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    Chapter 6   

 Text Mining to Support Gene Ontology Curation 
and Vice Versa                     

     Patrick     Ruch      

  Abstract 

   In this chapter, we explain how text mining can support the curation of molecular biology databases deal-
ing with protein functions. We also show how curated data can play a disruptive role in the developments 
of text mining methods. We review a decade of efforts to improve the automatic assignment of Gene 
Ontology (GO) descriptors, the reference ontology for the characterization of genes and gene products. 
To illustrate the high potential of this approach, we compare the performances of an automatic text cate-
gorizer and show a large improvement of +225 % in both precision and recall on benchmarked data. We 
argue that automatic text categorization functions can ultimately be embedded into a Question-Answering 
(QA) system to answer questions related to protein functions. Because GO descriptors can be relatively 
long and specifi c, traditional QA systems cannot answer such questions. A new type of QA system, so- 
called Deep QA which uses machine learning methods trained with curated contents, is thus emerging. 
Finally, future advances of text mining instruments are directly dependent on the availability of high- 
quality annotated contents at every curation step. Databases workfl ows must start recording explicitly all 
the data they curate and ideally also some of the data they do not curate.  

  Key words     Automatic text categorization  ,   Gene ontology  ,   Data curation  ,   Databases  ,   Data steward-
ship  ,   Information storage and retrieval  

1      Introduction 

 This chapter attempts to concisely describes the role played by text 
mining in literature-based curation tasks concerned with the descrip-
tion of protein functions. More specifi cally, the chapter explores the 
relationships between the Gene Ontology (GO) and Text Mining. 

 Subheading  2  introduces the reader to basic concepts of text 
mining applied to biology. For a more general introduction, the 
reader may refer to a recent review paper by Zheng et al. [ 1 ]. 

 Subheading  3  presents the text mining methods developed to 
support the assignment of GO descriptors to a gene or a gene prod-
uct based on the content of some published articles. The section 
also introduces the methodological framework needed to assess the 
performances of these systems called automatic text categorizers. 
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 Subheading  4  presents the evolution of results obtained today 
by GOCat, a GO categorizer, which participated in several 
BioCreative campaigns. 

 Finally, Subheading  5  discusses an inverted perspective and 
shows how GO categorization systems are foundational of a new 
type of text mining applications, so-called Deep Question- 
Answering (QA). Given a question, Deep QA engines are able to 
fi nd answers, which are literally found in no corpus. 

 Subheading  6  concludes and emphasizes the responsibility of 
national and international research infrastructures, in establishing 
virtuous relationships between text mining services and curated 
databases.  

2     State of the Art 

 This section presents the state of the art in text mining from the 
point of view of a biocurator, i.e., a person who is maintaining the 
knowledge stored in gene and protein databases. 

   In modern molecular biology databases, such as UniProt [ 2 ], the 
content is authored by biologists called biocurators. The work per-
formed by these biologists when they curate a gene or a gene prod-
uct encompasses a relatively complex set of individual and 
collaborative tasks [ 3 ]. We can separate these tasks into two sub-
sets: sequence annotation—any information added to the sequence 
such as the existence of isoforms—and functional annotation—any 
information about the role of the gene or gene product in a given 
pathway or phenotype. Such a separation is partially artifi cial 
because a functional annotation can also establish a relationship 
between the role of a protein and some sequence positions but it is 
didactically convenient to adopt such a view. 

 The primary source of knowledge for genomics and proteomics 
is the research literature. In the context of biocuration, text mining 
can be defi ned as a process aimed at supporting biocurators when 
they search, read, identify entities, and store the resulting struc-
tured knowledge. The developments of benchmarks and metrics to 
evaluate how automatic text mining systems can help performing 
these tasks are thus crucial. 

 BioCreative is a community initiative to periodically evaluates 
the advances in text mining for biology and biocuration. 1  The 
forum explored a wide span of tasks with emphasis on  named- entity 
recognition. Named-entity recognition covers a large set of meth-
ods that seek to locate and classify textual elements into predefi ned 
categories such as the names of persons, organizations, locations, 
genes, diseases, chemical compounds, etc. Thus, querying PubMed 

1
   http://biocreative.sourceforge.net/ 
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with the keywords “biocreative” and “information retrieval” returns 
8 PMIDs, whereas 32 PMIDs are returned for the keywords “bio-
creative” and “named entity” [18th of November 2015]. 

 The general workfl ow of a curation process supported by text 
mining instruments commonly comprises 6–9 steps as displayed in 
Table  1 , which is a synthesis inspired by both [ 6 ] and [ 4 ].

   Search is often the fi rst step of a text mining pipeline, although 
information retrieval has received little attention from bioinforma-
ticians active in Text Mining. Fortunately, information retrieval has 
been explored by other scientifi c communities and in particular by 
information scientists via the TREC (Text Retrieval Conferences) 
evaluation campaigns,  see  ref.  7  for a general introduction. From 
2002 to 2015, molecular biology [ 8 ], clinical decision-support [ 9 ] 
and chemistry-related information retrieval [ 10 ] challenges have 
been explored by TREC. Interestingly, large-scale information 
retrieval studies have consistently shown that named-entity recog-
nition has no or little impact on search effectiveness [ 11 ,  12 ].  

   Beyond information retrieval, more elaborated mining instruments 
can then be derived. Thus, search engines, which return docu-
ments or pointers to documents, are often powered with passage 
retrieval skills [ 7 ], i.e., the ability to highlight a particular sentence, 
a few phrases, or even a few keywords in a given context. 

2.2  From Basic 

Search to More 

Advanced Textual 

Mining

     Table 1  

  Comparative curation steps supported by text mining   

 [ 4 ]  [ 5 ] 

 1  Retrieval  Collection 

 2  Selection  Triage 

 3  Reading/Passage retrieval 

 4  Entity extraction  Entity indexing 

 5  Entity normalization 

 6  Relationship + evidence annotation 

 7  Extraction of evidences, e.g., images 

 8  Feed-back 

 9  Check of records 

  Reference [ 4 ] describes the curation task as an iterative process (#8 Feed-back) whereas 
[ 6 ] describes it as a linear process (ending with #9 Check of records). Both descriptions 
are however consistent. Thus, it is possible to align steps #1, #2, and #4 in Table  1 . Step 
#6 is optional in [ 4 ] as the process is regarded as an iterative process. This step is an 
“intelligent” follow up of the curation task, where already annotated functions/proper-
ties should receive less priority in the next Retrieval step. In contrast, steps #3 “Reading/
passage retrieval” and #6 “Feed-back” is missed by [ 6 ], while the “Extraction of evi-
dences” & “Check of record” is missed by [ 4 ] Step #5, i.e., the assignment of unique 
identifi ers to descriptors, in [ 4 ] is implicit in step #4 of [ 6 ]  

Text Mining to Support Gene Ontology Curation and Vice Versa



72

The enriched representation can help the end-user to decide upon 
the relevance of the document. If for MEDLINE records, such 
passage retrieval functionalities are not crucial because an abstract 
is short enough to be rapidly read by a human, passage retrieval 
tools become necessary when the search is performed on a collec-
tion of full-text articles like for instance in PubMed Central. Within 
a full- text article, the ability to identify the section where a given 
set of keywords can be very useful as matching the relevant key-
words in a “background” section has a different value than match-
ing them in a “results” section. The latter is likely to be a new 
statement while the former is likely to be regarded as a well-estab-
lished knowledge.  

   Unlike in other scientifi c or technical fi elds (fi nance, high energy 
physics, etc.), in the biomedical domain, named-entity recognition 
covers a very large set of entities. Such a richness is well expressed 
by the content of modern biological databases. Text Mining stud-
ies have been published for many of those curation needs, includ-
ing sequence curation and identifi cation of polymorphisms [ 13 ], 
posttranslational modifi cations [ 14 ], interactions with gene prod-
ucts or metabolites [ 15 ], etc. In this context, most studies 
attempted to develop instruments likely to address a particular set 
of annotation dimensions, serving the needs of a particular molec-
ular biology database. The focus in such studies is often to design 
a Graphic User Interfaces and to simplify the curation work by 
highlighting specifi c concepts in a dedicated tool [ 16 ]. While most 
of these systems seem exploratory studies, some seem deeply inte-
grated in the curation workfl ow, as shown by the OntoMate tool 
designed by the Rat Genome Database [ 17 ], the STRING DB for 
protein–protein interactions or the BioEditor of neXtProt [ 18 ]. 

 From an evaluation perspective, the idea is to detect the begin-
ning and the end of an entity and to assign a semantic type to this 
string. Thus in named-entity recognition, we assume that entity 
components are textually contiguous. Inherited from early corpus 
works on information extraction and computational linguistics 
[ 19 ], the goal is to assign a unique semantic category—e.g., Time, 
Location, and Person—to a string in a text [ 20 ]. 

 Semantic categories are virtually infi nite but some entities 
received more attention. Gene, gene products, proteins, species 
[ 21 ,  22 ], and more recently chemical compounds were signifi -
cantly more studied than for instance organs, tissues, cell types, cell 
anatomy, molecular functions, symptoms, or phenotypes [ 23 ]. 

 The initial works dealing with the recognition of GO entities 
were disappointing (Subheading  3.2 ), which may explain part of 
the reluctance to address these challenges. We see here one impor-
tant limitation of named entities: it is easy to detect a one or two 
words terms into a document, while the recognition of a protein 
function does require a “deeper” understanding or combination of 
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biological concepts. Indeed a complex GO concept is likely to 
combine subconcepts belonging to various semantic types, includ-
ing small molecules, atoms, protein families, as well as biological 
processes, molecular functions, and cell locations.  

   In order to compensate for the limitations of named-entity recog-
nition frameworks, two more complementary approaches have 
been proposed: entity normalization and information (or relation-
ship) extraction. 

 Normalization can be defi ned as the process by which a unique 
semantic identifi er is assigned to the recognized entities [ 24 ]. The 
identifi ers are available in different resources such as several onto- 
terminologies or knowledge bases. The assignment of unique iden-
tifi ers can be relatively diffi cult in practice due to a linguistic 
phenomenon called lexical ambiguity. Many strings are lexically 
ambiguous and therefore can receive more than one identifi er 
depending on the context (e.g.,  HIV  could be a disease or a virus). 
The diffi culty is amplifi ed in cascaded lexical ambiguities. Many 
entities require the extraction of other entities to receive an unam-
biguous identifi er. For instance, the assignment of an accession 
number to a protein may depend on the recognition of an organ-
ism or a cell line somewhere else in the text. 

 Further, the extraction of relationships requires the recognition 
of the specifi c entities, which can be as various as a location, an 
interaction (binding, coexpression, etc.) [ 25 ], an etiology or a tem-
poral marker (cause, trigger, simultaneity, etc.) [ 26 ]. For some 
information extraction tasks such as protein–protein interactions, 
the normalization and relationship extraction may require fi rst the 
proper identifi cation of other entities such as the experimental 
methods (e.g., yeast 2-hybrid) used to generate the prediction. 
Furthermore, additional information items may be provided such as 
the scale of the interaction or the confi dence in the interaction [ 27 ]. 

 To identify GO terms, named-entity recognition and informa-
tion extraction is insuffi cient due to two main diffi culties: fi rst, the 
diffi culty of defi ning all (or most) strings describing a given con-
cept; second, the diffi culty of defi ning the string boundaries of a 
given concept. The parsing of texts to identify GO functions and 
how they are linked with a given protein demands the develop-
ment of specifi c methods.  

   Automatic text categorization (ATC) can be defi ned as the assign-
ment of any class or category to any text content. The interested 
reader can refer to [ 28 ], where the author provides a comprehensive 
introduction to ATC, with a focus on machine learning methods. 

 In both ATC and in Information Retrieval, documents are 
regarded as “bag-of-words.” Such a representation is an approxi-
mation but it is a powerful and productive simplifi cation. From this 
bag, where all entities and relationships are treated as fl at and 
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independent data, ATC attempts to assign a set of unambiguous 
descriptors. The set of descriptors can be binary as in triage tasks, 
where documents can be either classifi ed as relevant for curation or 
irrelevant, or it can be multiclass. The scale of the problem is one 
parameter of the model. In some situations, ATC systems do not 
need to provide a clear split between relevant and irrelevant cate-
gories. In particular, when a human is in the loop to control the 
fi nal descriptor assignment step, ATC systems can provide a ranked 
list of descriptors, where each rank expresses the confi dence score 
of the ATC system. ATC systems and search engines share here a 
second common point: compared to named-entity recognition, 
which is normally not interactive, ATC and Information Retrieval 
are well suited for human–computer interactions.   

3     Methods 

 With over 40,000 terms—and many more if we account for syn-
onyms—assigning a GO descriptor to a protein based on some 
published document is formally known as a large multiclass classi-
fi cation problem. 

   The two basic approaches to solve the GO assignment problem are 
the following: (1) exploit the lexical similarity between a text and a 
GO term and its synonyms [ 29 ]; (2) use some existing database to 
train a classifi er likely to infer associations beyond string matching. 
The second approach uses any scalable machine learning tech-
niques to generate a model trained on the Gene Ontology 
Annotation (GOA) database. Several machine learning strategies 
have been used but the trade-off between effectiveness, effi ciency, 
and scalability often converges toward an approach called k- Nearest 
Neighbors (k-NN);  see  also ref.  30 .  

    Lexical approaches for ATC exploit the similarities between the 
content of a text and the content of a GO term and its related syn-
onyms [ 31 ]. Additional information can be taken into account to 
augment the categorization power such as the defi nitions of the 
GO terms. The ranking functions take into account the frequency 
of words, their specifi city (measured by the “inverse document fre-
quency,” the inverse of how many documents contain the word), 
as well as various positional information (e.g., word order);  see  ref. 
 32  for a detailed description. 

 The task is extremely challenging if we consider that some GO 
terms contain a dozen words, which makes those terms virtually 
unmatchable in any textual repository. The results of the fi rst 
BioCreative competition, which was addressing this challenge, 
were therefore disappointing. The best “high-precision” system 
achieved an 80 % precision but this system covered less than 20 % of 
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the test sample. In contrast, with a recall close to 80 %, the best 
“high-recall” systems were able to obtain an average precision of 
20–30 % [ 33 ]. At that time, over 10 years ago, such a complex task 
was consequently regarded are practically out of reach for machines.  

   The principle of a k-NN is the following: for an instance X to be 
classifi ed, the system computes a similarity measure between X and 
some annotated instances. In a GO categorizer, an instance is typi-
cally a PMID annotated with some GO descriptors. Instances on 
the top of the list are assumed “similar” to X. Experimentally, the 
value of k must be determined, where k is the number of similar 
instances (or neighbors), which should be taken into account to 
assign one or several categories to X. 

 When considering a full-text article, a particular section in this 
article, or even a MEDLINE record, it is possible to compute a 
distance between this section and similar articles in the GOA data-
base because in the curated section of GOA, many GO descriptors 
are associated with a PMID—those marked up with an EXP evi-
dence code [ 34 ]. The computation of the distance between two 
arbitrary texts can be more or less complex—starting with count-
ing how many words they share—and the determination of the  k  
parameters can also be dependent on different empirical features 
(number of documents in the collection, average size a document, 
etc.) but the approach is both effective and computationally simple 
[ 7 ]. Moreover, the ability to index a priori all the curated instances 
makes possible to compute distances effi ciently. 

 The effectiveness of such machine learning algorithms is 
directly dependent on the volume of curated data. Surprisingly GO 
categorizers seem not affected by any concept drift, which affects 
database and data-driven approaches in general. Even old data, i.e., 
protein annotated with an early version of the GO, seem useful for 
k-NN approaches [ 35 ]. To give a concrete example, consider pro-
teins curated in 2005 with a version of the Gene Ontology and a 
MEDLINE reports available at that time: it is diffi cult to under-
stand why a model containing mainly annotations from 2010 to 
2014 would outperform a model containing data from 2003 to 
2007 using data exactly centered on 2005. While the GO itself has 
been expanded by at least a factor 4 in the past decade, the consis-
tency of the curation model has remained remarkably stable.  

   In Fig.  1 , we show an example output of GOCat [ 35 ], which is 
maintained by my group at the SIB Swiss Institute of Bioinformatics. 
The same abstract is processed by GOCat using two different types 
of classifi cation methods: a lexical approach and a k-NN.

   In this example, the title of an article ([ 36 ]; “Modulation by 
copper of p53 conformation and sequence-specifi c DNA binding: 
role for Cu(II)/Cu(I) redox mechanism”) is used as input to con-
trast the behavior of the two approaches: This reference is used in 
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UniProt to support the assignment of the “copper ion binding” 
descriptor to  p53 . We see that the lexical system (left panel) is able 
to assign the descriptor at rank #12, while the k-NN system (right 
panel) provides the descriptor in position #1. 

 Finally, we see how both categorizers are also fl exible instru-
ments as they basically learn to rank a set of a priori categories. 
Such systems can easily be used as fully automatic systems—thus 
taking into account only the top N returned descriptors by setting 
up an empirical threshold score—or as interactive systems able to 
display dozens of descriptors including many irrelevant ones, which 
then can be discarded by the curator. 

 Today, GO k-NN categorizers do outperform lexical catego-
rizers; however, the behavior of the two systems is complementary. 
While the latter is potentially able to assign a GO descriptor, which 
has rarely or never been used to generate an annotation, the former 
is directly dependent on the quantity of [GO; PMID] pairs avail-
able in GOA.  

   An important parameter when assessing text mining tools is the 
development of a ground truth or gold standard. Thus, typically 
for GO annotation, we assume that the content of curated 
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  Fig. 1    Comparative outputs of lexical vs. k-NN versions of GOCat       
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databases is the absolute reference. This assumption is acceptable 
from a methodological perspective, as text mining systems need 
such benchmarks. However, it is worth observing that two cura-
tors would not absolutely agree when they assign descriptors, 
which means that a 100 % precision is purely theoretical. Thus, 
Camon et al. [ 37 ] reports that two GO annotators would have an 
agreement score of about 39–43 %. The upper score is achieved 
when we consider that the assignment of a generic concept instead 
of a more specifi c one (children) is counted as an agreement.   

4     Today’s Performances 

 Today, GOCat is able to assign a correct descriptor to a given 
MEDLINE record two times out of three using the BioCreative I 
benchmark [ 35 ], which makes it useful to support functional anno-
tation. Another type of systems, can be used to support comple-
mentary tasks of literature exploration (GoPubMed: [ 38 ]) or 
named-entity recognition [ 39 ]. While GOCat attempts to assign 
GO descriptors to any input with the objective to help curating the 
content of the input, GoPubMed provides a set of facets (Gene 
Ontology or Medical Subject Headings) to navigate the result of a 
query submitted to PubMed. 

 It is worth observing that GO categorizers work best when 
they assume that the curator is involved in selecting the input 
papers (performing a triage or selection task as described in 
Table  1 ). Such a setting, inherited from the BioCreative competi-
tions, [ 33 ,  40 ] is questionable for at least two reasons: (1) Curators 
read full-text articles and not only the abstracts—captions and leg-
ends seem especially important; (2) The triage task, i.e., the ability 
to select an article as relevant for curation, could mostly be per-
formed by a machine, provided that fair training data are available. 
In 2013, the campaign of BioCreative, under the responsibility of 
the NCBI, revisited the task [ 41 ]. The competitors were provided 
with full-text articles and they were asked not only to return GO 
descriptors but also to select a subset of sentences. The evaluation 
was thus more transparent. A small but high-quality annotated 
sample of full-text papers was provided [ 42 ]. 

 The main results from these experiments are the following;  see  
ref.  41  for a complete report describing the competition metrics as 
well as the different systems participating in the challenge. First, the 
precision of categorization systems improved by about +225 % 
compared to BioCreative 1. Second, the ability to detect all relevant 
sentences seems less important than being able to select a few high 
content-bearing sentences. Thus GOCat achieved very competitive 
results for both recall and precision in GO assignment task, but 
interestingly the system performed relatively poorly when focusing 
on the recall of the sentence selection task,  see  Figs.  2  and  3  for 
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comparison. We see that two of the sentence ranking systems devel-
oped for the BioCreative IV competition (orange dots) outperform 
other systems in precision but not in recall. References [ 40 ,  43 ] 
conclude from these experiments that the content in a full-text arti-
cle is so (highly) redundant that a weak recall is acceptable provided 
that the few selected sentences have good precision. The few high 
relevance sentences selected by GOCat4FT (Gene Ontology 
Categorizer for Full Text) are suffi cient to obtain highly competi-
tive results when GO descriptors are assigned by GOCat (orange 
dots) regarding both recall and precision as the three offi cial runs 
submitted by SIB Text Mining signifi cantly outperforms other sys-
tems. Such a redundancy phenomenon is probably found not only 
in full-text contents but more generally in the whole literature.

    Together with GO and GOA, which was used by most partici-
pants in the competition, some online databases seem particularly 
valuable to help assigning GO descriptors. Thus, Luu et al. [ 44 ] 
uses the cross-product databases [ 45 ] with some effectiveness.  

5     Discussion 

 Although a fraction of it is likely to be suffi cient to obtain the top- 
ranked GO descriptors, the results reported in the previous section 
are obtained by using only 10–20 % of the content of an article. 
This suggests that 80–90 % of what is published is unnecessary 
from an information-theoretic perspective. 

   New and informative statements are rare in general. They are 
moreover buried in a mass of relatively redundant and poorly 
content- bearing claims. It has been shown that the density and 
precision of information in abstracts is higher [ 5 ,  46 ] than in full- 
text reports while the level of redundancy across papers and 
abstracts is probably relatively high as well. 

 We understand that the separation of valuable scientifi c state-
ments is labor intensive for curators. This fi ltering effort is compli-
cated within an article but also between articles at retrieval time. 
We argue that such task could be performed by machines provided 
that high-quality training data are available. The training data 
needed by text mining systems are unfortunately lost during the 
curation process. Indeed, the separation between useful and use-
less materials (e.g., PMIDs and sentences) is performed—but not 
recorded—by the curator during the annotation process but they 
are unfortunately not stored in databases. 

 In some cases, the separation is explicit, in other cases, it is 
implicit but the key point is that a mass of information is defi nitely 
lost with no possible recovery. The capture of the output of the 
selection process—at least for the positive content but ideally also 
for a fraction of the negative content—is a minimal requirement to 
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improve text mining methods. The expected impact of the imple-
mentation of such simple data stewardship recommendation is 
likely a game changer for text mining far beyond any hypothetical 
technological advances.  

   Some GO concepts describe entities which are so specifi c that they 
can hardly be found anywhere. This has several consequences. 
Traditional QA systems were recently made popular to answer 
Jeopardy-like questions with entities as various as politicians, town, 
plants, countries, songs, etc.,  see  ref.  47 . In the biomedical fi eld, 
Bauer and Berleant [ 48 ] compare four systems, looking at their 
ergonomics. With a precision in the range of 70–80 % [ 49 ], these 
systems perform relatively well. However, none of these systems is 
able to answer questions about functional proteomics. Indeed, 
how can a text mining system fi nd an answer if such an answer is 
not likely to be found on Earth in any corpus of book, article, or 
patent? The ability to accurately process questions, such as  what 
molecular functions are associated with tp53  requires to supply 
answers, such as “RNA polymerase II transcription regulatory 
region sequence-specifi c DNA binding transcription factor activity 
involved in positive regulation of transcription” and only GO cat-
egorizers are likely to automatically generate such an answer. 

 We may think that such complex concepts could be made sim-
pler by splitting the concept into subconcepts, using clinical termi-
nological resources such as SNOMED CT [ 50 ,  51 ] or ICD-10 
[ 52 ],  see  also Chap.   20     [ 53 ]. That might be correct in some rare 
cases but in general, complex systems tend to be more accurately 
described using complex concepts. The post-coordination meth-
ods explored elsewhere remain effective to perform analytical tasks 
but they make generative tasks very challenging [ 52 ]. Post- 
coordination is useful to search a database or a digital library 
because search tasks assume that documents are “bag of words” 
and they ignore the relationships between these words. However, 
other tasks such as QA or curation do require to be able to mean-
ingfully combine concepts. In this context, the availability of a pre-
computed list of concepts or controlled vocabulary is extremely 
useful to avoid generating ill-formed entities. 

 Answering functional omics questions is truly original: it 
requires the elaboration of a new type of QA engines such as the 
DeepQA4GO engine [ 54 ]. For GO-type of answers, DeepQA4GO 
is able to answer the expected GO descriptors about two times out 
of three, compared to one time out of three for traditional systems. 
We propose to call these new emerging systems: Deep QA engines. 
Deep QA, like traditional QA engines are able to screen through 
millions of documents, but since no corpus contain the expected 
answers, Deep QA is needed to exploit curated biological data-
bases in order to generate useful candidate answers for curators.   

5.2  Assigning 

Unmatchable 

GO Descriptors: 

Toward Deep QA
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6     Conclusion 

 While the chapter started with introducing the reader to how 
text mining can support database annotation, the conclusion is 
that next generation text mining systems will be supported by 
curated databases. The key challenges have moved from the 
design of text mining systems to the design of text mining sys-
tems able to capitalize on the availability of curated databases. 
Future advances in text mining to support biocuration and bio-
medical knowledge discovery are largely in the hands of database 
providers. Databases workfl ows must start recording explicitly 
all the data they curate and ideally also some of the data they do 
not curate. 

 In parallel, the accuracy of text mining system to support GO 
annotation has improved massively from 20 to 65 % (+225 %) from 
2005 to 2015. With almost 10,000 queries a month, a tool like 
GOCat is useful in order to provide a basic functional annotation 
of protein with unknown and/or uncurated functions [ 55 ] as 
exemplifi ed by the large-scale usage of GOCat by the COMBREX 
 database [ 56 ,  57 ]. However, the integration of text mining sup-
port systems into curation workfl ows remains challenging. As 
often stated, curation is accurate but does not scale while text 
mining is not accurate but scales. National and international 
Research Infrastructures should play a central role to promote 
optimal data stewardship practices across the databases they sup-
port. Similarly, innovative curation models should emerge by 
combining the quality and richness of curation workfl ows, more 
cost-effective crowd- based triage, and the scalability of text min-
ing instruments [ 58 ]. 
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