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Abstract 

 

This paper analyzes optimal prevention in a situation of multiple, possibly correlated risks. We focus on 

probability reduction (self-protection) so that correlation becomes endogenous. If prevention concerns 

only one risk, introducing a second exogenous risk increases the level of prevention expenditures, even 

if correlation is negative. If prevention expenditures may be invested for both risks, a substitution effect 

arises. Under non-increasing returns on self-protection, we find that increased dependence increases 

aggregate prevention expenditures, but not necessarily prevention expenditures for each risk due to 

differences in prevention efficiency. Similar results are found when considering changes in the severity 

of losses. Consequently, the comparative statics emphasize global effects versus allocation effects. Our 

results have strong policy implications, considering the numerous mandatory safety measures 

introduced by governments over the past years.  
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Optimal Prevention for Multiple Risks

1 Introduction

Individuals and firms face multiple risks. Some of them are independent but others are

dependent. For example, the risk of damage to the roof is often associated to the risk of

flooding; the risk of releasing hazardous waste in the environment may be associated to

the risk of suffering virus attacks on the information system; the risk of workers’ injuries is

known to be negatively correlated with the credit risk of consumers due to their common

link to the business cycle. Some of the risks may be avoided by taking radical measures,

for example giving up the pleasure of skiing to avoid the risk of a ski accident, or giving

up the development of a new product to avoid potential product liability suits. When

the risks cannot, or should not, be avoided they may be managed by prevention and loss

reduction measures or transferred to an insurer. The paper focuses on prevention as a

risk management tool.

Prevention is an ex-ante activity that reduces the probability of a loss.1 The economic

analysis of prevention started with the seminal work of Ehrlich and Becker (1972) and

has led since then to a flourishing literature (Courbage, Rey, and Treich, 2013). But, the

canonical model, developed along several dimensions, assumes that the decision-maker

(DM) faces only one risk to be mitigated using prevention measures, such as investing in

fire-proof materials to reduce the probability of fire, or investing in locks and alarms to

reduce the probability of burglary. Given that firms and individuals face multiple risks,

the question we ask in this paper is how the decision to prevent one risk interacts with

the decision to prevent other risks. More particularly, we wonder how the characteristics

of the multiple risks and the efficiency of alternative prevention instruments influence

the decision to invest in a specific portfolio of prevention measures. For instance, if we

consider two risks and if the dependence between the two risks increases, will the DM

increase his total investment and the level of both prevention activities? How will he

alter the composition of his portfolio of prevention measures? Our analysis can also help

to predict the effect of imposing mandatory prevention expenditures for one risk on the

decision to prevent other risks.

While the literature on economic decisions in a multiple risk setting is quite abundant,

only a few papers have recently addressed the study of self-protection in the presence

of other risks.2 These papers look at either the relation between self-protection and risk

aversion in the presence of an independent zero-mean background risk (Dachraoui, Dionne,

1 Following Ehrlich and Becker’s (1972) terminology, this activity is also referred to as self-protection.
Throughout the paper we use both terms synonymously.

2 Note, however, the contributions of Briys, Schlesinger, and v. d. Schulenburg (1991) and Schlesinger
(1992) considering the reliability of prevention expenses. There is only one risk in the endowment,
but the possible failure of prevention measures introduces an additional (multiplicative) risk.
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Eeckhoudt, and Godfroid, 2004), or the impact of an independent zero-mean background

risk on self-protection activities in a one-period model (Lee, 2012) or a two-period model

(Eeckhoudt, Huang, and Tzeng, 2012; Courbage and Rey, 2012; Wang and Li, 2015).

Our paper differs markedly from the above literature in three ways. First, we allow for

non-zero correlation between the different sources of risk. This is motivated, among other

things, by recent empirical evidence (Sun and Frees, 2013). Second, we also consider the

decision to prevent both risks simultaneously, and not merely the influence of the second

risk on optimal prevention for the first risk. Third, we derive policy implications from our

analysis by investigating the impact of exogenous changes in the level of prevention for one

risk on the optimal self-protection investment for the other risk. This allows us to assess

the side effects of the numerous mandatory safety measures introduced by governments

and international organizations over the past years.3 We find that raising exogenously the

level of protection for one risk induces a negative impact on the prevention expenditures

for another unregulated risk.

To carry out our analysis, we draw on recent works that model prevention activities in a

two-period expected utility framework. The idea behind this approach stems from the fact

that the decision to engage in prevention activities precedes its effect on the risk, whereas

the one-period model implicitly assumes that the decision to engage in prevention and

its effect on the risk are simultaneous. Such a way to model prevention was introduced

by Menegatti (2009) who investigates the role of prudence in the decision to develop

prevention, and its popularity has since then steadily increased. It has produced new

results on risk aversion and prevention (Menegatti, 2012), on the relationship between

saving and prevention (Menegatti and Rebessi, 2011), it has been used to study the

effect of the introduction of an independent zero-mean background risk on the decision to

prevent a first risk (Eeckhoudt, Huang, and Tzeng, 2012; Courbage and Rey, 2012; Wang

3 For instance, it is now mandatory in most developed countries to install fire detectors (smoke alarms)
at home. In the domain of vehicle safety regulation, the United Nations Economic Commission for
Europe (UNECE) has been particularly active with recommendations ranging from safety belts to
door locks and head restraints, among others. The European Commission (EC) has enacted a General
Product Safety Directive (GPSD) requiring Member States to enforce among producers and distrib-
utors the obligation to place standardized products on the market and to inform consumers of the
risks associated with the products they supply (see http://ec.europa.eu/consumers/archive/

safety/prod_legis/index_en.htm). Specific legislation exists for chemicals, toys, personal pro-
tective equipment, cosmetics, pharmaceuticals, machinery, recreational crafts, and lifts. Recently,
new European standards have been announced to improve the safety of window blinds, follow-
ing reports of fatal accidents involving young children strangulated by loosely hanging cords (see
https://www.cen.eu/news/brief-news/pages/News-2014-005.aspx). These regulations aim at
reducing the probability of costly accidents, but they impose higher costs for producers, distributors,
and consumers.
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and Li, 2015), or in the context of preventive care (Menegatti, 2014).4 As we will point

out later this idea of modeling optimal prevention intertemporally is isomorphic to an

atemporal model in which the cost of prevention are separable. Our analysis illustrates

that the main advantage of this formulation is that the marginal utility cost of preventive

activity remains fixed as we vary parameters on the benefit side, which increases the

tractability of our model.

A consequence is that our approach is quite different from the literature on optimal

insurance purchasing under multiple correlated risks (Doherty and Schlesinger, 1983b;

vd Schulenburg, 1986; Briys, Kahane, and Kroll, 1988). This also helps to explain why

some of our results are very different from prior findings. In the insurance case, the

main tool has been the canonical monoperiodic model of insurance demand as introduced

by Mossin (1968) and Smith (1968) and extended in various directions. Here, both the

marginal utility cost and the marginal utility benefit are affected by changes in exogenous

parameters.

Our analysis proceeds along the following lines. First, we look at how the characteristics of

one risk affect the decision to lower the probability of loss of the other risk. We show that

introducing a second possibly correlated risk increases prevention for the endogenous risk,

independently of the sign of correlation. We also show that if the overall risk faced by the

DM is higher, through either a higher loss or a higher probability for the second risk, or a

higher interdependence between the two risks, then the DM carries out more prevention

with respect to the first risk. Secondly, when we consider the decision to prevent both

risks simultaneously, we are able to define conditions under which the level of prevention

directed at one risk is higher than the level of prevention directed at the other risk.

Thirdly, we show that a substitution effect arises between both prevention measures, with

important implications for regulation in the field of risk management. Our results do not

replicate the results obtained in the literature on compulsory insurance in a multiple risk

setting (vd Schulenburg, 1986) where the sign of correlation - positive or negative - plays a

major role. This is due to reasons indicated above and will be made clearer in the course of

the analysis. Fourthly, we consider the effect of interdependence on optimal expenditures

on self-protection. It turns out that a higher dependence increases overall prevention

expenditure, as expected, but the impact is not the same on both prevention instruments.

It may happen that one kind of expense increases and the other is reduced. Similarly, an

increase in the size of a loss for one risk increases overall prevention expenditure, but does

not necessarily increase prevention expenses for the individual prevention instruments. To

4 Note, however, that two-period prevention models might collapse to their monoperiodic counterparts
when saving is endogenized (Hofmann and Peter, 2015b). As we focus on prevention, we do not
include saving in the analysis.
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the best of our knowledge, these effects have not been explicitly addressed in the existing

literature so far.

The paper is organized as follows. In the next section, we introduce the general model.

In section 3, we consider only one endogeneous risk and investigate how the decision

to prevent this risk is influenced by the properties of the second risk. In section 4, we

consider both risks to be endogeneous and compare the optimal level of prevention for

each of them. Then we develop some comparative statics to address the interdependency

between the two preventive activities. A short conclusion is provided in the last section.

2 The General Model

Let us consider a decision-maker confronted with two risks. The first risk shall be given as

ε̃ with outcomes −l and 0, i.e., the individual might suffer a loss of l > 0. The probability

of loss is given by p ∈ (0, 1). The second risk is symmetric in structure and is given by

ζ̃ with outcomes −g and 0, i.e., the individual might suffer a loss of g > 0. The loss

probability shall be denoted as q ∈ (0, 1) for the risk ζ̃.

Regarding the joint distribution we allow for correlation between the two risks meaning

that the distribution of (ε̃, ζ̃) need not necessarily be given by the product distribution of

the two single risks. Consistent with Sun and Frees (2013), who find evidence of positive

correlation between the relative frequency of homeowners and auto insurance claims, we do

not want to limit ourselves to independent risks as most prior literature. To parametrize

this situation of stochastic dependence, we introduce the parameter k that describes to

what extent the probability of occurrence of both losses deviates from the product of the

individual loss probabilities. We call k a measure of (inter)dependence and assume it to

be exogenous to the analysis.5 With this convention, four states of nature are possible

with their respective probabilities:

- Both losses of l and g with probability kpq,

- only the loss of l with probability p(1− kq),

- only the loss of g with probability q(1− kp),

- and no loss at all with probability 1− p− q + kpq.

5 Naturally, when considering self-protection, correlation can no longer be exogenous. Inspired by
similar treatments of the standard portfolio problem (see Gollier, 2001, chapter 4), we introduce an
exogenous parameter to facilitate comparative statics analysis. Assuming k to remain constant when
p (or q) changes with self-protection expenses amounts to assuming that the conditional probability
of the loss l (or g) given that the loss g (or l) has occurred changes in the same proportion as the
unconditional probability.
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Doherty and Schlesinger (1983a) use a related framework to analyze the impact of corre-

lated uninsurable background risks on the demand for insurance against insurable fore-

ground risks. Rey (2003) extends their approach to the study of a nonpecuniary correlated

background risk and Courbage and Rey (2007) use it to study the implications of correla-

tion between a financial and a nonpecuniary risk on precautionary saving. One property

of this formulation is that the marginal distributions for risk ε̃ and ζ̃ collapse to the well-

understood distributions with two states of the world.

Unlike Eeckhoudt, Huang, and Tzeng (2012) who study prevention decisions in the pres-

ence of an independent second risk with a zero mean, our second risk has a negative mean

because no outcome increases final wealth, and it is allowed to be correlated with the first

risk. This is apparent when calculating the correlation coefficient between the two risks:

τ(ε̃, ζ̃) = (k − 1)

√
p

1− p
· q

1− q
.

Hence, a parameter of k = 1 represents uncorrelated risks, k > 1 positively correlated

risks, and k < 1 negatively correlated risks.6 Note that the strength of correlation is

monotonically linked to the size of k for given loss probabilities p and q. Exploiting the

fact that the probabilities of each event are between zero and one, we can determine

thresholds for k. It is easy to see that k must be in the following interval:[
max

(
0,
p+ q − 1

pq

)
,min

(
1

p
,
1

q

)]
.

In this sense, the plausible range for values of k depends on both individual loss proba-

bilities but it always contains 1.7 Note that the case of k = 0 = (p+ q − 1)/pq resembles

perfect negative correlation (τ = −1) whereas if k = 1/p = 1/q we obtain perfect positive

correlation (τ = 1). These are rather technical cases. Furthermore, if k = 0, the proba-

bility of both losses and of the second loss only do not depend on the probability of the

first loss.

Regarding the time structure of our model we assume two points in time, t1 and t2. We

make this assumption as we follow some recent works where prevention is modeled in

6 Examples are floods and damages from wind which are positively correlated risks, or damages to
one’s home and vehicle accidents (k > 1). In a firm, credit risk and workers’ injuries are negatively
correlated risks, due to their dependence on the business cycle (k < 1).

7 It is hard to characterize it more explicitly because as soon as prevention is introduced, the param-
eter k influences prevention expenditures which determine loss probabilities which determine the
admissible k values. This is related to the endogeneity of correlation in prevention problems. In
the majority of applications the loss probabilities can safely be assumed to be below 0.5 so that the
interval ranges from 0 to at least 2.
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a two-period setting (see Menegatti, 2009).8 We assume utility to be separable across

time with first-period preferences given by the vNM utility function u, and second-period

preferences given by the vNM utility function v. Utility is increasing in wealth in each

period (u′(.) > 0 and v′(.) > 0) and the individual is risk-averse in both periods (u′′(.) < 0

and v′′(.) < 0). Given these assumptions, the individual’s expected utility reads as:

u(w) + Ev(w2 + ε̃+ ζ̃).

To compress notation we define wNN := w2, wLN := w2 − l, wNL := w2 − g, and

wLL := w2 − l − g, where subscript N denotes “no-loss” and subscript L denotes “loss”.

The first letter of the subscript refers to the first risk (ε̃), the second letter of the subscript

refers to the second risk (ζ̃). With this notation, expected utility becomes

u(w) + (1− p− q + kpq)v(wNN) + p(1− kq)v(wLN)

+ q(1− kp)v(wNL) + kpqv(wLL).

Furthermore, we use the conventions α := v(wNN) − v(wLN), β := v(wNL) − v(wLL),

γ := v(wNN)− v(wNL), and δ := v(wLN)− v(wLL). Note that α− β = γ − δ < 0 due to

risk aversion.

3 One Endogenous Risk

In this section, we study how the characteristics of one risk affect the decision to lower the

probability of loss from another risk. We look at a situation where one of the two risks

is endogenous, as the individual can invest in self-protection. Prevention expenditures

of x at t1 lead to a reduction of the loss probability to p(x) in the next period t2. The

individual’s maximization problem is therefore given as

max
x

{
u(w − x) + (1− p(x)− q + kp(x)q)v(wNN) + p(x)(1− kq)v(wLN)

+ q(1− kp(x))v(wNL) + kp(x)qv(wLL)

}

with associated first-order condition

Tx = −u′(w1)− p′(1− kq)
(
v(wNN)− v(wLN)

)
− kp′q

(
v(wNL)− v(wLL)

)
= −u′(w1)− p′(1− kq)α− kp′qβ = 0.

8 The important assumption is that we are able to separate the marginal cost of prevention from the
marginal benefit. Another modeling approach to achieve this would be a monoperiodic set-up with
a non-monetary cost of effort as indicated in the introduction.
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T denotes the objective function and subscript x indicates the respective derivative. w1 is

shorthand for the (endogenous) wealth level at t1, i.e., w1 = w − x, and the second-order

condition holds under risk aversion and standard assumptions on prevention technology,

i.e., p′ < 0, p′′ > 0. Let x∗ denote the solution to the first-order condition, i.e., the

optimal level of self-protection expenditures.9

The first term of the FOC represents the marginal utility cost of prevention, i.e., the

reduction in first-period utility due to an infinitesimally small increase in self-protection

expenditures. The second and third terms represent the marginal utility benefit of pre-

vention, i.e., the expected increase of second period utility due to a reduction in the loss

probability p. More precisely, the second term is the marginal benefit of prevention condi-

tional on the loss g not occurring while the third term is the marginal benefit conditional

on the loss g occurring. Also note that we can rearrange the marginal utility benefit to

−p′α + kp′q(α− β) where the first term describes the marginal benefit of self-protection

in the absence of the second risk and the second one how the presence of the second risk

enters the trade-off.

A straightforward question is how the presence of the exogenous second risk influences

self-protection expenditures on the endogenous first risk. Let us compare the optimal

decision under the absence of the exogenous risk to the situation characterized above. If

the second risk is not present, the DM chooses to maximize

V (x) = u(w − x) + p(x)v(w2 − l) + (1− p(x))v(w2),

with associated first-order condition

Vx = −u′(w − x̄)− p′(x̄)α = 0,

where x̄ represents optimal self-protection expenditures in the single-risk case. Note that

the second-order condition holds generically in this case. Next, we evaluate the first-order

expression in the two-risk situation at the optimal self-protection expenditures in the

single-risk situation. This yields

Tx(x̄) = −u′(w − x̄)− p′(x̄)(1− kq)α− p′(x̄)kqβ

= p′(x̄)α− p′(x̄)α + p′(x̄)kq(α− β)

= p′(x̄)kq(α− β).

9 By defining c(x) = u(w) − u(w − x) and rewriting T (x) = u(w) + Ev(w2 + ε̃) − c(x), we see that
the two-period self-protection model is isomorphic to a model with an increasing and convex cost
function that is separable.
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This is strictly positive if k is positive and zero if k is zero. Due to the second-order

condition this implies that the introduction of the second risk cannot reduce self-protection

expenditures on the first risk and increases them in all cases where k is positive. This is

summarized in the following proposition.

Proposition 1. Optimal self-protection expenditures for risk ε̃ increase when the exoge-

nous risk ζ̃ is introduced for any k > 0. They remain constant if k = 0.

It is not surprising that the dependence parameter k, positively linked to the correlation

coefficient for given p and q, has a positive influence on the difference between x∗ and x̄.

If k increases, Tx increases and so do self-protection expenses (see Proposition 2 below).

What seems more surprising is to observe that x∗ > x̄ , for any non-zero k, independently

of the sign of correlation. It is well-known in the financial and insurance literature on

multiple risks that a negative correlation coefficient has a mitigating impact on the overall

risk faced by the DM. Schlesinger and Doherty (1985) note that the willingness to insure

an insurable risk is reduced if a second negatively correlated risk introduces a strong

diversification effect in the final wealth. In the limit, the demand for insurance is zero if

the second risk offsets completely the insurable risk so that final wealth is non-random.

This is a case of “homemade hedging” (see vd Schulenburg, 1986, Proposition 2).10 Our

two-period model of self-protection is very different in that only the marginal benefit is

affected by the introduction of the second risk, which explains the different result.

We can rewrite second-period expected utility in the presence of both risks in the following

vein:

(1− p(x))v(wNN) + p(x)v(wLN)− q
[
γ + kp(x)(δ − γ)

]
.

The first part is expected utility when only the first risk is present. From this, a utility

loss is subtracted due to the introduction of the second risk. Clearly, a risk-averse DM

would be better off if the second risk was absent. Now what is the effect of dependence?

In the case where k = 0, correlation embraces its lowest value and the utility loss is a

deadweight loss because it is not affected by changes in self-protection. Consequently,

there will be no behavioral change even if the DM is worse off by the introduction of the

second risk. As soon as k is positive, there is a link between the marginal distribution of

the first risk and the overall distribution. We can also see this in the utility loss: When

self-protection increases, the probability of the first loss decreases so also the probability

of both losses decreases. Similarly, when self-protection increases, the probability of not

suffering the first loss increases and so does the probability of suffering only the second

loss. From risk aversion we know that the reduction in utility from suffering a loss is

10 In this case, a positive demand for insurance would reduce the compensating effect, with no impact
on expected wealth if the insurance premium is fair. This would be unfavorable for the DM.
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smaller when rich than when poor, i.e., when the other loss has not happened than when

it has happened. Technically, δ > γ so that the net effect of self-protection on the utility

loss is positive when k > 0. So besides the effect from the single-risk case there is an

additional incentive to invest in prevention because the utility loss from the second risk

can be mitigated “en passant”.

Our result also contrasts the finding in Eeckhoudt, Huang, and Tzeng (2012) that the

introduction of an independent zero-mean background risk in the second period increases

optimal prevention if and only if the DM is prudent. In our case the introduction of

the second risk increases expenditures on self-protection (whenever k > 0) by risk aver-

sion alone, i.e., prudence is not required. The reason is that the second risk here is a

loss risk so that it can only deteriorate (or leave unchanged) the outcomes from the first

risk. By risk aversion it follows that the utility loss from suffering the first loss is larger

when the second loss has occurred than when it has not, technically β > α. As a result

the first-order expression as a function of x in the presence of the second risk is weakly

above the first-order expression in its absence, and strictly for k > 0. As a result opti-

mal self-protection expenditures should increase indendent of the sign of the third utility

derivative.11

We make two observations before we proceed. Let us first note that introducing a cor-

related second risk induces regression towards no correlation resulting from the DM’s

behavioral reaction.12 Furthermore, Proposition 1 also holds for actuarially fair preven-

tion for which the expenditures coincide with the expected monetary benefit13 so that

expected intertemporal consumption is constant.

As a next step we study how properties of the risk ζ̃ and specifically the extent of inter-

dependence affect the selected level of the preventive investment. In this sense, we relate

the riskiness of the second risk to the amount invested in self-protection for the first risk.

The results are summarized in the following proposition.

11 A consequence of the fact that the second risk is a loss risk and has only non-positive outcomes is that
its mean is negative unlike the second risk in Eeckhoudt, Huang, and Tzeng (2012). However, with
risk aversion only this property alone is not sufficient for an increase in self-protection expenditures
as a negative mean does not preclude strictly positive outcomes which would upset our reasoning.
So the important property is really that the second risk is a loss risk.

12 When a second risk is introduced, self-protection expenditures will be adjusted and this in turn affects
correlation. Technically, the correlation coefficient is increasing (decreasing) in the probability p of
loss l if and only if k > 1 (k < 1). For this reason, introducing a positively correlated second risk
leads to a fall in p and a decrease in correlation, whereas introducing a negatively correlated second
risk leads also to a fall in p, but an increase in correlation.

13 In this case, the self-protection technology must be linear with p′(x) = −1/l.

10
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Proposition 2. For k > 0, the DM exerts more prevention on risk ε̃ with

i) a larger loss probability for risk ζ̃,

ii) a more severe loss for risk ζ̃,

iii) increased dependence between the two risks.

Proof. The second-order condition is satisfied, i.e., Txx < 0. Hence, when varying an

exogenous parameter, we have to inspect the sign of the derivative of the first-order

condition with respect to this parameter. This yields

Txq = kp′(α− β) > 0,

Txg = kp′q(v′(wNL)− v′(wLL)) > 0,

Txk = p′q(α− β) > 0.

To explain the intuition behind Proposition 2, first note that the marginal utility cost of

prevention is not affected by the variations under consideration. Hence, we focus on the

marginal benefit to rationalize the results. We draw on the following figure that represents

the marginal utility benefit of the decision to engage in self-protection in our set-up.14

Figure 1 – Illustration of the marginal utility benefit

As said before, the marginal benefit has two components, one conditional on the loss g

not occurring (upper branch) and the other conditional on the loss g occurring (lower

branch). When q increases, it decreases the weight of the marginal benefit of prevention

when the loss g has not occurred, and it increases the weight of the marginal benefit

of prevention in the presence of the loss g. However, due to risk aversion, the utility

difference between the states in which loss g has not occurred (α) is smaller than the

utility difference between the states in which loss g has occurred (β). This is the same

type of argument as made before. Consequently, the net effect on the marginal utility

benefit of prevention is positive implying that expenditures increase.

14 We thank Harris Schlesinger for suggesting this graphical approach.
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An increase in the loss size of the second risk only affects the marginal utility benefit

conditional on this loss occurring. Due to diminishing marginal utility an increase in

g increases the pain from suffering the loss l, because the utility difference of a given

income difference is larger at low wealth levels than at high wealth levels. Consequently,

it is more beneficial to prevent the first loss knowing that the second loss has occurred.

This explains the positive sign of Txg.

Increasing interdependence shifts probability mass from the states of the world in which

only one loss occurs to the states of the world where either both losses occur or neither

does. p′qα measures by how much the marginal benefit of preventing l conditional on

g not occurring decreases due to an increase in dependence. The intuition is that with

increased interdependence, knowing that g has not occurred makes it less likely for l to

occur. Similarly, −p′qβ measures the increase in the marginal benefit of preventing l

conditional on g occurring due to increased dependence. Knowing that g has occurred,

increased interdependence makes it more likely that also l will occur, so preventing this

loss is more valuable. The overall effect is again positive due to the fact that risk aversion

leads to a larger difference in utility conditional on g having occurred than conditional

on g not having occurred. It becomes apparent that even with only one endogenous risk,

the interdependence between the two risks influences the optimal course of action.

Proposition 2 says that if the overall risk faced by the individual is higher, through either

a higher loss of risk ζ̃, a higher loss probability of risk ζ̃, or a higher dependence between

the two risks, he carries out more prevention with respect to the risk ε̃. In this sense, a

correlated risk impacts optimal decisions even if it is completely exogenous, but we do not

seem to observe any hedging effects because the sign of correlation is irrelevant for our

findings. Some clarifications are in order. When investigating the value function of the

DM’s maximization problem, a direct application of the envelope theorem reveals that

dT

dk
(x∗) = Tx(x

∗)
∂x

∂k
+ Tk(x

∗) = Tk(x
∗) = p(x∗)q(α− β),

because self-protection is adjusted when dependence changes. Due to diminishing marginal

utility we know that α < β so that, of course, the DM is worse off with stronger depen-

dence. In this sense, there is a hedging effect when considering the individual’s expected

utility: Risk aversion implies that stronger negative correlation between the two risks is a

good thing for the DM. Said differently, the DM’s willingness to pay to decrease interde-

pendence is strictly positive. Still, when it comes to his behavioral response, we see that

in our two-period prevention model the sign of correlation does not play any specific role.
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4 Both Risks Endogenous

We now assume that both p and q may be reduced by expenditures x and y, respectively,

that are made in t1. Moreover, we assume non-increasing returns on self-protection. We

define the (technical) rate of return on self-protection expenditures x by

ρ(x) := lim
∆x→0

(
p(x)− p(x+ ∆x)

p(x)

1

∆x

)
= −p

′(x)

p(x)
,

and analogously σ(y) for loss prevention expenditures y.15 Assuming non-increasing re-

turns on self-protection means dρ(x)
dx
≤ 0, which is equivalent to −p′(x)

p(x)
≤ −p′′(x)

p′(x)
. The

assumption of non-increasing returns implies that prevention technologies are convex

(p′′, q′′ > 0), which is a standard assumption in the literature (Courbage, Rey, and Tre-

ich, 2013). Said differently, convexity is a necessary condition for having non-increasing

returns on self-protection. In this sense, we have to strengthen the assumptions in our

multiple risk setting slightly as compared to the analysis of prevention for single risks.

Another comparison is the following: Whereas convexity assumes that the absolute de-

crease in loss probability does not increase, the assumption of non-increasing returns on

self-protection corresponds to the fact that the percentage decrease in the loss probability

does not increase. Rearranging the definition, we obtain for an infinitesimal increase in

self-protection expenditures ∆x that (p(x) − p(x + ∆x))/p(x) = ∆x · ρ(x); accordingly,

as we spend more on self-protection the percentagewise reduction of the loss probability

cannot become larger, see also Hofmann and Peter (2015a).

With this specification, the maximization problem is given by16

max
x,y

{
u(w − x− y) + (1− p(x)− q(y) + kp(x)q(y))v(wNN)

+p(x)(1− kq(y))v(wLN) + q(y)(1− kp(x))v(wNL) + kp(x)q(y)v(wLL)

}

Let T denote the objective function and let w1 again be shorthand for the (endogenous)

wealth level at t1. Then, associated first-order conditions are given as

Tx =− u′(w1)− p′(1− kq)
(
v(wNN)− v(wLN)

)
− kp′q

(
v(wNL)− v(wLL)

)
=− u′(w1)− p′(1− kq)α− kp′qβ = 0,

Ty =− u′(w1)− q′(1− kp)
(
v(wNN)− v(wNL)

)
− kpq′

(
v(wLN)− v(wLL)

)
=− u′(w1)− q′(1− kp)γ − kpq′δ = 0.

15 ρ(x) measures by how much the loss probability decreases at the margin relative to the current
probability of loss. Alternatively, it may be called the absolute decay rate of the loss probability.

16 As mentioned earlier, an alternative specification would be a model with separable cost of effort. If
the disutility is an increasing and convex function of aggregate effort, all our results go through.
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The optimal expenditures on self-protection are denoted as (x∗∗, y∗∗). Second-order con-

ditions are assumed to hold for maximality.17 Note that the marginal utility cost of both

self-protection instruments are equal. As a result, also the marginal benefits coincide at

an optimum. Intuitively, a marginal dollar increases second-period expected utility by

the same amount whichever technology it is invested in.

We first investigate whether Proposition 1 still holds when the second risk introduced

is endogenous. By applying Proposition 1 to the risk ζ̃ with probability q (y∗∗) and the

given k, we confirm that also the introduction of an endogenous second risk raises optimal

expenditures on the first risk for any positive k. Next we can study how expenditures

for the risks ε̃ and ζ̃ compare to each other. Specifically, we investigate the conditions

under which more money will be spent on preventing risk ε̃ than risk ζ̃. Intuitively, this

depends on the rate of return of self-protection expenditures x and y and on the severity

of the losses under consideration. The technical procedure for the comparison is provided

in Gollier (2001), p. 151, and we will formulate it as a lemma.

Lemma 1. Let f : R2 → R be a concave function in the variables (x, y) and (x∗∗, y∗∗) be

the local maximum implicitly defined via the first-order conditions. For a given x ∈ R it

holds that x∗∗ > x if and only if fx(x, ŷ) > 0 where ŷ is the value that maximizes f(x, y).

Proof. See Hofmann and Peter (2015b).

We now apply Lemma 1 to the self-protection situation outlined above with two endoge-

nous levels of expenditures. The result is summarized in the following proposition and we

will develop some intuition afterwards.

Proposition 3. Prevention expenditures for risk ε̃ will be larger than for risk ζ̃ if and

only if the marginal benefit of preventing ε̃ is larger than the marginal benefit of preventing

ζ̃ when evaluated at (y∗∗, ŷ), with ŷ solving maxy T (y∗∗, y).

Proof. According to Lemma 1 we first carry out the maximization maxy T (y∗∗, y) to obtain

optimal expenditures ŷ if x is set to y∗∗. ŷ is defined via the first-order condition

−u′(w − y∗∗ − ŷ)− q′(ŷ)(1− kp(y∗∗))γ − kp(y∗∗)q′(ŷ)δ = 0.

17 Under the assumptions that the self-protection technology x provides a return at least as large as self-
protection technology y, that returns on self-protection are non-increasing, and that −q′′/q′ ≥ −p′/p,
which we will introduce later to prove Proposition 6, one can show that the second-order conditions
are satisfied, see the appendix.
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Now the first-order expression with respect to x evaluated at (y∗∗, ŷ) is given by

Tx(y
∗∗, ŷ) = −u′(w − y∗∗ − ŷ)− p′(y∗∗)(1− kq(ŷ))α− kp′(y∗∗)q(ŷ)β

= q′(ŷ)(1− kp(y∗∗))γ + kp(y∗∗)q′(ŷ)δ − p′(y∗∗)(1− kq(ŷ))α− kp′(y∗∗)q(ŷ)β

= MBx(y
∗∗, ŷ)−MBy(y

∗∗, ŷ),

where MBx(MBy) denotes the marginal benefit arising from prevention expenditures

x(y).

By inspecting the technical condition further one can isolate two effects which we sum-

marize in the following corollary.

Corollary 1. The comparison of prevention expenditures for risk ε̃ and for risk ζ̃ involves

two effects,

- a comparative efficiency effect,

- and a comparative loss size effect.

To see this rearrange Tx(y
∗∗, ŷ) in the following way:

(α− β)k
(
p′(y∗∗)q(ŷ)− p(y∗∗)q′(ŷ)

)
+
(
q′(ŷ)γ − p′(y∗∗)α

)
.

The first summand describes a comparative efficiency effect. Under the assumption that

ρ(y∗∗) ≥ σ(ŷ), it is non-negative indicating that more prevention should be carried out

for risk ε̃ than for risk ζ̃. Furthermore, this effect is increasing in the interdependence

between the two risks (k) meaning that the more the two risks are correlated the more

weight has to be attached to the comparison of the efficiency of the two technologies.

Lastly, this effect is also related to the comparison of the loss in utility when going from

one loss to two losses (α − β). The more painful it is to suffer the second loss the more

relevant becomes this comparative efficiency effect.

However, it is not sufficient to have one technology more efficient than the other to arrive

at an unambiguous result. The second effect relates the marginal benefit of prevention

expenditures in the absence of the other loss. It is positive if and only if

−p′(y∗∗)(v(wNN)− v(wLN)) > −q′(ŷ)(v(wNN)− v(wNL))

so that the relative loss sizes are decisive. In short, the overall sign of Tx(y
∗∗, ŷ) is

ambiguous since the second term might be negative even if x provides more prevention

efficiency than y. In the following, we illustrate two special cases in a corollary. Both are

conditional on evaluation at (x, y) = (y∗∗, ŷ) as prescribed by Lemma 1.
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Corollary 2. Assume equal loss sizes; with a lower loss probability, but higher marginal

loss probability for risk ζ̃ than risk ε̃, expenditures to prevent ε̃ are larger. Assume equal

loss probabilities; then, higher prevention expenditures will be incurred for the risk with

the larger loss size.

The intuition is fairly straightforward. In the first case, the second effect in Corollary

1 is nil because both losses are equally severe. Then, the technology with the lower

probability of loss but the higher marginal probability of loss provides more prevention

efficiency so that more money should be spent to prevent this risk. In the second case,

prevention efficiency is identical for both technologies so that the comparative loss size

effect is decisive. Finally we remark that little can be said about the relative strength of

the two effects in the generic case.

5 Comparative Statics

Next we study how an optimal bundle of prevention expenditures reacts to changes in

exogenous variables. In order to look at the interaction between the two decisions we first

look at the reaction functions, i.e., we investigate how the optimal expenditures to protect

against one risk react to a change in the expenditures to protect against the other risk

and inversely. The joint optimum is obtained when both curves intersect. The following

observation is of crucial importance and will be utilized in the rest of the paper.

Proposition 4. In equilibrium there is a substitution effect between preventive expendi-

tures for risk ε̃ and for risk ζ̃.

Proof. Differentiating Tx with respect to y and Ty with respect to x gives:

Txy = Tyx = u′′(w − x− y) + kp′q′
(
α− β

)
< 0

for u′′ < 0 and v′′ < 0. This means that the optimal value of x decreases following an

exogenous increase of y and conversely.

One direct consequence of the substitution effect is that in case of multiple equilibrium

pairs that maximize the DM’s utility we obtain that the equilibrium prevention expen-

ditures for one risk are a decreasing function of the equilibrium prevention expenditures

for the other risk. Loosely speaking we could say that the equilibrium pairs exhibit anti-

monotonicity. This result corresponds to Menegatti and Rebessi’s (2011) for prevention

and saving. Note that multiple equilibria are only possible if the second-order condition

does not hold globally. The appendix provides sufficient conditions for obtaining a unique

equillibrium.

The intuition behind the substitution effect between the two prevention measures is
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twofold. First, resources are scarce and with an exogenous increase of expenditures on

one prevention measure first-period consumption is lower. This increases the marginal

cost of prevention for the other measure. Second, the marginal benefit is affected. The

marginal benefit conditional on the other loss not occurring is increased due to the fact

that higher prevention expenditures to prevent the other loss make the state of the world

in which it does not occur more likely. Similarly, the marginal benefit conditional on the

other loss occurring is decreased because higher prevention expenditures to prevent the

other loss make the state of the world in which it does occur less likely. The overall effect

is negative, i.e., the second effect prevails, again due to diminishing marginal utility.

Note that this result is independent of the sign of correlation and has public policy impli-

cations. It implies that there are compensating reactions when the government imposes

mandatory prevention expenditures on one kind of risk, for example fire, car accidents, or

elevator accidents.18 Individuals and firms react by cutting self-protection expenditures

on other risks. Therefore, the policymaker needs to take these reactions into account when

changing safety requirements for specific risks, as unintentional increases in the exposure

to other risks might decrease or even outweigh the gains from increased safety for the first

risk. For reasons explained in the previous section, this substitution result is in contrast

with comparable results in the literature on the demand for insurance with multiple risks.

There, mandatory insurance requirements for one risk increase the insurance demand for

the other risk if the two risks are negatively correlated (vd Schulenburg, 1986). We will

repeatedly draw on the substitution effect for the remainder of the comparative statics

analysis.

5.1 Effect of Interdependence

We start with dependence to analyze how the optimal values of both x and y vary when

the extent of interdependence is increased.19 Intuitively one could think that when risks

become more positively correlated, the expenditures to reduce the probability of each one

increase. But as we know from Proposition 4, substitution between both measures of

prevention might upset this effect. To smooth the exposition we make the assumption

that without loss of generality expenditures x provide a return on self-protection at least

18 An example is mandatory safety equipment that vehicle drivers in many countries have to carry with
them. For more examples, see Footnote 3.

19 Note that
dτ

dk
=

√
p

1− p
· q

1− q

(
1 +

k − 1

2

[
1

p(1− p)
∂x

∂k
+

1

q(1− q)
∂y

∂k

])
,

so that increased interdependence as measured by k might lower or increase the correlation coefficient
τ when behavioral adjustments are taken into account. At the no-correlation case, i.e., for k = 1
the analogy is perfect meaning that marginal increases of k are associated with marginal increases
in the correlation coefficient and vice versa.
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as large as expenditures y.20

Totally differentiating the two first order conditions with respect to k and applying the

implicit function rule yields:

sgn

(
dx

dk

)
= sgn(−TyyTxk + TxyTyk).

We drop the arguments of utility to compress notation and rearrange as follows:

−TyyTxk + TxyTyk = (α− β)
[
−u′′(p′q − pq′) + (α− β)kpp′((q′)2 − qq′′) + γp′qq′′

]
.

The sign of the first summand in squared brackets is determined by (p′q−pq′) and depends

on the relative efficiency of the two prevention opportunities. It is non-positive under the

assumption that the return on self-protection for expenditures x is at least as large as

for expenditures y. The sign of the second summand in squared brackets depends on

the expression (q′)2 − qq′′. It is non-positive whenever − q′

q
≥ − q′′

q′
. This is equivalent

to the assumption of non-increasing returns on self-protection as presented in section 4.

Note that, although we are interested in how x is affected, we make the assumption that

prevention technology y satisfies the non-increasing returns property. Intuitively, the fact

that y loses efficiency when used more reinforces the use of x and vice versa. Finally, the

last term in squared brackets is unambiguously negative and measures the direct impact

of increased interdependence on self-protection expenditures x. As a result the squared

bracket is negative; multiplied by (α − β), which is itself negative, the overall sign is

positive.

Hence, increased dependence between the two risks enhances prevention expenditures for

the more efficient technology. From above we see that the sign of dx/dk is driven by

two competing effects. As demonstrated in Proposition 2, there is a direct effect that

leads to more prevention with increased dependence, because the increase in marginal

utility benefit of prevention on one risk conditional on the other risk occurring is larger

than the decrease in marginal utility benefit of prevention on one risk conditional on the

other risk not occurring. This is contained in −TyyTxk which is unambiguously positive.

However, an increase in prevention on one risk increases the marginal utility cost and

lowers the marginal utility benefit for preventing the other risk, i.e., Txy < 0, so there

20 More precisely, as we study the impact of interdependence in this subsection, we take into account
that each level of dependence k implies optimal self-protection expenditures x∗(k) and y∗(k) accord-
ing to the first-order conditions. Thus we can define the rate of return on self-protection as function
of k, i.e., ρ(k) := ρ(x∗(k)) and σ(k) := σ(y∗(k)) and postulate that ρ(k) ≥ σ(k)∀k. This means that
technology x provides a return on self-protection which is at least as large as that of technology y
for all respective pairs of optimal self-protection expenditures.
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is a substitution effect, see Proposition 4. As demonstrated above the assumptions of x

providing a return on self-protection at least as large as y and non-increasing returns to

self-protection are sufficient to guarantee that for the more efficient technology the direct

effect prevails.

Similarly, we can determine how prevention expenditures for q react to changes in the

interdependence measure k. This yields

sgn

(
dy

dk

)
= sgn(TxyTxk − TxxTyk),

with

TxyTxk − TxxTyk = (α− β)
[
u′′(p′q − pq′) + (α− β)kqq′((p′)2 − pp′′) + αpp′′q′

]
.

The analysis is as above. Note, however, that the first summand of the expression in

squared brackets is non-positive as we assume y to provide a return on self-protection

not exceeding that of x. This explains why the effect of increased dependence on y is

ambiguous.

Lastly, we can determine how overall prevention expenditures react to changes in the

level of interdependence. Let D be the determinant of the Hessian; then, after some

simplifications and using the definitions given above we arrive at

d(x+ y)

dk
=

dx

dk
+
dy

dk

= − 1

D
(α− β)2kpp′qq′

[
ρ′

ρ
+
σ′

σ

]
− 1

D
(α− β)pq [ασp′′ + γρq′′] ,

which is unambiguously positive. Note that the comparative efficiency effects cancel out

so only the effects due to non-increasing returns on self-protection and the direct effects

remain. We summarize the analysis in the following proposition.

Proposition 5. Increasing dependence increases aggregate prevention expenditures un-

der non-increasing returns on self-protection. It increases also expenditures on the more

efficient technology, whereas the effect on the less efficient technology is ambiguous.

These results highlight the specificity of self-protection when considered in a multiple risks

setting. The comparative efficiency of alternative prevention instruments plays a major

role and may lead to observe a simultaneous increase in the use of one instrument and

a decrease in the use of the other instrument although the two risks have become more

interdependent. Furthermore, Proposition 5 illustrates that aggregate effects are more

pronounced then allocation effects.
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5.2 Impact of Loss Size

We now study the question how changes in the severity of loss affect the optimal amount

of self-protection expenditures carried out by the agent. One might intuitively think that

an increase in the size of the loss increases prevention expenditures for this risk, but

decreases expenditures for the other risk due to substitution between the two prevention

opportunities. This assumption is, however, misleading due to the fact that increasing

the loss size of one risk also exerts a positive effect on prevention expenditures for the

other risk, as stressed in Proposition 2. In this subsection, we investigate the conditions

to arrive at an unambiguous result.

Totally differentiating the first-order conditions with respect to l and applying the implicit

function theorem yields:

sgn

(
dx

dl

)
= sgn(−TyyTxl + TxyTyl).

As already mentioned, the first term (−TyyTxl) indicates a positive direct effect, whereas

the second term (TxyTyl) a negative substitution effect. To shed light on the net effect,

we use the following rearrangement:

−TyyTxl + TxyTyl = u′′
[
k(v′LL − v′LN)(p′q − pq′) + p′v′LN

]
+k2pp′(α− β)(v′LN − v′LL)

[
(q′)2 − qq′′

]
+
(
kp′qq′′γ(v′LN − v′LL) + kpp′q′′(α− β)v′LN − p′q′′γv′LN

)
.

The first term describes a comparative efficiency effect that favors the more efficient pre-

vention technology. Under the assumption that x provides a return on self-protection

as least as large as y, this effect is positive indicating that expenditures on x should be

increased. The second term is again non-negative under the assumption of non-increasing

returns on self-protection. As before, although we focus on the first risk here, this assump-

tion has to be made about the technology addressing the second risk. Finally, the last

term is unambiguously positive reflecting the initial intuition. Hence, we can conclude

that an increase in the loss size l unambiguously increases loss prevention expenditures on

x under the assumptions made. In this sense, if x provides a return on self-protection at

least as high as y does, the direct positive effect dominates the negative substitution effect

and therefore, if the loss associated with risk ε̃ becomes more severe, this unambiguously

leads to an increase of the self-protection investment x.

Next let us analyze how an increase in l affects prevention expenditures on y. Proposition

2 gives rise to the conjecture that with a larger loss for risk ε̃ also prevention expenditures

regarding risk ζ̃ should increase. However, due to the substitution effect between the two
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types of expenditures matters are more complex. The implicit function rule implies

sgn

(
dy

dl

)
= sgn(TxyTxl − TxxTyl),

Similar to above, −TxxTyl is a positive direct effect whereas TxyTxl represents a negative

substitution effect. We can rearrange this as follows:

TxyTxl − TxxTyl = u′′
[
k(p′q − pq′)(v′LN − v′LL)− p′v′LN

]
+k2qq′(α− β)(v′LN − v′LL)

[
(p′)2 − pp′′

]
−k(p′)2q′(α− β)v′LN + kpp′′q′(v′LN − v′LL)α.

The first term describes a comparative efficiency effect again which favors the more effi-

cient prevention technology. Under the assumption that x provides a rate of return on

self-protection at least as large as y, this summand is negative. The second term is about

the non-increasing rate of return on self-protection for the technology to prevent the first

risk. With our assumptions it is non-negative. The third term is negative, whereas the

last term is positive. Hence, the overall sign is ambiguous.

Finally we can analyze how changes in the loss size l influence overall prevention expen-

ditures x+ y. We obtain that

d(x+ y)

dl
=

dx

dl
+
dy

dl

= − 1

D
k2(α− β)(v′LN − v′LL)pp′qq′

[
ρ′

ρ
+
σ′

σ

]
− 1

D
kpq(v′LN − v′LL) (ρq′′γ + σp′′α)

− 1

D
kpp′q′(α− β)v′LN

(
−q
′′

q′
+
p′

p

)
− 1

D
p′q′′v′LNγ

Note that the comparative efficiency effects cancel out again. The first summand here

is non-negative due to the assumption of non-increasing returns to self-protection. The

second is unambiguously positive because non-increasing returns to self-protection imply

convexity as mentioned in section 4. The third one is positive under the assumption

that −q′′/q′ ≥ −p′/p. The intuition behind this assumption is that x provides more

efficiency not only in a first-order but also in a second-order sense, see also Footnote 21

in the appendix. The fourth term is always positive again due to convexity of prevention

technology. Hence, under the assumptions outlined above overall prevention expenditures

rise when the severity of losses is increased. We summarize our results in the following

proposition.
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Proposition 6. Assume a marginal increase in the size of the loss; if returns to self-

protection are non-increaseing and if the prevention instrument associated with the larger

loss is the more efficient one, it experiences an increase in prevention expenditures. If in

addition it is sufficiently more efficient, aggregate prevention expenditures increase.

Again, these results are original, compared to results obtained in previous literature on

hedging/insuring against losses in a single-period context. In this literature, an increased

loss size has an unambiguously positive effect on the demand for hedging. The speci-

ficity of prevention lies in the relative efficiencies of different prevention technologies to

preserve final wealth. The consideration of relative efficiency is decisive in our set-up,

because we can safely focus on the marginal utility benefit when conducting comparative

statics analysis. As a result, increasing the loss size does not necessarily increase preven-

tion expenditure to protect against that loss. In our model, increasing loss g does not

necessarily increase expenditure on y if x is more efficient than y. Similar to Proposition 5,

we can see from Proposition 6 that aggregate effects are more pronounced than allocation

effects.

6 Conclusion

This paper examines decision-makers’ expenditures to mitigate risks in a situation of mul-

tiple risks. Specifically, we investigate self-protection investments in the sense of Ehrlich

and Becker (1972), i.e., expenses to reduce the probability of loss. Following recent contri-

butions in the literature (Menegatti, 2009; Eeckhoudt, Huang, and Tzeng, 2012; Courbage

and Rey, 2012) we model prevention as investment preceding the reduction of the loss

probability.

We first identify how characteristics of one risk affect the amount devoted to lowering

the loss probability of another risk. We find that introducing a second correlated risk

increases prevention for the endogenous risk, independently of the sign of correlation. We

also find that increased riskiness in terms of the loss probability or the loss severity of one

risk or the extent of interdependence between the two risks are associated with larger loss

prevention investments for the other risk. We then proceed by analyzing a situation in

which loss prevention can be carried out for both risks. By comparing the marginal utility

benefit for both prevention opportunities at a specific level of investment we can decide

for which risk the larger investment shall be incurred. This condition translates into two

sub-conditions relating efficiency of prevention technology and the isolated benefit to one

another.

We also find that a substitution effect between both measures of prevention arises. This

has two reasons: First, by modeling prevention as investment preceding its benefit there is

22



Optimal Prevention for Multiple Risks

competition for resources between the two prevention opportunities. Second, the marginal

benefit conditional on the other loss not occurring increases, whereas the marginal benefit

conditional on the other loss occurring decreases, but the second effect prevails so that

the overall marginal utility benefit decreases. This implies that exogenous increases of

expenditures on one prevention measure due to regulation for example should be accom-

panied by endogenous decreases of expenditures on other prevention measures.

Finally, we conduct comparative statics analysis regarding our measure of interdependence

and the size of potential losses. If dependence is increased, the marginal effect on the in-

dividual prevention measures can be decomposed into three components. There is a com-

parative efficiency component, an effect due to non-increasing returns on self-protection,

and a positive direct effect. As the comparative efficiency effects exhibit opposite signs,

overall prevention expenditures increase following an increase in interdependence. Fur-

thermore, larger expenditures will be devoted to the more efficient technology, whereas

the investment into the less efficient one might increase or decrease. When it comes to

the size of the loss, we can again decompose the marginal effects into three components

analogous to the study of dependence. The comparative efficiency effect favors the more

efficient technology. If the prevention technology that is more efficient is associated with

the increased loss, more resources will be incurred to prevent this risk. Moreover we

identify suitable technical conditions that guarantee that overall expenditures increase.

Again, the behavior of the less efficient technology is ambiguous.

Several extensions seem promising. A natural first thought would be to wonder whether

and how the results obtained carry over to self-insurance or loss reduction. Following

Ehrlich and Becker (1972) self-insurance refers to an investment that reduces the size of

a given loss but leaves its probability of occurrence unaffected. It is well-known in the

literature that self-insurance and self-protection may behave quite differently (Dionne and

Eeckhoudt, 1985). Another avenue would be to investigate correlated risks that appear in

different arguments of the utility function, i.e., a monetary risk flanked by a health risk.

Tools of multivariate utility analysis (Rey, 2003; Lee, 2012) could then prove helpful to

investigate the impact of correlation. It would also be interesting to analyze how compar-

ative risk aversion impacts prevention expenses in a multiple risk setting by using results

on risk aversion under multiple sources of risk (Kihlstrom, Romer, and Williams, 1981;

Pratt, 1988). Finally, technological relationships between expenditures on self-protection

can be richer in a multiple risk setting than in environments with only one risk. For

instance, when moving from two states of the world to four it is no longer obvious how to

define a self-protective investment and our approach is but one suggestion.
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Appendix: The Second-Order Conditions

We will prove here that the assumption of self-protection technology x providing a return

at least as large as self-protection technology y, non-increasing returns on self-protection

together with the assumption of −q′′/q′ > −p′/p are sufficient for the second-order con-

ditions to hold. Consider the first-order conditions that characterize the optimal bundle

of self-protection expenditures. Then,

Txx = u′′ − p′′(1− kq)α− kp′′qβ < 0,

Tyy = u′′ − q′′(1− kp)γ − kpq′′δ < 0,

and after some algebra

det Hess T = TxxTyy − T 2
xy

= −u′′[(1− kp)q′′γ + kpq′′δ + p′′(1− kq)α + kp′′qβ + 2kp′q′(α− β)]

+p′′(1− kp)q′′(1− kq)αγ + kpp′′q′′(1− kq)αδ + kp′′(1− kp)qq′′βγ

+k2pp′′qq′′βδ − k2(p′q′)2(α− β)2.

We want to find conditions under which the determinant of the Hessian is positive at

an interior solution to guarantee maximality. The expression in square brackets can be

rearranged to obtain

p′′α + q′′γ + k(α− β)[2p′q′ − pq′′ − p′′q].

This is positive as long as 2p′q′ − pq′′ − p′′q is non-positive which is equivalent to

p

p′
· q
′′

q′
+
p′′

p′
· q
q′
≥ 2.

Now −q′′/q′ ≥ −p′/p is equivalent to having the first expression larger than 1 and the

assumption that x provides a return on self-protection at least as large as y and that

returns on self-protection are non-increasing ensure that the second expression is larger

than 1.21

21 Terms of the form −p′′/p′ measure by how much prevention efficiency is reduced at the margin
when investing in self-protection, see also Hofmann and Peter (2015a). A second-order Taylor
approximation reveals that for ∆x small

p(x)− p(x+ ∆x)

p(x)
≈ σ(x)∆x

(
1− 1

2

(
−p
′′

p′

)
∆x

)
,

so that roughly speaking high −p′′/p′ is “bad” because the efficiency of prevention decreases quickly.
In this sense, the condition −q′′/q′ ≥ −p′/p implies that technology y is less efficient than technology
x also in a second-order sense.
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The remaining five terms of the determinant of the Hessian can be reorganized as follows:

k2pp′′qq′′(α− β)2 − kp′′qq′′γ(α− β)− kpp′′q′′α(γ − δ)

+p′′q′′αγ − k2(α− β)2(pp′′qq′′ − (p′q′)2).

The first four of these are positive, the last one is negative. Combining the first and the

last of these and factoring out yields

k2(α− β)2(pp′′qq′′ − (p′q′)2),

which is non-negative as long as p′′/p′ ·q′′/q′ ≥ p′/p ·q′/q; this is ensured by non-increasing

returns on self-protection expenditures. This proves that the assumptions made to sign

the comparative statics results in the paper are sufficient to guarantee that the second-

order conditions for the maximization over both levels of self-protection expenditures are

satisfied and that the solutions characterized by the first-order conditions are actually

describing utility-maximizing choices.
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