
Haute école de gestion de Genève
CRAG - Centre de Recherche Appliquée en Gestion
Cahier de recherche

© CRAG – Haute Ecole de Gestion de Genève

Making Sense of Unstructured Memory Dumps
from Cell Phones

David Billard, Rolf Hauri

 Cahier : N° HES-SO/HEG-GE/C -- 09/2/1 -- CH

2009

© CRAG – Haute Ecole de Gestion de Genève

Making Sense of Unstructured Memory Dumps from Cell Phones

David Billard
Rolf Hauri

Cahier de recherche

Avril 2009

Summary
This paper presents an alternative to traditional file carving, targeted to cell phone forensics. The
proposed algorithm processes the cell phone memory dump thanks to a previous partial knowledge of
the content of the regular files present in the memory dump. The memory dump is decomposed into
elementary parts, each part classified according to the file type it is supposed to belong to, and finally
ordered in a sequence representing the recovered file. The sequence is then transformed into a real
file. This paper presents the first part of the algorithm (model and implementation) and does not cover
the reordering of clusters nor the export of the recovered file. A reference to a basic open source
software using this technology is provided.

Keywords
Forensics, memory dumps, file carving, cell phone.

Making Sense of Unstructured Memory Dumps from Cell Phones

David Billard, Rolf Hauri
University of Applied Sciences of Western Switzerland in Geneva

David.Billard@hesge.ch, Rolf.Hauri@hesge.ch

Abstract

This paper presents an alternative to traditional
file carving, targeted to cell phone forensics.
The proposed algorithm processes the cell phone
memory dump thanks to a previous partial
knowledge of the content of the regular files
present in the memory dump. The memory
dump is decomposed into elementary parts, each
part classified according to the file type it is
supposed to belong to, and finally ordered in a
sequence representing the recovered file. The
sequence is then transformed into a real file. This
paper presents the first part of the algorithm
(model and implementation) and does not cover
the reordering of clusters nor the export of the
recovered file. A reference to a basic open source
software using this technology is provided.

Keywords: Forensics, memory dumps, file
carving, cell phone.

1 Introduction

One of the goals of the digital forensic research
community is to design methods and tools for ex-
tracting data from any kind of digital devices.

When undertaking a real investigation of a cell
phone, forensic practitioners often use a combina-
tion of two approaches:

1. a logical extraction of all files present on the
device;

2. a physical extraction of the memory device.

The first approach is done by using the cell phone
manufacturer protocol to retrieve the regular files

(not deleted) from the cell phone. This approach
has many drawbacks since it does not preserve in a
forensically sound way the integrity of the device,
but it is sometimes the only approach done by a
police officer.

The second approach is used by well equipped
laboratories, with highly skilled engineers. It con-
sists in desoldering the flash memory chip from
the device and in reading its content via ad-hoc
hardware. The reader can refer to [BdJK+07] and
[Bre06] for a better understanding of the whole
process. After the physical extraction is done,
a long and painful process of understanding the
structure of the file system begins. As a matter
of fact, cell phones, and now netbooks with SSD,
rely intensively on flash memory. Unfortunately
for the forensic processing, due to the flash mem-
ory controller, the memory clusters are no longer
stored in a contiguous manner and are dissemi-
nated on the whole memory. In addition, extra
memory blocks, which are not part of the current
state of the file system, are present in the memory
dump[BdJK+07].

For that reason, the tedious analysis of the file
system structure has for main objective a proper
mapping of memory blocks into clusters. For the
same reason, the main advantage of desoldering
is to get a complete memory extraction, includ-
ing the discarded memory blocks, and additional
information concerning the usage of the blocks.

However, desoldering has severe drawbacks:

• it is an expensive technology (desoldering
skills, dedicated hardware);

• it might change the state of the flash memory
content if not properly done (overheating, for
instance);

• it imposes the need to understand the file
system structure and to write software to re-
trieve regular (non erased) logical files. This
process may generate problems when the file
system structure is unkown or hard to decode
in a short time frame.

Once this process of desoldering, dumping the
memory and understanding the file system struc-
ture is completed, the examiner has several data
containers to consider:

• the set of logical files, extracted by using the
file system structure;

• some hints of previous logical files that have
been deleted, extracted by finding digital
remnants inside the file system structure, for
instance a directory entry flagged as deleted;

• the extra memory blocks that may contain
information;

• the unallocated space where file carving can
be experimented.

We claim that this result, achieved at great costs
and skills, is not so different from the result ob-
tained by using a logical dump of the cell phone
flash memory combined with a logical extraction
of all files present on the device.

The logical memory dump is an alternative to
desoldering. It can be achieved by using flash-
boxes or dedicated software. Unfortunately, by
using logical memory dumps, the examiner fails
to retrieve the extra memory blocks, where some
evidence might be stored.

If we consider this dual approach (logical dump
of memory and logical extraction of regular files),
there is no more need to reconstruct the file system
structure. As a matter of fact, the examiner has
enough data containers to consider:

• the set of logical files, extracted by using the
logical extraction;

• the unallocated space where file carving can
be experimented.

However, he does not have:

1. hints of previous logical files that have been
deleted, extracted by finding digital remnants
inside the file system structure, such as a di-
rectory entry marked as deleted, for example;

2. the extra memory blocks that may contain
information.

The first point is a minor problem, except for
dates, length and filename that could be stored
in a deleted file entry. As a matter of fact, and
at best, only the first cluster of a file can be re-
trieved, the other clusters being scattered around
in the flash memory with few probability of being
contiguous. Therefore this information does not
give an important leverage on retrieving deleted
files.

The second point is more problematic, and there-
fore a choice must be operated between using
desoldering for extracting all the memory blocks
where evidence can be stored, which is very costly,
and extracting only the available memory blocks
(via the controller), thus missing some blocks, but
at a much lesser cost. This issue is particularly im-
portant in civil law countries, where the financial
cost of a criminal investigation is almost always
supported by the court of law.

After all the extractions have been done, no
deleted file has been retrieved yet. This step will
be done by analysing the unallocated space of the
memory, which has no structure. Forensic practi-
tioners often face the problem of extracting infor-
mation from unstructured memory dumps: mem-
ory is then viewed only as a list of clusters.

Many tools, known as file carvers, try to re-
construct files by parsing the dump and find-
ing file headers and footers, in the hope that
the file content will be physically stored in con-
tiguous clusters, from the header until the footer
[Car06, Car05]. Unfortunately, due to the par-
ticular properties of flash memory at work in cell
phones, this assumption does not hold and leads
to bad results.

A major attempt in redesigning file carving can
be found in [Coh07]. We use some results from
this paper, in particular we suppose the modulo
rule to be enforced, which means that files begin
on sector boundaries and fragmentation can only
occur on sector boundaries. We also propose a

2

use of some carving techniques from [Coh07] and
[Gar07] in sections 5.3 and 5.4.

Our paper proposes an alternative to these tools
based on previous partial knowledge of the content
of regular files present in the memory dump. This
technology still has many limitations when applied
to disk memory dumps but shows some efficiency
when applied to cell phones or digital cameras.

This paper focuses on the first part of the algo-
rithm that strips the memory dump from useless
clusters, organizes the remaining clusters by file
types and provides recovered file skeletons. The
second part of the algorithm, that reorders the
clusters and exports the retrieved files is not cov-
ered in this paper. However, the first part of the
algorithm gives some interesting results and we
provide a basic open source software using this
technology.

The paper is structured as follows. We present
in section 2 the overall process needed to recover
erased files, then we introduce our formal model
and some definitions in section 3. Section 4 dis-
cusses some alternative choices in the model. In
section 5 we present an experimental implemen-
tation of the formal model, using C language and
databases.

2 Workflow

The final purpose of our algorithm is to correctly
identify the deleted files or their fragments.

The first step of the workflow is to strip the mem-
ory dump from all the regular files. As a matter of
fact, the regular files are known and can be studied
at leisure. Besides, leaving these files in the dump
would be a pollution for the future steps of the al-
gorithm. The regular files represent the allocated
space of the dump. We call this step the calcu-
lation of unallocated space. One may notice that
the calculated unallocated space is also stripped
of copies of parts of regular files that might be
present in the real unallocated space, as a result
of the system behavior (see section 4). Figure 1
shows an example of Step 1.

The second step identifies which possible files are
still present in the unallocated space. To that pur-

Figure 1: Calculation of unallocated space.

pose, we scan the clusters’ content for headers and
footers. The result of this step is a list of candi-
date files, based on their signature, and for each
of these files, we have a first and last cluster of
content. These first, resp. last clusters are called
the originating, resp. finishing clusters. Figure 2
shows an example of Step 2 for the calculation of
originating clusters.

Figure 2: Calculation of originating clusters.

The third step is to apply heuristic methods in
order to make a typology of clusters. We present
one of these heuristics that merge steps 2 and 3,
but many more sophisticated ones could be de-
signed. The purpose of this step is to associate
each cluster to a file type and to draw a chart of
the unallocated space based on this information.
Figure 3 shows an example of Step 3.

The fourth step, not covered in this paper, is to
try different sequences among the clusters of the
same typology, and to attach these sequences to
the originating clusters. The sequences, prefixed
with the originating clusters, represent a tentative
deleted file. The sequences are built by calculat-
ing a distance from the originating clusters to the
clusters of the same type. The relative position

3

Figure 3: Calculation of clusters typology.

of the clusters, inside a sequence, will be defined
either by their distance from the originating clus-
ter of the sequence or by their distance from each
other. Figure 4 shows an example of Step 4.

Figure 4: Calculation of a cluster sequence.

The remaining clusters, not yet considered by the
previous steps, will require additional attention, in
a non-automated way.

The final step is to run consistancy checks and
statistics from the reconstructed files on the mem-
ory dump in order to determine if all files have
been identified. Section 4 presents more informa-
tion on this final step.

3 Formal Model and Defini-
tions

In this section, we present the formal model of our
approach and some definitions that will be used in
section 5.

3.1 Step 1 - Calculation of Unallo-
cated Space

We are using set arithmetics since the order of
clusters is of no importance for our purpose. Fur-
thermore, it helps in implementing the solution by
using a relational database and SQL operations,
optimized when dealing with sets. However, this
calculation might lead to unwanted results, as pre-
sented in section 4.

Let EM be the content of the Extracted Memory
(or Memory Dump).

EM = {EmC0, EmC1, · · · , EmCn}

Where EmCi = Cluster i of EM . The size of a
cluster is either known before hand, or a minimal
value (for instance 512) can be used1.

Let RFS be the set of regular files found on the
device and extracted in a logical way.

RFS = {Rf0, Rf1, · · · , Rfn}

Where Rfi = Regular file i. We suppose that
the ending cluster of a regular file on the device
has the same content as in the regular file on the
investigation station2. Each RFi is in turn com-
posed of clusters:

Rfi = {RfiC0, RfiC1, · · · , RfiCn}

Where RfiCj = cluster j of regular file Rfi.

From the previous set of definitions, the compu-
tation of unallocated space US becomes easy:

1The use of small values for cluster size might add great
strain on the calculation of the cluster in step 4.

2Usually the last cluster of the file on the device is the
same as the last cluster on the station. However, depending
on the extraction method, it may occur that the trailing
cluster of the file on the station is zeroed after the logical
end of file.

4

US = EM −RFS

However, in order to practically achieve our algo-
rithm, we need an efficient way to compare rapidly
the content of two clusters, whatever their sizes.
To that purpose, we use a hash function h that cal-
culates the MD5 (or SHA-1, SHA-2) of any clus-
ter.

Let h(Ci) be the hash function h applied to clus-
ter Ci and let hci be the resulting hash value. We
define a function H, extending h to a set of clus-
ters:

H({C0, C1, · · · , Cn}) = {h(C0), h(C1), · · · , h(Cn)}

By transitivity of h, we obtain:

{h(C0), h(C1), · · · , h(Cn)} = {hc0, hc1, · · · , hcn}

Therefore the computation of unallocated space
H(US) becomes:

H(US) = H(EM)−H(RFS)

3.2 Steps 2 & 3 - Calculation of
Cluster Types

Some research has been done in order to predict
the types of clusters. In [CC08], the use of lin-
ear discriminant and the use of longuest com-
mon substring and subsequences are analysed,
whereas the use of distance from sample files is
proposed in [KS06a] and [KS06b]. To a lesser
extent, [LWSH05] proposes a file categorisation
based on the statistical analysis of their binary
content.

In this paper, we are using a pragmatic approach,
not dissimilar from [Coh07].

The type of cluster is determined by some
structural artifact found in the content of
the cluster. For instance “\begin{itemize}”
is a structural artefact of a LATEX file, or
“0xd0,0xcf,0x11,0xe0,0xa1,0xb1,0x1a,0xe1” is an
artifact header for an MS-Office file.

In order to calculate a cluster type, we scan the
cluster content against a set of artefacts. Each
artefact is related to one (or more) file types and
falls into three categories:

1. headers, if the artefact is found at the begin-
ing of the file;

2. footers, if the artefact is found at the end of
the file;

3. artifacts, in any other case.

These categories are represented as sets, which
are used to classify the clusters.

When the cluster type is determined by a header,
the cluster becomes an originating cluster:

Ci ∈ OriginatingClusters→

∃ regex(Ci) ∈ headers

Where regex(Ci) means a subpart of Ci. When
the cluster type is determined by a footer, the clus-
ter becomes an finishing cluster:

Ci ∈ FinishingClusters→

∃ regex(Ci) ∈ footers

When the cluster type is determined by a struc-
tural artifact, but is neither an originating or fin-
ishing cluster, then the cluster becomes a struc-
tural artifact:

Ci ∈ StructuralArtefacts→

(∃ regex(Ci) ∈ artifacts) AND

(Ci /∈ (OriginatingClusters ∪

FinishingClusters))

This crude division between OriginatingClus-
ters, FinishingClusters and StructuralArtefacts is
a very primitive heuristic for classifying clusters.
In case of unclassified clusters or a cluster with
too few artefacts to rely on, the cluster becomes
an unclassified cluster:

Ci ∈ UnclassifiedCluster →

5

Ci /∈ (OriginatingClusters ∪

FinishingClusters ∪

StructuralArtefacts)

3.3 Step 4 - Sequencing Clusters

This step is not fully covered by this paper. The
closest work concerning cluster sequencing can be
found in [C.J07] which is intended for file type
differenciation but could be used with profit for
sequencing. Basically, our approach uses distance
calculation among clusters, taking as hypothesis
that for the same file efi, two logical contigu-
ous clusters share x% common bytes. From this
hypothesis, tentative clusters sequences Sk are
drawn from one originating cluster and tried.

Let EF be the set of recovered files:

EF = {ef0, ef1, . . . , efn}

Where efi is the recovered file i.

efi=({OriginatingClusteri},Si,{FinishingClusteri})

Where Si represents the “most plausible tenta-
tive sequence” of clusters for efi.

This algorithm is augmented with the knowledge
we might have from specific file types. For in-
stance some structures are found before others in
the normal sequencing of a file.

4 Unwanted results

4.1 Duplicated Files

In a file system, it may happen that the same file
is found several times, either as a regular or erased
file. With the increase of memory size, this is not
an uncommon thing. By relying on cluster con-
tent, our algorithm will retain only one copy for
each identical cluster, corresponding to a regular
file.

The drawback of this behavior is the impossi-
bility to collect statistics on the occurences of a
regular file, either in non-deleted or deleted form.
However, it is always possible to count how many

times each cluster from this file is found in the
memory dump.

4.2 Files with some clusters having
identical content

Another kind of undesired behavior of the algo-
rithm is when different files have identical clusters
with the same content. For instance, video files
with the same first minutes, text files with iden-
tical sections, etc. Our algorithm retaining only
one copy for each identical cluster, this might lead
in holes in files, or inconsistent files, after step
4. One way to deal with this problem is to re-
tain each copy of identical clusters. However it
will add more complexity in steps 3 and 4. An-
other way to handle this problem is to manually
reconsider inconsistent retrieved files and to fetch
missing clusters in the memory dump.

4.3 Identical cluster contents not
associated to a file

In a file system, some clusters may never have
been used. These clusters are usually left blank
(in flash memory, all bytes are set to 0xFF). Left
unchanged, our algorithm will consider all these
clusters as valid clusters. We can overcome this
problem by creating a virtual “evidence”, com-
posed of only one cluster filled with 0XFF. Thre-
fore, our algorithm will retain only one cluster in-
stead of each copy, thus reducing the number of
candidate clusters for step 2. Unfortunately, some
files may have blanked clusters, because the data
in this cluster is composed only of 0xFF. In that
case, we are back to the scenario of section 4.2.

5 Implementation

This section presents the implementation of
the previous model. The implementation has
been published on the open source platform
http://www.sourceforge.net, under the project
“Forensic File Carving Tools (forensicfct)”.

Our algorithm extensively uses set computation
and we naturally choose a database management

6

system for its persistent storage facility and also
its highly optimized query engine. The major
drawback of using a DBMS is the heavy load of the
transactional system. However, we believe that
the DBMS is much more flexible than traditional
file systems when dealing with forensic operations.

We used the PostgreSQL DBMS system, the
libpq library, C language and an operating sys-
tem (Linux or POSIX) allowing direct file map-
ping into memory.

5.1 Database Model

The database model we designed is represented in
figure 5.

Figure 5: Database Model.

• The CPF CASE table is used to manage case
information. A very minimal set of informa-
tion is kept there, essentially CAS NAME,
the name of the case.

• The CPF EVIDENCE table is used to man-
age evidence files. Note that at the implemen-

tation level, no difference is made between the
dump image to be analysed and the regular
files present in the file system. Each evidence
file is related to a case via the EVI CAS ID
foreign key. EVI FILE is the file name in
the investigator’s analysis station file system.
EVI RAW is set to 0 if the evidence file is
the memory dump and EVI RAW is set to 1
if the evidence file is a regular file.

• The CPF RAWMD5 table holds the value
of the hash function applied to each clus-
ter. Each cluster is related to an evi-
dence file via the RAW EVI ID foreign key.
RAW MD5 is the hash value for the cluster
RAW CLUSTER.

5.2 Step 1 - Calculation of Unallo-
cated Space

The file containing the memory dump EM is
mapped to the memory using mmap. Each cluster
content3 is hashed and the resulting hash value is
stored in the CPF RAWMD5 table.

The regular logical files RF extracted from the
cell phone are in turn mapped to the mem-
ory. Each cluster content of a rfi file is hashed
and the resulting hash value is stored in the
CPF RAWMD5 table.

Upon completion of these two actions, the
tables CPF CASE, CPF EVIDENCE and
CPF RAWMD5 are fully loaded with the ev-
idence. In order to calculate the unallocated
space, we compute the H(EM) and H(RFS).
These two sets can be represented as views on
CPF RAWMD5, or as temporary tables, or as
standard tables. For the sake of clarity of the
program, we choose to create new tables, of the
same structure as CPF RAW IMAGE, and with
names prefixed by the case number.

We create the table CPF RAW IMAGE that
holds only the H(EM). The query for the con-
struction4 of H(EM) is represented in table 1.

We create the table CPF REG IMAGE that
holds only the H(RFS). The query for the

3The size of a cluster is stored in a constant.
4For the sake of clarity, we omit to indicate the case id

and the mention of the database schema, for all the queries.

7

CREATE TABLE CPF RAW IMAGE WITH OIDS AS

SELECT RAW ID, RAW EVI ID, RAW MD5, RAW CLUSTER

FROM CPF EVIDENCE

JOIN CPF RAWMD5 ON EVI ID=RAW EVI ID

WHERE EVI RAW = 1;

Table 1: Query for the construction of H(EM)

construction of H(RFS) is represented in table
2. This query only differs from the construc-
tion of CPF RAW IMAGE by the restriction on
EVI RAW.

CREATE TABLE CPF REG IMAGE WITH OIDS AS

SELECT RAW ID, RAW EVI ID, RAW MD5, RAW CLUSTER

FROM CPF EVIDENCE

JOIN CPF RAWMD5 ON EVI ID=RAW EVI ID

WHERE EVI RAW = 0;

Table 2: Query for the construction of H(RFS)

In order to create the table that will hold
H(US) = H(EM) − H(RFS), we use the EX-
CEPT statement (or MINUS in Oracle) that
takes every row from a table that is not present
in the second table. The query for the construc-
tion of H(US) is represented in table 3. Note that
we retain the RAW ID, necessary to retrieve the
content of the cluster back in the memory dump.

CREATE TABLE CPF DIFF IMAGE WITH OIDS AS

(SELECT RAW ID, RAW EVI ID, RAW MD5, RAW CLUSTER

FROM CPF RAW IMAGE)

EXCEPT

(SELECT RAW ID, RAW EVI ID, RAW MD5, RAW CLUSTER

FROM CPF REG IMAGE);

Table 3: Query for the construction of H(US)

5.3 Steps 2 & 3 - Calculation of
Cluster Types

Some tools already exist to find headers in binary
streams. These tools can be modified to find head-
ers, footers and structural artifacts of files to be
retrieved. Moreover, for some known file types,
tools like Hachoir can extract metadata contained
in the first cluster of a file. For the purpose of this
paper, we used a basic set of functions:

• getHeader() – returns the header id, or 0 if
no header;

• getFooter() – returns the footer id, or 0 if no
footer;

• getArtefact() – returns the artifact id, or 0 if
no artifact.

The file containing the memory dump EM is
mapped to the memory using mmap. Each clus-
ter is checked against getHeader(), getFooter()
and getArtefact(). These functions use a table
CPF FILETYPE, giving the list of file types and
a table CPF ARTIFACT defining the list of arti-
fact for each table. These tables are represented
in figure 6.

Figure 6: Tables CPF FILETYPE and
CPF ARTIFACT.

The output of these functions is stored in a
third table, CPF CLUSTER, which gives for each
cluster its type (according to the file type in
CPF FILETYPE), and its category in {unknown,
header, footer, artefact}.

The table CPF CLUSTER is a chart of the unal-
located space and can be searched by file type and
category, which drammatically reduces the com-
plexity of file reconstruction. The final database
model is represented in figure 7.

8

Figure 7: Whole architecture.

5.4 Step 4 - Sequencing Clusters

In order to sequence the clusters, we add a new
table CPF CANDIDATES. Each row in this table
will represent a possibility of file. For each cluster
of category header, we add rows of clusters from
he same file type, with their relative distance from
the first cluster. The calculation of the distance
is not covered by this paper, and the calculation
might differ depending on the file type.

5.5 Extraction of Recovered Files

The file containing the memory dump EM is
mapped to the memory using mmap. The extrac-

tion of the recovered files is done by taking in turn
each tentative file, from CPF CANDIDATES, re-
trieving in sequence each data block associated to
the cluster in EM and writing them to a physical
file on the analysis workstation.

5.6 Besides File Recovery

In addition to file recovery, our database scheme
can be extremely usefull when looking for rem-
nants of a known file inside an arbitrary memory
dump. For instance, the authors have been given
a video file V and have been asked to answer this
question: “Has video file V been played on this
computer?”.

By filling the memory dump of the device and
the content of V in our database (step 1 of the
algorithm), the answer to this question is as simple
as:

SELECT * FROM

(SELECT RAW ID, RAW EVI ID, RAW MD5, RAW CLUSTER

FROM CPF RAW IMAGE)

INTERSECT

(SELECT RAW ID, RAW EVI ID, RAW MD5, RAW CLUSTER

FROM CPF REG IMAGE);

Table 4: Query for finding a remnant of V

This type of question becomes increasingly rele-
vant in criminal cases, when digital evidence has
been erased at a distant time in the past and the
digital device has been used in the meantime.

5.7 Comments and Code Reposi-
tory

The source code is available under the BSD licence
at: https://sourceforge.net/projects/forensicfct/

It is provided with a working example: a cell
phone memory dump and the logical files ex-
tracted from the phone.

6 Conclusion

In this paper we have shown that file recovery
in cell phone forensics can be achieved via logi-

9

cal memory dumps and file extraction instead of
heavy methods involving desoldering and in-depth
study of file system structure. The method we de-
vised is slightly less effective in terms of raw data
retrieval, but much more flexible and cheaper.
The method is based on set arithmetics and is im-
plemented using C, databases and SQL queries.

The algorithm calculates the unallocated space
of a raw digital device, identifies candidate files
based on an originating cluster and subsequently
associates clusters to file types. The clusters in-
side a file type are sequenced and give files as an
output.

Futhermore, our method can be extremely useful
besides file recovering, when cluster comparison is
of primer importance, for instance when verifying
the past presence of known files in a digital device.

7 Future works

This method needs to be improved in many ways.
First of all, the method allowing the correct asso-
ciation of clusters to file type can take more avan-
tage of statistical methods as in [KS06a, KS06b,
LWSH05, C.J07]. Furthermore, the algorithms in
[C.J07] can be adapted, not only for cluster clas-
sification, but also for their ordering. On the im-
plementation level, a great effort has to be made
to make the program user-friendly and optimized.

Finally, we plan to make a comparison of the
same cell phone investigated by using desoldering
with file system structure decoding and by run-
ning our algorithm.

References

[BdJK+07] Marcel Breeuwsma, Martien
de Jongh, Coert Klaver, Ronald
van der Knijff, and Mark Roeloffs.
Forensic data recovery from flash
memory. Small Scale Digital Device
Forensics, 1(1):1 – 17, 2007.

[Bre06] Ing. M.F. Breeuwsma. Forensic imag-
ing of embedded systems using jtag
(boundary-scan). Digital Investiga-
tion, 3(1):32 – 42, 2006.

[Car05] Brian Carrier. File System Foren-
sic Analysis. Addison-Wesley Profes-
sional, 2005.

[Car06] Brian D. Carrier. A hypothesis-based
approach to digital forensic investiga-
tions. PhD thesis, West Lafayette, IN,
USA, 2006. Adviser-Spafford,, Eu-
gene H.

[CC08] William C. Calhoun and Drue Coles.
Predicting the types of file fragments.
Digital Investigation, 5(Supplement
1):S14 – S20, 2008. The Proceedings
of the Eighth Annual DFRWS Con-
ference.

[C.J07] Veenman C.J. Statistical disk cluster
classification for file carving. Third
International Symposium on Infor-
mation Assurance and Security, pages
393–398, August 2007.

[Coh07] M.I. Cohen. Advanced carving tech-
niques. Digital Investigation, 4(3-
4):119 – 128, 2007.

[Gar07] Simson L. Garfinkel. Carving contigu-
ous and fragmented files with fast ob-
ject validation. Digital Investigation,
4(Supplement 1):2 – 12, 2007.

[KS06a] M. Karresand and N. Shahmehri. File
type identification of data fragments
by their binary structure. Infor-
mation Assurance Workshop, 2006
IEEE, pages 140–147, June 2006.

[KS06b] Martin Karresandn and Nahid Shah-
mehri. Oscar File Type Identifica-
tion of Binary Data in Disk Clus-
ters and RAM Pages, pages 413–
424. IFIP International Federation
for Information Processing. Springer
Boston, 2006.

[LWSH05] Wei-Jen Li, Ke Wang, S.J. Stolfo, and
B. Herzog. Fileprints: identifying file
types by n-gram analysis. Informa-
tion Assurance Workshop, 2005. IAW
’05. Proceedings from the Sixth An-
nual IEEE SMC, pages 64–71, June
2005.

10

Cahiers de recherche du Centre de Recherche Appliquée en
Gestion (CRAG) de la Haute Ecole de Gestion - Genève

© 2006
CRAG – Centre de Recherche Appliquée en Gestion
Haute école de gestion - Genève
Campus de Battelle, Bâtiment F
7, route de Drize – 1227 Carouge – Suisse

 crag@hesge.ch
www.hesge.ch/heg/crag

 +41 22 388 18 18
 +41 22 388 17 40

2006

• N° HES-SO/HEG-GE/C--06/1/1--CH
Andrea BARANZINI

Damien ROCHETTE
“La demande de récréation pour un parc naturel. Une application au Bois de Pfyn-
Finges, Suisse”

• N° HES-SO/HEG-GE/C--06/2/1--CH
Giovanni FERRO LUZZI

Yves FLÜCKIGER
Sylvain WEBER
“A Cluster Analysis of Multidimentional Poverty in Switzerland”

• N° HES-SO/HEG-GE/C--06/3/1--CH
Giovanni FERRO LUZZI

Sylvain WEBER
“Measuring the Performance of Microfinance Institutions”

• N° HES-SO/HEG-GE/C--06/4/1--CH
Jennifer D’URSO

“L’eau de boisson : Aspects logistiques et attitude du consommateur”

• N° HES-SO/HEG-GE/C--06/5/1--CH
Jennifer D’URSO

“La gestion publique de l’eau en Suisse”

• N° HES-SO/HEG-GE/C--06/6/1--CH
Philippe THALMANN

Andrea BARANZINI
“Gradual Introduction of Coercive Instruments in Climate Policy”

• N° HES-SO/HEG-GE/C--06/7/1--CH
Andrea BARANZINI

Caroline SCHAERER
José RAMIREZ

© CRAG – Haute Ecole de Gestion de Genève 11

Philippe THALMANN
“Feel it or Measure it. Perceived vs. Measured Noise in Hedonic Models”

• N° HES-SO/HEG-GE/C--06/8/1--CH
José RAMIREZ

Anatoli VASSILIEV
“An Efficiency Comparison of Regional Employment Offices Operating under Different
Exogenous Conditions”

• N° HES-SO/HEG-GE/C--06/9/1--CH
José RAMIREZ

Joseph DEUTSCH
Yves FLÜCKIGER
Jacques SILBER
“Export Activity and Wage Dispersion : The Case of Swiss Firms”

• N° HES-SO/HEG-GE/C--06/10/1--CH
Joëlle DEBELY

Gaëtan DERACHE
Emmanuel FRAGNIERE
Jean TUBEROSA
“Rapport d’enquête : sondage Infobésité”

• N° HES-SO/HEG-GE/C--06/11/1--CH
Andrea BARANZINI

José RAMIREZ
Cristian UGARTE ROMERO
“Les déterminants du choix de (dé)localisation des entreprises en Suisse”

• N° HES-SO/HEG-GE/C--06/12/1--CH
Catherine EQUEY BALZLI

Jean TUBEROSA
David MARADAN
Marie-Eve ZUFFEREY BERSIER
“Étude du comportement des PME/PMI suisses en matière d’adoption de système de
gestion intégré. Entre méconnaissance et satisfaction.”

• N° HES-SO/HEG-GE/C--06/13/1—CH
Joëlle DEBELY

Magali DUBOSSON
Emmanuel FRAGNIÈRE
“The pricing of the knowledge-based services : Insight from the environmental
sciences”

© CRAG – Haute Ecole de Gestion de Genève 12

2007

• N° HES-SO/HEG-GE/C--07/1/1--CH
Andrea BARANZINI

Caroline SCHAERER
“A Sight for Sore Eyes
Assessing the value of view and landscape use on the housing market”

• N° HES-SO/HEG-GE/C--07/2/1--CH
Joëlle DEBELY

Magali DUBOSSON
Emmanuel FRAGNIÈRE
“The Travel Agent: Delivering More Value by Becoming an Operational Risk
Manager”

• N° HES-SO/HEG-GE/C--07/3/1--CH
Joëlle DEBELY

Magali DUBOSSON
Emmanuel FRAGNIÈRE
“The Consequences of Information Overload in Knowledge Based Service
Economies”

• N° HES-SO/HEG-GE/C--07/4/1--CH
Lucie BEGIN

Jacqueline DESCHAMPS
Hélène MADINIER
“Une approche interdisciplinaire de l’intelligence économique”

• N° HES-SO/HEG-GE/C--07/5/1--CH
Journée de la recherche HEG 2007

“Recueil des communications”

• N° HES-SO/HEG-GE/C--07/6/1--CH
Sylvain WEBER

Andrea BARANZINI
Emmanuel FRAGNIÈRE
“Consumers Choices among Alternative Electricity Programs in Geneva – An
Empirical Analysis”

© CRAG – Haute Ecole de Gestion de Genève 13

2008

• N° HES-SO/HEG-GE/C--08/1/1--CH
Andrea BARANZINI

José RAMIREZ
Sylvain WEBER
“The Demand for Football in Switzerland : An Empirical Estimation”

• N° HES-SO/HEG-GE/C--08/2/1--CH
Giuseppe CATENAZZO

Gaëtan DERACHE
Emmanuel FRAGNIÈRE
Patricia HUGENTOBLER
Jean TUBEROSA
“Rapport d’enquête préliminaire : Dessine-moi un service ! Entreprises et
administration : comment concevoir et valoriser vos services”

• N° HES-SO/HEG-GE/C--08/3/1--CH
Nguyen VI CAO

Emmanuel FRAGNIÈRE
Jacques-Antoine GAUTHIER
Marlène SAPIN
Eric WIDMER
“Optimizing the marriage market through the reallocation of partners : An application
of the linear assignment model”

• N° HES-SO/HEG-GE/C--08/4/1--CH
Magali DUBOSSON

Emmanuel FRAGNIÈRE
Bernard MILLIET
“A Control System Designed to Address the Intangible Nature of Service Risks”

• N° HES-SO/HEG-GE/C--08/5/1--CH
Giuseppe CATENAZZO

Jennifer D’URSO
Emmanuel FRAGNIÈRE
Jean TUBEROSA
“Influences of Public Ecological Awareness and Price on Potable Water Consumption
in the Geneva Area”

• N° HES-SO/HEG-GE/C--08/6/1--CH
Alexandra BROILLET

Magali DUBOSSON
“Analyzing Web 2.0 Internet users in order to drive innovation in distribution strategy
of luxury watches : A netnography analysis”

• N° HES-SO/HEG-GE/C--08/7/2--CH
Alexandra BROILLET

Magali DUBOSSON
“Luxury e-services at the pre- and after-sales stages of the decision making process:
Watch, car, art and travel blogs analysis”

© CRAG – Haute Ecole de Gestion de Genève 14

• N° HES-SO/HEG-GE/C--08/8/1--CH
Nicolas BUGNON

René SCHEIDER
“OPACs et utilisateurs - L’étude ACUEIL démontre les comportements de recherche
et propose des outils simplifiés et flexibles”

• N° HES-SO/HEG-GE/C--08/9/1--CH

Giuseppe CATENAZZO
Emmanuel FRAGNIÈRE

“Attitudes Regarding New Enterprise Risk and Control Regulations by the Active
Population of the Geneva Area”

• N° HES-SO/HEG-GE/C--08/10/1--CH
Giuseppe CATENAZZO
Emmanuel FRAGNIÈRE

“Identifying Bank Runs Signals through Sociological Factors: An Empirical Research
in the Geneva Area”

• N° HES-SO/HEG-GE/C--08/11/1--CH
Caroline SCHAERER
Andrea BARANZINI
“Where and How Do Swiss and Foreigners Live? Segregation in the Geneva and
Zurich Housing Markets”

• N° HES-SO/HEG-GE/C--08/12/1—CH
Giuseppe CATENAZZO
Jennifer D’URSO
Emmanuel FRAGNIÈRE
“Elements of perception regarding sustainable development in Geneva”

• N° HES-SO/HEG-GE/C--08/13/1--CH

Emmanuel FRAGNIÈRE
Nils S. TUCHSCHMID
Qun ZHANG

“Liquidity Adjusted VaR Model: An Extension”

© CRAG – Haute Ecole de Gestion de Genève 15

© CRAG – Haute Ecole de Gestion de Genève 16

2009

• N°HES-SO/HEG-GE/C—09/1/1—CH
Tobias Muller
José Ramirez

« Wage inequality and segregation between native and immigrant workers in
Switzerland : evidence using matched employee-employer data »

	cahier_recherche-making sense of unstructured memory dumps - 02-2009
	2006.pdf

