Techniques originating from the Internet of Things (IoT) and Cyber-Physical Systems (CPS) areas have extensively been applied to develop intelligent and pervasive systems such as assistive monitoring, feedback in telerehabilitation, energy management, and negotiation. Those application do-mains particularly include three major characteristics: intel-ligence, autonomy and real-time behavior. Multi-Agent Sys-tems (MAS) are one of the major technological paradigms that are used to implement such systems. However, they mainly address the first two characteristics, but miss to com-ply with strict timing constraints. The timing compliance is crucial for safety-critical applications operating in domains such as healthcare and automotive. The main reasons for this lack of real-time satisfiability in MAS originate from cur-rent theories, standards, and technological implementations. In particular, internal agent schedulers, communication mid-dlewares, and negotiation protocols have been identified as co-factors inhibiting the real-time compliance. This paper provides an analysis of such MAS components and pave the road for achieving the MAS compliance with strict timing constraints, thus fostering reliability and predictability.