear 
fewer responsibilities. The final set of interacting control objects would then 
implement the global coordination of the use-case. Finally, the last step in our 
method is to recreate the high-level architecture of the software by clustering 
the implementation classes according to the use-case they implement and to 
the role they play. 

3-  SOFTWARE UNDERSTANDING JUSTIFICATION 
Software understanding theories have long been reported in the literature  
[4-9]. Generally the authors distinguish between top down (from the know-
ledge of the functional requirement down to the code) and bottom up (from the 
code to the function it implements). However, few theories have been pro-
posed for model-based program understanding that we could classify as mid-
dle-out. In our approach, the maintenance engineer would first rebuild the 
analysis model of the use-cases before trying to understand the code. This 
model represents the target of the understanding of the code, since the link 
between the functional requirements (use-cases) and the analysis model is 
straightforward. By so doing, we move the a-priori functional understanding of 
the system closer to the code (i.e. we “transfer” the functional understanding 
from the use-case model to the analysis model that is closer to the code). 
Therefore, the gap to fill to understand the code is smaller. This is exactly 
what our integrated environment is able to do. In fact, the mapping of the im-
plementation classes to the analysis objects creates a link between the use-
cases and the implementation classes. However, it is important to note that a 
single implementation class may be involved in the implementation of several 
analysis objects. Moreover, several classes may implement a single analysis 
object. In short, the mapping between analysis object and implementation 
classes is many to many. Often, we can associate some of the methods of the 
implementation classes to each analysis object they implement. It is therefore 

 



 
 

important to know which methods in the execution trace the mapping from one 
analysis object to an implementation class rests on. Finally, the environment is 
also required to let us freely navigate between all the models and information 
source and to be able to highlight the corresponding elements in all the mod-
els and information sources. 

4- AUTOMATING THE MAPPING 
In any reasonable size industrial system, the mapping between the analysis 
objects and the implementation classes cannot be done by hand because of 
the number of classes involved and the size of the execution trace. Therefore, 
to automate this mapping, we designed a production system where the pro-
duction rules implement the heuristics we developed when applying our me-
thodology by hand [4]. However, since the mappings inferred by the heuristics 
are probable but not certain, we had to complement the production system 
with a Truth Maintenance System TMS [10] to deal with the incertitude of the 
inferred facts. In short, a TMS can be seen as a graph whose nodes are the 
inferred facts and whose edges are the inference dependencies between the 
facts. When the certainty value of a given fact is modified, this value is propa-
gated to all the dependent facts in the graph to maintain the global coherence 
of the inferred facts. 

 
Figure 7 Inference engine to infer the mapping 

Since the production rules must process the use-case flow, the analysis mod-
el, the source code and the execution trace, we need an integrated environ-
ment where all these models are available and linked. This is summarized in 
Fig. 7. Because the mappings rest on the analysis of the execution trace i.e. 

 



 
 

on the sequence of method calls, we can trace for each successful mapping 
the methods that lead to it. In summary, our tool will record the links between: 

• The use-case; 

• The execution trace that is generated when executing one scenario from 
the use-case; 

• The analysis model corresponding to the use-case; 

• The implementation classes that correspond to the object of analysis 
model; 

• The methods in the implementation classes that lead to the mapping. 

To support our methodology, we need an integrated tool that is able to display 
all the models and information sources as well as record and highlight the 
links between all the corresponding elements. Interestingly enough, one of the 
most advanced software engineering tools on the market, RSA (Rational 
Software Architect) available from the leader in the implementation of the Uni-
fied Process: IBM® is not able to represent the traceability links between these 
models and information sources. For example the objects of the analysis 
model cannot be formally linked to the corresponding design model classes 
and the classes of the latter cannot be formally linked to the corresponding 
implementation classes. By formally we mean that no mechanism maintains 
the bidirectional traceability constraints between these model elements. In 
fact, RSA adheres to the MDA (Model Driven Architecture®) approach from the 
OMG®. Then, it is able to generate a given model from another model (nor-
mally the PSM from the PIM) by executing some transformation rule. But the 
generated models weakly refer to each other: we may know that model 1 has 
been generated from model 2 but the connection between the elements of 
each model is not recorded. However, this is exactly the kind of traceability we 
need to “understand” the software. 

5- REVERSE ANALYSIS ECLIPSE PLUG-IN 
Our tool, which is developed as a plug-in to the Eclipse platform1, has five 
main components: 

1) The extended file explorer; 

2) The extended file editor; 

3) The analysis model editor; 

4) The use-case editor; 

5) The model mapper that includes the production system and the TMS. 

Fig. 8 presents the integrated reverse engineering environment in the Eclipse 
 

 
1 Since our tool has been developed as an independent Eclipse plug-in, it could be loaded into IBM’s 

Rational Software Architect. 

 



 
 

framework. Of the above 5 components, only 4 are visible in the picture: the 
model mapper runs in the background and does not have a specific view. On 
the top right, one sees the analysis model editor. This tool is an open source 
plug-in that has been extended to include the analysis model stereotypes and 
the ability to broadcast the selected objects to the other views. We tried sev-
eral open source UML diagrams editor tool and we found the most suitable to 
be Violet [11]. The use-case editor is represented on the bottom. It has three 
subviews. On the left one it represents the analysis objects involved in the 
use-case. These are all the objects present in the analysis model on the top 
right. In the center we find the use-case flow editor. On the right we show the 
analysis objects associated to the selected interaction step in the use-case 
flow. The objects represented on the bottom right are the one associated to 
the 6th interaction step in the use-case flow. The column “stat” displays the 
number of analysis objects associated to each action step. To our knowledge, 
this is the only tool that leverages the UP analysis discipline by linking the 
analysis objects to the action steps of the use-case. 

 
Figure 8 The reverse engineering environment under Eclipse 

6- REVERSE ENGINEERING SCENARIO 
After having recovered the use-cases of the system, we redocument its visible 
architecture. In the case of Java programs, this can be done automatically 
through the use of a software engineering environment such as RSA. Then 
we instrument the source code of the system to be able to generate the ex-
ecution trace. The instrumented code is compiled and run according to scena-
rios corresponding to the use-cases. The generated execution trace is then 
recorded. Once this preliminary work is completed, we can start to analyze the 
system with our tool. First we select the source files of the system to analyze, 
through the file menu of the tool. Then, for each of the use-cases, we proceed 

 



 
 

as follows: 

1) We enter the flow of events of the use-case by using the use-case editor 
of the tool.  

2) We manually analyze the use-case and design its analysis model in the 
analysis model editor. 

3) We attach each of the analysis objects of the model to the corresponding 
action step of the use-case flow. This is done by picking one or more of 
the available objects listed on the left in the use-case editor. 

4) When this is done we can launch the object mapper. The latter then asks 
for the associated execution trace file to be used as input.  

5) After the mapping is completed, the result can be displayed as annota-
tions in the models and editors. 

After having executed the mapper, if one selects one analysis object in the list 
on the left of the use-case editor (see Fig. 8) then: 

1) The file explorer displays a little red dot to the bottom right of some of 
the file icon. These are the files containing the classes that are mapped 
to the selected analysis object. 

2) When we open one of these files, the editor highlights the signatures of 
all the method that are involved in the mapping. 

These represent the implementation classes that play the role corresponding 
to the selected analysis object. Similarly, the analysis object can be selected 
in the analysis model editor (top right), the resulting display will be the same. 
For example, in Fig. 8, we selected the boundary “Personnes”. This object is 
then identified in the analysis model editor (top right). In the navigator, the file 
VQPR005_FRM.java got a red dot. This means that this file contains a class 
that is mapped to the selected boundary object. When we open the file we can 
see highlighted all the methods that lead to the mapping.  In the file editor, 
based on his knowledge of the implementation, the user can change the se-
lection of the method signatures to complement the mapping done by the 
inference engine. The modified mapping will then be recorded by the system. 
For example, the user may know that some additional methods are involved in 
the implementation of a role of some class. This let the maintenance engineer 
work iteratively with the system when identifying the purpose of the implemen-
tation classes. 

7- MAPPING RESULTS 
To validate our approach, we must compare the mapping performed by hand 
with the mapping performed automatically with the help of our tool. In the dis-
cussion below, we will separately discuss the most interesting case:  the map-
ping of the boundary and the control objects. As for the entity objects, the 
mapping are more straightforward since we analyze database accesses. 
Therefore the mapping is always very close. 

 



 
 

7-1 RESULTS IN MAPPING BOUNDARY OBJECTS 
Since the set of rules that we implemented were inspired by a previous ma-
nual application of the methodology [12], we thought on comparing their re-
sults on the same problem instance. Table 1 shows the results obtained by 
both approaches; highlighted modules are those that were mapped differently. 
Our system was therefore able to correctly establish 81% of the manual map-
pings and at the same time 93% of the mappings automatically made were 
correct. In both cases, the ratio is in favor of the automatic mapping. 

 

TABLE 1 COMPARISON OF THE MANUAL AND AUTOMATIC MAPPINGS 
Boundary object Manual map Automatic map 

Create a new folder VQPRO005.FRM VQPRO005.FRM 
Context VQPRO005.FRM VQPRO005.FRM 

Persons 
VQPRO005.FRM 
Z_RGEN00.FRM 
VINDI001.FRM 

VQPRO005.FRM 

Address VQPRO005.FRM 
Z_DGEN01.FRM 

VQPRO005.FRM 
Z_DGEN01.FRM 

Address input VQPRO005.FRM 
Z_DGEN01.FRM 

VQPRO005.FRM 
Z_DGEN01.FRM 

Folder explorer VQPRO004.FRM VQPRO004.FRM 
Step management FMENUPOP.FRM FMENUPOP.FRM 

Evaluation VXTRT004.FRM VXTRT004.FRM 
Z_ATTENT.FRM 

Modalities VNINT001.FRM VNINT001.FRM 
Intervention decision VNINT001.FRM VNINT001.FRM 

Characteristics VNINT001.FRM 
Z_ATTENT.FRM VNINT001.FRM 

 

7-2 RESULTS IN MAPPING CONTROL OBJECTS 
In the initial work performed by hand, we stick to the UP heuristic to associate 
a single control object per use-case. Therefore the comparison with the auto-
matic match is difficult since, as presented above, we now allow for several 
control objects to be associated to a single use-case. Nevertheless, we can 
analyze the process and see if the results agree with what can be manually 
observed. The resulting mapping is detailed in Table 2. 

TABLE 2 LIST OF CONTROL OBJECT AND THE CLASSES THEY WERE MAPPED TO 
Class Analysis object Certainty 

X_SPREAD Control-01 0.53 
X_SPREAD Control-06 0.49 
Z_SERVIC Control-01 0.56 
Z_DGEN01.FRM Control-02 0.54 

The heuristic behind this mapping works on the interaction among classes 
that are already mapped to analysis objects [13]. As an example of such a 
heuristics, let us assume that classes A, B an C have been mapped to the 
entity and boundary objects around the control object (Fig. 9) We can then 
infer the mapping between C and that control object because of the relation-
ship between the objects in both models. Specifically, the black lines between 
the classes represent dynamic interactions: the thicker the line the greater the 

 



 
 

correlation between those classes during the analyzed execution. 

 
Figure 9 The structural match heuristic 

We present in Fig. 10 the results of the mapping summarized in Table 2. The 
graph on the top is a partial view of the analysis model of the use-case. The 
graph on the bottom is a view of the dynamic interaction among the classes 
as recovered from the execution trace associated to the use-case. We only 
presented the most important dependencies among the five classes already 
matched. Gray levels between the classes and the analysis objects in the 
figure correspond to the mapping in Table 2. 

The matching of the classes Z_SERVIC and X_SPREAD seems correct since 
both classes are associated with the classes implementing the boundary ob-
jects of the analysis diagram substructure. The matching of the class 
Z_DGEN01.FRM to a control object is an interesting case. It highlights some 
weak semantic coherence in the legacy program since this class has also 
been found to implement a boundary object in section 7-1. Since we keep 
track of the methods leading to each match, it is easy to differentiate between 
the different roles played by a single implementation class.  Then, we could 
selectively highlight the methods belonging to each role. In the future we could 
use this information to help with the refactoring of the implementation classes 
into single-role classes. 

 
Figure 10 Robustness diagram and corresponding implementation classes 

 



 
 

8- CONCLUSION AND FUTURE WORK 
In this paper we present the reverse-engineering tool we developed as a plug-
in to the eclipse environment. This plug-in implements our approach about 
legacy software understanding. The first step is to identify the classes that 
implement a given use-case. This is relatively easy since we can locate them 
in the execution trace associated to the use-case. But this is not enough since 
there might be dozens of classes involved with many responsibilities. We 
need to know the role of these classes in the implementation of the use-case. 
Since we can design an analysis model for each use-case, we have a way to 
represent the roles of these classes. Therefore, if we can map the analysis 
object to the implementation classes, we get the role of the latter in the im-
plementation. This is what our tool is able to do. 

However, since the implementation of a system can contain hundreds of 
classes and execution traces thousands if not millions of events, in general we 
cannot process this information by hand. Then we developed a mapping en-
gine that is based on AI technologies. Our tool has been developed in Java as 
an Eclipse plug-in. The experiments we have done so far on a medium size 
system (360 classes, 25’000 events in the trace) shows that the automatic 
matcher is able to get better results than the manual mapping. In fact its re-
sults are more precise than the ones we got by hand. This is because the 
automatic mapping program is more systematic and processes all the infor-
mation available in depth. For example, in this experiment, we also realized 
that we missed some mappings when processing the information by hand. 
Besides, our analyses with the tool also lead us to identify classes that played 
mixed roles. For example some classes played the role of a boundary and an 
entity object at the same time. This is usually the symptom of a bad design. 
Therefore, our tool could also be used to assess the quality of a design. 

Much of what has been achieved with our system is possible because of the 
re-documentation step at the beginning of the methodology, and especially the 
analysis models. In fact, the latter is most of the times considered only as a 
help to the forward development process and, sometimes, to the (partial) code 
generation automation. Our results have highlighted their invaluable relevance 
to the reverse-engineering process and the automation of program under-
standing. We hope to encourage development teams to create analysis mod-
els since, beyond being of a great help in the initial development process, they 
will keep their usefulness over longer maintenance periods since they are 
much less volatile than design models. 

As a next step in our research, we will extend our method and tool to let us 
compare the roles of the classes among all the use-cases of a software sys-
tem. As a final remark, it is worth mentioning that our tool cannot “explain” (i.e. 
assign roles to) all the classes in the legacy system. In fact, some of the 
classes that represent exceptional situations or alternative execution paths 
cannot easily be identified since they might not be involved in the scenarios 
played by the users. Therefore, another step in our research will be to com-
plement the tool with static analysis techniques to uncover the code that could 
potentially be executed in exceptional cases. Finally, we will use domain on-
tologies to enhance the dynamic search for domain entities in the programs. 

 



 
 

9- RELATED WORK 
Domain models have long been acknowledged as a good way to improve 
reverse engineering and program understanding [7][14]. The authors usually 
propose a tool to support their approaches. The pioneering work can certainly 
be traced back to the famous RIGI system of Muller et al [15] that lead to the 
recent SHriMP & Creole systems [16]. Besides, DeBaud and Rugaber [17] 
and DeBaud [18] used an executable domain model in the form of an object-
oriented framework as the target of the understanding task. This framework 
represents the concept of the domain and helps the search for the corres-
ponding concept in the programs. 

In the work of Gold [19], a knowledge base of programming concepts is used 
to help with the understanding problem. But these concepts are at a much 
lower level than the analysis model that we use. This approach is supported 
by the HB-CA tool. Rugaber and Stirewalt used a formal specification using an 
algebraic specification language to model both the domain and the program 
being reverse-engineered [7]. 

In the dynamic analysis approach to software understanding, many tools have 
been developed such as the work of Benett at al [20], Hamou-Lahdj [21], 
Zeidman et al [22]. There, the authors do not build higher conceptual models 
of the legacy system. Rather, the main concern is to cope with the quantity of 
information to display, to allow the maintenance engineer “understand” the 
involvement of the classes in the implementation of the system. Other, such 
as Quante J. et al. [23] or Smit M. et al. [24] try to recover formal protocols 
about program behavior, that could later be transformed into something very 
close to a use-case description. Even though our approach works the other 
way around, the lessons learned therein could help extending our methodolo-
gy to discover new use-cases that can’t be foreseen by the users, or very 
particular execution paths in known use-cases. 

In what concerns the reverse mapping of implementation classes to the anal-
ysis objects, we couldn’t find any approaches with whom to compare our 
work. This might be a consequence of the analysis model being only very 
seldom referenced in the reverse engineering literature. 

 

REFERENCES 
[1] Ph. Dugerdil, “A Reengineering Process based on the Unified Process,” 

Proc. IEEE Int. Conf. on Software Maintenance, 2006. 

[2] Ph. Dugerdil, “Using RUP to Reverse Engineer a Legacy System,” The 
Rational Edge, September 2006. 

[3] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software Development 
Process. Addison-Wesley Professional, 1999. 

[4] J. Belmonte, Ph. Dugerdil, “Automating a domain model aware reengi-
neering methodology,” Proc. Twentieth Int. Conf. on Software Engineering 
and Knowledge Engineering,  2008. 

 



 
 

[5] T.J. Biggerstaff, B.G. Mitbander, D.E. Webster, “Program Understanding 
and the Concept Assignment Problem,” Communications of the ACM, 
37(5), 1994. 

[6] M. O’Brien, “Software Comprehension – A Review & Research Direction,” 
Technical Report UL-CSIS-03-3, University of Limerick, Nov. 2003. 

[7] S. Rugaber, K. Stirewalt, “Model-Driven Reverse Engineering,” IEEE 
Software, July/August 2004. 

[8] M.-A. Storey, “Theories, Methods and Tools in Program Comprehension: 
Past, Present and Future,” Proc of the IEEE Int. Workshop on Program 
Comprehension, 2005. 

[9] S.R. Tilley, D.B. Smith, S. Paul, “Towards a framework for program under-
standing,” Proc. IEEE Int. Workshop on Program Comprehension, 1996. 

[10] J. Doyle, “A Truth Maintenance System,” Artificial Intelligence, vol. 12, pp. 
231-272, 1979. 

[11] C.S. Horstmann, A. de Pellegrin, “Violet,” Violet, 
http://sourceforge.net/projects/violet/. 2008. 

[12] S. Jossi, “Reverse-engineering du système d’information,” Rapport de 
travail de Diplôme, Haute École de Gestion de Genève (HEG-GE), 2006. 

[13] J. Belmonte, “Automatisation d’une méthode de Reverse Engineering 
basée sur un système de production,” Master’s degree research final re-
port (University of Geneva – HEG-GE), 2008. 

[14] J. Sayyad-Shirabad, T.C. Lethbridge, S. Lyon, “A Little Knowledge Can Go 
a Long Way Toward Program Understanding,” Proc. IEEE Workshop on 
Program Comprehension, 1997. 

[15] H.A. Müller, M.A. Orgun, S. Tilley, J.S. Uhl, “A Reverse Engineering Ap-
proach To Subsystem Structure Identification,” Software Maintenance: 
Research and Practice 5(4), John Wiley & Sons, 1993. 

[16] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu, M. Musen, 
“SHriMP views: an interactive environment for information visualization 
and navigation,” Proc. of the IEEE Int. Conf. on Human Factors in Com-
puter Systems (CHI), 2002. 

[17] J.-M. DeBaud, S. Rugaber, “Software Reengineering method using Do-
main Models,” Proc. IEEE Int. Conf. on Software Maintenance, 1995. 

[18] J.-M. DeBaud, “Lessons from a Domain-Based Renegineering Effort,” 
Proc. IEEE Working Conf. on Reverse Engineering, 1996. 

[19] N. Gold, “Hypothesis-Based Concept Assignment to Support Software 
Maintenance,” PhD Thesis, Univ. of Durham, UK, 2000. 

[20] C. Bennett, D. Myers, M.-A. Storey, D. German, “Working with ‘Monster’ 
Traces: Building a Scalable, Usable Sequence Viewer,” Proc. Workshop 
on Program Comprehension through Dynamic Analysis, 2007. 
 

 



 
 

 

[21] A. Hamou-Lhadj, “Towards a Multi-View Trace Visualization Environment,” 
Proc. of the 20th IEEE Canadian Conf. on Electrical and Computer Engi-
neering, 2007. 

[22] A. Zaidman, T. Calders, S. Demeyer, J. Paredaens, “Applying Webmining 
Techniques to Execution Traces to Support the Program Comprehension 
Process,” Proc. of the IEEE European Conf. on Software Maintenance 
and Reengineering, 2005. 

[23] J. Quante, R. Koschke, “Dynamic Protocol Recovery,” Proc. 14th Working 
Conf. on Reverse Engineering, 2007. 

[24] M. Smit, E. Stroulia, K. Wong, “Use Case Redocumentation from GUI 
Event Traces,” Proc. 12th European Conf. on Software Maintenance and 
Reengineering, 2008. 


	1- INTRODUCTION 
	2-  SUMMARY OF OUR METHODOLOGY
	3-  SOFTWARE UNDERSTANDING JUSTIFICATION
	4- AUTOMATING THE MAPPING
	5- REVERSE ANALYSIS ECLIPSE PLUG-IN
	6- REVERSE ENGINEERING SCENARIO
	7- MAPPING RESULTS
	7-1 RESULTS IN MAPPING BOUNDARY OBJECTS
	7-2 RESULTS IN MAPPING CONTROL OBJECTS

	8- CONCLUSION AND FUTURE WORK
	9- RELATED WORK
	REFERENCES



