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Abstract—Due to their rapid evolution, mobile devices demand
for more dynamic and flexible networking services. A major
challenges of future mobile networks is the increased mobile
traffic. With the recent upcoming technologies of network pro-
grammability like Software-Defined Network (SDN), it may be
integrated to create a new communication platform for Internet
of Things (IoT). In this work, we present how to determine the
effectiveness of an approach to build a new secured network
architecture based on SDN and clusters. Our proposed scheme
is a starting point for some experiments providing perspective
over SDN deployment in a cluster environment. With this aim
in mind, we suggest a routing protocol that manages routing
tasks over Cluster-SDN. By using network virtualization and
OpenFlow technologies to generate virtual nodes, we simulate
a prototype system controlled by SDN. With our testbed, we
are able to manage 500 things. We can analyze every OpenFlow
messages and we have discovered that with a particular flow, the
things can exchange information unlike the routing principle.

Index Terms—SDN, Openflow, Cluster, IoT, Ad-hoc.

I. INTRODUCTION

Nowadays, network technology allows mobile devices and

hence users to be always connected at any time in any

place. With the explosion of connected devices, services and

access technologies, mobile networks are constantly increasing

coverage and the needs to support a wide range of high data

demand has become an issue to be solved. Currently, there

are more devices connected to the internet than humans in the

world [1], and these generate an enormous amount of traffic

(i.e., voice, video, data, etc.). All of these factors increase

considerably the cost pressure on mobile network operators,

due to the emerging mobile devices and application [2]. A

potential solution to reduce Capital Expenditure (CAPEX) and

Operational Expenditures(OPEX) costs [3] is to use network

sharing, in which mobile network operators share the same

network infrastructure.

One of the greatest challenges concerns the security of

devices, since it will include every objects or devices able

to connect to wireless or wired networks. Devices such as in

the military, industries, simple home sensors, medical devices,

cars, airplanes and other devices, are some examples wherein

security threats can pose risks to human life.

Due to absence of explicit quality-of-service (QoS) control

mechanisms for mobile devices, quality-of-experience (QoE)

can be guaranteed only locating servers closely to user termi-

nals. In this context, with the latest Internet evolution, billions

of devices will be connected to other devices. However, many

of these devices will build many ad-hoc networks in which

there are no security system to control packets exchanged, no

simple solution exist to control the packet exchanges between

nodes on the network. If one object is infected by a malicious

applications, it may compromise other connected devices.

Over the past few years, the research community has fo-

cused on the new networking paradigm, the Software Defined

Networking (SDN). The SDN offers many opportunities to

protect the network in a more efficient and flexible way [4].

In SDN architectures, network devices do not make forwarding

decisions. Instead of that, network devices communicate with

a special node, called the SDN controller, in order to provides

them with the appropriate forwarding decisions. To communi-

cate with the Controller, the network devices can use different

protocols. The most commonly used protocol for communica-

tion between the SDN controller and network devices is Open-

Flow [5]. OpenFlow defines control messages which enable

the SDN controller to establish a secure connection with the

network devices, read their current state, and install forwarding

instructions. Furthermore, OpenFlow enables fast reaction to

security threats, granular traffic filtering, and dynamic security

policy deployment. The flow rules (forwarding decisions) can

be dynamically modified in order to adapt to different network

changes. Moreover, OpenFlow was initially developed to run

experimental protocols in production networks. Afterwards, it

was widely deployed in campus networks, data centers, etc.

Current IoT devices are vulnerable to a range of attacks, one

of the most important is based upon the plain text meta-data.

The benefits of employing SDN techniques in IoT environment

can make the IoT much simpler to protect, manage and

reconfigure. We provide an overview of how the IoT devices

may be handle in ad-hoc networks and cluster scenarios by

the SDN paradigm.

In this article, we present a model to control and secure

information exchanges for the ad-hoc devices, based on the

SDN architectures. Firstly, the proposed model was designed

to establish and secure both ad-hoc and mobile networks,

in order to include objects such as: sensors, tablets, smart

phone, etc. Secondly, we extended the proposed architecture,

and explain how flows can be routed between controllers. We

demonstrate the implementation of our prototype system and

evaluation results. The major contributions of this paper are:
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• A novel exploration of the SDN architecture to intercon-

nect ad-hoc and mobile users applications.

• An introduction to the concept of the SDNCH cluster

head to distribute routing functions and security rules to

each edge controller.

• An introduction to an implementation model with an

Opendaylight controller to manage and monitor traffic

from the end-users in ad-hoc networks.

II. SDN CLUSTER ARCHITECTURE FOR AD-HOC

NETWORK

The Open Daylight Controller [25] uses a Model Driven-

Service Abstraction Layer (MD-SAL) clustering solution,

providing fault-tolerant decentralized peer-to-peer controllers

in a cluster deployment. There is an increase of network

performance with multiple controllers, because each controller

has a partial view of the network and they have to collaborate

and exchange information with each other. This cluster model

provides a high-level of fault tolerance: active/active or ac-

tive/passive deployment modes. The possible operation modes

of the controller in cluster deployment is explained below:

• In active/active mode, should the configured primary fail,

should there be partial network partition of the primary

controller’s links or should there be full network partition

(if monitoring is enabled), the passive secondary will be

promoted to the active primary controller role as part of

the failover. During a full network partition, both segment

of the network may be independently managed.

• In active/passive mode, in the event of the configured

primary’s failure or partial network partition or failure

of the primary controller’s links, the passive secondary

will be promoted to the active primary controller role

as part of the failover. In the event of a full network

partition (if monitoring is enabled) the passive secondary

will not be promoted to the primary role but will instead

suspend core controller functionality. The switches on the

secondary’s segment of the network will go unmanaged.

Having multiple controllers [25] provides trustworthiness

and fault tolerance. If one of the controllers goes down,

another SDN controller can take control to avoid system

failure. Based on the approach of active/active, we suggest

multiple SDN controller architecture for Ad-Hoc Networks.

An Ad-Hoc SDN-based architecture involves:

• The legacy interfaces: the physical layer;

• The programmable layer: SDN-compatible virtual switch

and an SDN controller operating systems;

• Their applications: the OS layer.

The proposed legacy interfaces are connected to a virtual

switch, and this switch is controlled by an SDN controller,

integrated on the node. Since all controllers of each node

operate in active/active mode, they will have no need to

be concerned about nodes liability for misbehaving users

connecting through them [24]. Ad-Hoc users will connect with

other nodes through their embedded SDN-compatible switch.

At the same time, the SDN controller, in active/active mode,

can enhance the security and connectivity between the nodes.

Many solutions have been proposed by different authors

[10], [11], [12] in the SDN and Wireless Sensors Network

(WSN) field. To the best of our knowledge, there is no work

about WSN in the SDN context with cluster architecture.

In this paper we propose clustered software defined sensor

networks. Clustering consists in organizing the network into

groups of nodes, in a hierarchical structure. Each cluster

is managed by a cluster head. To develop this architecture

we place the SDN controller in the cluster head. Different

clustering solutions have been proposed in the literature. Some

interesting solutions introduce building 1-hop clusters [14],

[15], [16], [17]. In those solutions, each node is at a most a

distance of 1 from the cluster head, and the maximum diameter

of each cluster is 2. Other solutions build k-hop clusters [18],

[19], [22]. In k-hop cluster solutions, each node can be located

at a distance at most of k from the cluster head and the

maximum diameter of clusters is 2k.

III. SDN FOR MOBILE NETWORKS

In this section, we introduce the concept of SDCSN (Soft-

ware Defined Clustered Sensor Networks) and explain the dif-

ferent technologies for their realization. In traditional network

architectures, the control and data plane of network devices

are compactly coupled. The control plane provides functions

to build a forwarding/routing decisions to send frames data

link layer (L2) and packets network Layer (L3). The data

plane decides what to do with frame or packets, by carrying

out the commands of the control plane through forwarding

tables, routing tables, ARP tables, amongst others. With this

principle, the network nodes must compute the path to the

destination after exchanging routing information. As a result,

any process requires many successive operations compared to

the SDN architecture where the routing decisions are made

only by the controller. Network devices will only handle

packets based on the flow table entries received from the

controller via the OpenFlow protocol. With this in view, the

packets can be matched against fourteen required header match

fields which provide a higher level of granularity than the

traditional forwarding technique.

Today, the network protocols and equipment are not de-

signed to support high levels of scalability or high amounts of

traffic and mobility. Dong et al. [26] have proposed a rule

management in SDN-enabled mobile access networks. The

authors set the ternary content addressable memory (TCAM),

to add a caching algorithm which manages the forwarding

rules cache. This algorithm for SDN-enabled mobile access

networks take into consideration user mobility when an user

moves from one base station to another. The proposal is to

have an increase caching algorithm for hit ratio than traditional

algorithms. Besides, there exists some papers [29], [30] of

software-defined approach for mobile networks environment,

enabling mobility management via SDN mechanisms. These

papers had the focus of determining the integration of SDN

and mobile nodes. Our system proposes not only to have an

SDN mobile nodes integration, but also to have a secure cluster

SDN-based architecture for mobile and Ad-hoc networks.
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Fig. 1. Data Communication Software-defined wireless sensor networks

If our approach is for sensor networks, we assume that each

device, with low resources, can be associated to one neighbor

node which has the SDN capability.

The WSN may contain hundreds or thousands of sensor

nodes. Normally, a large network cannot operate efficiently

without some organized structure. For this reason, we suggest

to cluster the network and assume that each cluster head is a

controller. Each node can be in one of the following states [7],

[9], [22]: Simple Node (SN), Gateway Node (GN) or Cluster

Head (CH). In our approach, Cluster Heads (CH) in SDCSN

architecture are called SDN Cluster Heads (SDNCH). Each

cluster is called an SDN Domain.

In each SDN domain, the SDNCH [10] is in charge of

managing the operation of the sensor nodes (Fig. 1). With

this clustering approach the collected information about the

environment is processed in the domain by nodes and will

be routed to the SDNCH. Moreover, the controller is the

most powerful node on the cluster. By using the active/active

interaction between SDNCH, it will have a full access to

the switch and the same flow rules. Based on this approach,

we can set configuration parameters, store data and aggregate

the collected information in the domain. We can also send

information to the sink or to some other SDNCH. If a SDNCH

is disabled, the entire domain becomes inaccessible temporar-

ily and based on self-stabilizing clustering for WSNs [22] a

new SDNCH can be selected. Each sensor node exchanges

information with its neighbors or 2-hop neighbors. Under

the assumption of graph connectivity, information generated

at one sensor can reach the SDNCH by routing it through

the network. The gateway is engaged in aggregating and

transmitting the data from entire sensor node domains to

the other domains. Thus, when a gateway goes down, the

communication between domains will be disconnected and the

associated sensors to SDNCH are isolated.

The SDNCH plays the role of coordinator in every domain.

It makes a decision, modifies the flow tables of the correspond-

ing switches by sending messages to each one of them. The

controller uses a multipath-routing between SDNCHs. This

process allows all of the devices in the domain to address the

network load to be balanced among several alternate paths.

Consequently the chances of congestion are reduced. Every

SDNCH acts as a temporary base station within its domain,

and it is capable of communicating with other SDNCHs. A

Domain is therefore composed of a SDNCH, gateways and

sensor nodes.

• The SDN Cluster Head (SDNCH) is the coordinator of

the domain.

• Gateway is a bridge node between sensor nodes and

SDNCH.

• Sensor Nodes (SN) are groups of nodes in a domain,

together with their gateway nodes.

In the base station architecture proposed by Gante et al. [11],

an SDN controller is combined with WSN and the controller

needs to know the topology of the entire network. SDN has a

higher potential to develop forwarding decisions of SN based

on the rules set generated by the controller, thus permitting

a better cooperation among SDNCH and SNs [6], [11], [12],

[13].

Certainly, QoS could be an efficient way for sensor nodes to

function in this architecture using the concept of meters tables.

This consists of meter entries, defining per-flow meters [21].

The per-flow meters permit Openflow to implement different

QoS operations, such as rate-limiting, and can be combined

with per-port queues to implement complex QoS frameworks

(ex. DiffServ). Moreover, SDN controllers [11] can reduce

energy consumption by different sensor nodes, making the

best routing decision and injecting these in the nodes flow

tables. With the network management controlled by the SDN,

the routing decisions and policies have low convergence time

in comparison with routing protocols.

To deploy this architecture, SDNCH not only has to manage

the domain network. It also has to monitor and efficiently

secure the domain to prevent outside and inside attacks. The

emergence of the next generation Internet requires high level
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Fig. 2. Distributed Routing Cluster for SDN

security. Many works have studied network security using the

SDN controller or installing security policies into OpenFlow

switches, either by implementing firewalls, IPS, or IDS [8],

[20], [23]. Our purpose is to achieve maximum synchroniza-

tion of SDNCH in a security perimeter enabling granular

control over network access and continuous monitoring of

SNs. Moreover, this approach acts as a security guard on the

edge of the domain to ensure the domain safety. For example,

if the service is forest fire detection, SNs can identify threats

by smoke, ultraviolet and temperature sensors and achieve

optimal transmission to the SDNCH.

Therefore, the proposed cluster can not solve problems

with routing processes in distributed SDN-architecture. But

by combining routing protocols and SDN, a new effective

controller-routing method is proposed in the next section.

IV. ROUTING PROTOCOL FOR DISTRIBUTED CLUSTER

SDN

For the clustering architecture, we propose an SDN con-

troller in each cluster. This controller manages and controls

all traffic of nodes connected only in its intra-domain. In this

environment, the controllers communicate with others via an

inter-domain link. Previous work [27], [28] propose hierar-

chical architecture for SDN to optimize and distribute control

functions. We propose not to distribute control functions on

multiple controllers but to distribute routing functions on each

SDNCH.

The deployment of this architecture is based on the per-

spective of an Opendaylight MD-SAL Akka-based clustering

solution. To select an appropriate path between nodes con-

nected on the cluster, the process of routing flows has been

indicated in (Fig. 2).

The main process flow is as follows:

1) Node A is joined to node B, node A sends a request to

the SDNCH1;

2) SDNCH1 sends the same request to the neighbor con-

trollers connected on the network;

3) The ones which know node B send a replies to SD-

NCH1, for this example SDNCH2;

4) The flow may now be installed on the SDNCH1 and

node A can use the communication path via SDNCH1

for taking out of cluster the packet;

5) The routing information between SDNCH1 and SD-

NCH2 being set up on the inter-domain path;

6) The messages will be exchanged between both nodes.

We focus in the proposal of a new routing protocol for a

distributed cluster SDN, which can be used to support SDN-

based inter-domain collaboration. The goal is to allow an

automated routing setup of inter-domain clusters. As a result, a

node can interact with other nodes located in different clusters

through an inter-cluster routing protocol.

V. EXPERIMENTS
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Fig. 3. Openflow ARP Request

We implemented an Opendaylight SDN controller [25]

using OpenFlow 1.3 protocol. According to the OpenFlow

protocol, an OpenFlow switch forwards a packet to the con-

troller if it does or does not have a matching flow rule for

that packet. When host A wants to send an IP packet over

Ethernet to host B by IP address, it needs an ARP reply from

B. When a new flow from host A arrives at an OpenFlow

switch, the switch forwards the packet to the controller SDN.

The controller plays the role of ARP proxy. If there is not
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Fig. 4. Network design of the mobile devices based SDN testbed

match with the flow entry installed, the packet will be rejected.

Otherwise, an ARP request is allowed to pass toward host B.

Upon receiving the ARP reply, the routing in the controller

will send the flow to the switch connected to the source host

and the switch connected to the destination host. Once, the

link is established, a shortest route will be set for the switch.

In this way, the switch is in charge of routing the packets

between Host A and Host B (Fig. 3).

The implemented testbed in this paper includes a virtualized

testing environment combined with vmware vsphere, qemu

system, Tinycore, software-based Open vSwitch (OVS) and

Opendaylight controller. The experimental platform was de-

veloped based on SDN and that enabled users easily to design

network topology via web applications. The framework of the

testbed would then allocate resources to the experiment, which

is able to create routes between nodes, monitor requests sent

to the controller and also decide policies delivered to each

device. Our approach on the testbed provides an environment

for mobile and ad-hoc network deployment. It allows nodes

to be connected with others via one SDN-compatible OVS

switch and at the same time this switch is controlled by an

SDN controller.

For the L2/L3 forwarding decisions, the SDN controller

knows the topology and also the devices attached to the

topology as well as their identities IP/MAC addresses. Then,

programming the switches via an open API, the OpenFlow

controller may manage and constantly the Openflow network

update upon changes. In L2, the OVS acts as a regular layer-2

learning switch, it automatically creates a learning table based

on the source MAC address of incoming frame and places

it on an incoming port then either forwards the frame to the

appropriate output port destination.

To build a route L3 the forwarding operations at flow or

packet level are therefore processed by the controller pushing

rules into hardware devices calling the ovs-ofctl add-flow

command as well as ARP resolution between hosts and edge

switches. If the switch receives a packet that does not match

any entry in the flow table, the Openflow switch forwards the

packet to the controller by an ARP request. When such request

is received by the controller, it will be ignored because the

controller does not know the NextHop IP address needed to

handle all traffic forwarded to an another subnet. To configure

the OVSs to learn the NextHop, an IP addresses is assigned to

them. The packets routed will be sent out via the OVS local

port to establish the connection between all nodes.

As shown in Fig. 4 we have built a testbed to experiment

our presented protocol and it represents a cluster. We have vir-

tualized OpenFlow compatible switchs (OpenVSwitch version

2.5.0) and small Linux (TinyCore with 48Mo of RAM). To

evaluate the performance of Openflow, the experimental sce-

nario deployed on the SDN testbed consists of Opendaylight

Helium-SR4 and five virtual machines (VM) connected to the

same network. The PC running the controller uses Ubuntu

14.04 operating system and was provided with 2 virtual CPUs

and 16GB of RAM. Each VM had 8 virtual CPU and 16GB

of RAM, using the Debian 8.3 image with OVS pre-installed.

We use KVM for machine virtualization over the VMs, to

run TinyCore Linux 3.16.6 with 48MB of RAM. From this

testbed, we will be able to experiment our protocol with more

than 500 devices, in a first attempt. Each used devices is a

TinyCore Linux system.

VI. CONCLUSIONS

In this paper, we have proposed a cluster management sys-

tem based on OpenFlow. The system manages communication

between clusters by an SDN cluster head managed in an SDN

controller. We have also built a prototype system to emulate a

real Openflow network. Experiments show that our solution

enables the control of physical/virtual networks, topology,

traffic, flow table, and services in an SDN controlled network.

For future work, there are many directions that we intend to

explore. Our next set of experiments is in progress, wherein

we are working to set up a routing cluster protocol dynamic

over SDN. This work shows promise for achieving one of

the goals of software defined networking which is to provide
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better routing paths for devices in cluster scenarios. We wish

to explore the distributed management of our SDN-based IoT

testbed and also carry out performance evaluation in terms of

transmission delay, processing workload, the management of

massive amounts of topological information and the scalability

of the control plane.
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