
A Decision Support System for Integrated Berth and Ship Un - loader Allocation in Bulk 

Material Handling port 

Abstract:  

Berth allocation and material handling problems in ports are generally solved independently. This 

article provides a framework for aligning allocation decisions of berth and ship un-loader in an 

integrative manner. The ultimate goal of these decisions is to minimize the waiting time, operating 

time and ships priority deviation. As the sojourn time of a ship in port is costly, and given the scale 

and the complexity of the problem, a Decision Support System (DSS) is developed for the port 

authority. Two different approaches have been considered in this paper: 1) Solving the problem 

sequentially by decomposing the problem into two sub-problems- the berth allocation and the 

dynamic allocation of ship un-loaders in different berths 2) solving the problem by integrating 

berth allocation and dynamic allocation problem. Controlled Elitist Non - dominated Sorting 

Genetic Algorithm and Chemical Reaction Optimization are proposed in designing the DSS. 

Computational experiments are conducted on information provided from an Indian port. Results 

show that integrating berth and ship un-loader allocation achieves significant cost savings by 

considerably reducing the ship sojourn time in port.  

Keywords:   Ship Sequencing; Berth allocation; Ship-unloader allocation; Bulk material handling 

terminal port; Meta-heuristic. 

1. Introduction 

Port terminals have gradually played an important role in the world economic system. In 2013, 

the UNCTAD and WTO (2013) reported that the sea trade growth increased by 2.1 % for the world 

merchandises. The international sea trade service reached 4.7 trillion dollars and 5 % annual 

growth. This growing economy further empowers the growth of import by exerting more influence 

on port infrastructure to improve their efficiencies and productivities. In particular, the situation is 

more critical for bulk material as they have to be carried out through seas. In fact, compared to 

other freight transportation modes, coastal logistics is the cheapest transport way for bulk materials 

(coal, oil, iron, etc.). In addressing research questions, most of the researchers focused on container 
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terminal port and addressed the optimization of berth allocation and quay crane scheduling, rather 

than discussing issues related to handling bulk materials. In fact, in bulk material handling, ships 

are scheduled from the anchorage base until the empty berth. Ship un-loaders are then assigned to 

the ship hatches. Unlike quay cranes, one ship can accommodate more than one ship un-loader at 

a time. The high problem complexity and economic benefits in determining the number of ship 

un-loaders to assign to a particular ship at a particular time provide motivation for this work. The 

primary focus is to minimize the delays in bulk material handling operations by considering the 

optimization of the ship scheduling, the berth allocation and the ship un-loader allocation. In most 

of the previous works, ship un-loaders were not considered in the problem, while berth allocation 

and material handling were addressed as two independent problems. This article aims at integrating 

berth and ship un-loader allocation to achieve high efficiency. 

Decisions of berthing and allocation of ship un-loaders to berths in different time periods are 

usually based on complex priority rules and are not adapted to satisfy the customer needs due to 

the poor scheduling performance. Because of the complexity of the problem of minimization of 

priority deviation and waiting and operating times, a decision support system is proposed to solve 

the problem and provide a near optimal solution satisfying both objectives.  

After arriving to the port, ships wait in the anchorage to get berthed. Once they get a call for 

berthing, they move through a channel towards the berth. Only one vessel can move through the 

channel at a time. Thus, the problem can be represented as a sequencing problem by giving the 

ships order numbers with which they can cross the channel towards the berth. The methodology 

proposed in this paper consists of two phases. The phase I focus on deciding on the order numbers 

based on waiting times and priority deviation minimization. After that the berthing sequence is 

decided, the port authority manages the contract with the ship owners. Thus they aim to solve the 

integrated problem sequentially. The phase II focuses on the allocation of ship un-loaders to 

different berths in different time periods (One time period is the time between two consecutive 

ships berthing events). This work proposes a novel framework that aims to achieve objectives: 

minimizing the delay at anchorage, minimizing the waiting time of the ship at the port and 

minimizing the deviation from customer driven priority. In the literature, the multi objective 

problem has not been considered in an integrative manner, but has always simplified and 



decoupled. We also propose an integrated approach of combining both the problems to compare 

its performance as against the sequential approach as requested by the port authority. 

The paper is organized as follows. The second section provides a literature review on the 

problem considered. The problem formulation of berth allocation and ship-un-loader scheduling 

is presented in section 3. Section 4 discusses the decision support system developed to solve the 

problem. Section 5 reports a case study and relates it with the computational experiments. Finally, 

Section 6 presents the conclusion of work and future research directions. 

2.  Related Work 

Operations in port terminal can be classified into three functional systems: sea side operations, 

yard operations and landside operations (Golias et al. 2009). In sea side operations, the port 

operators are assigned from anchorage to berth within a planning horizon.  

Ship routing with transshipment and berth allocation have been studied separately in the literature. 

Ship routing decisions are made by ship liner companies to optimize the overall operations costs 

and allocate berths by minimizing the loading and unloading costs (Pang and Liu 2014). 

Christiansen et al. (2004) describes a ship routing and scheduling problem with strategic fleet 

planning and continue with the tactical and operational fleet planning level. Meisel and Bierwirth 

(2009) discussed the berth allocation models that minimize the waiting time and the ship handling 

time. Lin and Ting (2014) proposed two models for the dynamic berth allocation problem: a 

discrete, and a continuous model and used simulated annealing technique to solve them. 

Türkoğulları et al. (2014) discussed the berth allocation and quay crane assignment problem in the 

context of a container terminal describes a problem based on berth allocation and crane assignment 

to transfer the containers from ship to land within a given planning horizon. Umang et al. (2013) 

proposed exact solution and heuristics approach to solve a dynamic, hybrid berth allocation 

problem. They considered to minimize the service time of all vessels at the port.  

As the discrete and dynamic berth allocation is NP hard problem (Cordeau 2005), heuristics have 

used to solve the problem. Ting et al. (2014) considered the discrete and dynamic berth allocation 

problem by minimizing the total waiting and handling time of berthed ships. Wang et al. (2014) 

described the liner ship route scheduling problem and determined the arrival and departure times 



at each port in a given time window. Golias et al. (2014) addressed the robust berth scheduling and 

used a genetic algorithm based heuristic to minimize the average and range of total operation time 

required to serve all ships in a port. 

Researchers have likewise carried out studies related to yard/quay crane operations. Ng et al. 

(2005) proposed a branch and bound algorithm to solve the yard crane scheduling problem to 

address efficiently the loading/unloading operations of conatiners. Gharehgozli et al. (2014) 

developed a model for yard crane to minimize the crane travel time to carry out containers. Kim 

et al. (2004) introduced a quay crane scheduling model for a container terminal port. The model 

determines the sequence of containers unloading/loading to minimize the service operations times. 

Guan et al. 2009 described a crane scheduling problem for container terminal port and used exact 

and heuristic approach to solve the problem. Moghaddam et al. (2009) suggested a model for quay 

cranes scheduling and assignment for a container terminal port.  

 Some of the authors have considered integrated models of only two among three interconnected 

problems (berth allocation, yard operation, landside operations). For instance, Robenek et al. 

(2014) developed a model that integrates the dynamic berth allocation and yard assignment for 

bulk material handling port. This model optimizes the total service time of ship berthing at the 

port. Park et al. (2003) considered the berth and quay crane scheduling problem and proposed a 

two-phase solution, in which they determined berth allocation, service time and number of 

assigned cranes in the first phase. In the second phase, they determined the schedule of cranes on 

the basis of the outputs of the first phase. Xu et al. (2012) developed a model for robust berth 

scheduling and used simulated annealing and branch and bound algorithm. Ursavas (2014) 

developed a decision support system to determine simultaneously berthing and quay crane 

allocation decisions.  Babu et al. (2014) suggested a model to schedule ships, plan stockyard and 

rake scheduling to minimize the ship delay at port terminal. However, they have focus on sea side 

and landside operation, which is beyond the focus of this work. 

In this paper, we highlight the port management issue that researchers usually consider, but in a 

holistic view; specifically, the scenarios based on seaside operations, berth operations and yard 

operations are considered. In fact we consider into account the interdependences between these 

operations with the aim to achieve a globally optimized solution for bulk material handling port 

problem. 



3. Mathematical model formulation 

In this problem context, we have developed two models, the first model is formulated as two-phase 

optimization model: berth allocation (Phase I) and ship un-loader allocation (Phase II). Phase I is 

modeled as a bi-objective problem– minimizing the ships waiting time as a first objective, and the 

deviation of ships priority of from their berthing orders as a second objective. The berth allocation 

problem is viewed as a sequencing problem, as the channel allows only one ship to pass at a time. 

When a berth is available and a ship is waiting in the anchorage, the ship moves through the 

channel to get berthed according to his order. Based on their orders, ships are berthed and the berth 

allocation problem is then converted to a sequencing problem. As customer priority is port 

dependent, in this paper we have considered giving priority to ships based on quantity carried in 

them. Phase 2 is modeled as a single objective problem that minimizes the total operations time 

(unloading time) of the ships after they are berthed. The ship un-loaders can shift from a berth to 

another one only when a ship is berthed. The un-loading rate is considered as constant as all the 

un-loaders are considered with equal capacity. The total operating time is dependent on the number 

of ship un-loaders used and the duration of their use. In second model, we integrated the phase (I 

and II) in a single phase (III) problem. The model assumptions are as follows: 

Model Assumptions 

(1) Berths are discrete and all ship can be berthed. The length of a berth is large enough to 

accommodate any ships under consideration. 

(2) The maximum number of un-loaders that can be assigned to a ship is 2. This assumption 

complies with the berth length constraint. 

(3) In a given berth, only one ship can be served at a time.  

(4) The time needed to move a un-loader from a ship to other is negligible.  

(5) The estimated arrival time of a ship at the anchorage and the quantity of products are 

known a largely in advance. 

(6) Ship un-loader allocation is a dynamic process where the un-loaders are moved only when 

ships arrive for berthing.  

Notation: 



Indices 

v is the index of the ship, v = 1,.., n ∈ ܸ  

j is the index of the berth, j = 1,…, b ∈  ܤ

Input Parameters 

av                         Arrival time of ship v 

fv                  Priority of ship v 

r                  Unloading Rate (fixed for all ships) 

Qv                        Quantity of products on ship v 

Decision Variable 

bv      = Berthing time of ship v 

ov      =  Berthing order of ship v 
dv     =  Departure time of ship v  
qv,m,j =  Number of ship unloaders assigned to ship v, when mth ship is berthed on berth j 
pv      =  Number of pth  ship after ship v is berthed 

,

, ,

f ship

1 if ship v is berthed in berth

0 otherwise

1   is berthed in berth  before shi

0 otherwis

ip 

e

v j

v w j

v
y

j

j
x

w


 



 


 

3.1 Sequential Approach to Berth Allocation and ship-unloader allocation 

Model 1(Phase I): Berth allocation  

The objective of Phase I is to find the optimal order in which the ships should be allowed to pass through 

the channel towards the berths. It is assumed that each ship will be assigned 2 ship unloaders to the berth. 

Objective Functions 

Minimization 

∑ ሺ݀௩ െ ܽ௩ሻሼ௩∈௏ሽ                                                                                                                                   (I) 

∑ | ௩ܱ െ ௩݂|ሼ௩∈௏ሽ                                                                                                                                    (II) 

Constraints 



∑ ௩,௝ݔ ൌ 1ሼ௕∈஻ሽ 														∀ v ∈ V                                                                                                            (1) 

ܾ௩ ൒ ܽ௩																												∀	v ∈ V                                                                                                            (2) 

݀௩ ൌ ܾ௩ ൅		
ொೡ
ଶ௥
															∀	v ∈ V                                                                                                             (3) 

݀௩ ൒ ݀௪ ൅	
ொೡ
ଶ௥
െ ,ݒ∀																	௩,௪,௝ݕܯ ݓ ∈ ܸ, ݆ ∈  (4)                                                                            ܤ

݀௪ ൒ ݀௩ ൅	
ொೢ
ଶ௥
െ ሺ1ܯ െ ,ݒ∀				௩,௪,௝ሻݕ ݓ ∈ ܸ, ݆ ∈  (5)                                                                             ܤ

௩,௪,௝ݕ ൅ ௪,௩,௝ݕ 	ൌ ,ݒ∀																											1 ݓ ∈ ܸ, ݆ ∈  (6)                                                                             ܤ

௩,௪,௝൯ݕ൫ܫ ௩ܱ ൐ ௪ܱ																														∀ݒ, ݓ ∈ ܸ, ݆ ∈  (7)                                                                             ܤ

,௩,௝ݔ ௩,௪,௝ݕ ൌ ሼ0,1ሽ	, ݀௩, ܾ௩ ∈ ܴା																										∀	ݒ ∈ ܸ, ∀	݆ ∈  (8)                                                        ܤ

   The first objective stated in Equation (I) aims to minimize the waiting time. The second objective 

expressed in Equation (II) aims at minimizing the deviation from customer priority. The customer priority 

could be based on their loyalty and on the contracts developed in the past. The second objective aims at 

giving berthing orders to customers in such way that they are close to the priority assigned to them.  

Phase II: Ship un-loaders allocation 

The objective of Phase II is to find the optimal number of ship unloaders that should be assigned to each 

ship. The ship unloaders are assigned dynamically.  

Model 1(Phase II): Ship un-loader allocation  

Objective 

min∑ ሺ݀௩ െ ܾ௩ሻ௩∈௏ 		                                                                                                                             (III) 

Constraints 

∑ ௩,௝ݔ ൌ 1ሼ௕∈஻ሽ 														∀	v ∈ V                                                                                                             (1) 

ܾ௩ ൒ ܽ௩																												∀	v ∈ V                                                                                                             (2) 

݀௩ ൒ ݀௪ ൅	
ொೡ
ଶ௥
െ ,ݒ∀																	௩,௪,௝ݕܯ ݓ ∈ ܸ, ݆ ∈  (4)                                                                            ܤ

݀௪ ൒ ݀௩ ൅	
ொೢ
ଶ௥
െ ሺ1ܯ െ ,ݒ∀				௩,௪,௝ሻݕ ݓ ∈ ܸ, ݆ ∈      (5)                                                                             ܤ



௩,௪,௝ݕ ൅ ௪,௩,௝ݕ 	ൌ 1							 ,ݒ∀																 ݓ ∈ ܸ, ݆ ∈  (6)                                                                             ܤ

௩,௪,௝൯ݕ൫ܫ ௩ܱ ൐ ௪ܱ																														∀ݒ, ݓ ∈ ܸ, ݆ ∈   (7)                                                                             ܤ

,௩,௝ݔ ௩,௪,௝ݕ ൌ ሼ0,1ሽ	, ݀௩, ܾ௩ ∈ ܴା																										∀	ݒ ∈ ܸ, ∀	݆ ∈   (8)                                                        ܤ

௩݌ ൌ 	 ௠݌ݑݏ 	∑ ௩,௝ሺܾ௠ାଵݔ௦,௠,௝ݍݎ െ ܾ௠ሻ
௣
௠ୀ௦ 		|	ܳ௩ െ	∑ ௦,௠,௝ሺܾ௠ାଵݍݎ െ ܾ௠ሻ

௣
௠ୀ௦ ൐ 0	                        (9) 

݀௦ ൒ ܾ௦ ൅ ∑ ሺܾ௠ାଵ െ ܾ௠ሻ ൅	
ܳ௩ െ ௠݌ݑݏ 	∑ ௩,௝ሺܾ௠ାଵݔ௦,௠,௝ݍݎ െ ܾ௠ሻ

௣
௠ୀ௦ 	

௦,௣,௝ݍݎ
൘௣

௠ୀ௦ 				∀	v ∈ V     (10)     

Equation (III) states that the objective function is to minimize the total operations (unloading) time for 

all ships. Equations (1-10) are explained in phase I.  

3.2 Integrated  Approach for berth allocation and ship-unloader allocation 

Model 2 (Phase III):  

Minimization 

∑ ሺ݀௩ െ ܽ௩ሻሼ௩∈௏ሽ                                                                                                                                   (I) 

∑ | ௩ܱ െ ௩݂|ሼ௩∈௏ሽ                                                                                                                                    (II) 

min∑ ሺ݀௩ െ ܾ௩ሻ௩∈௏ 		                                                                                                                            (III) 

Constraints 

∑ ௩,௝ݔ ൌ 1ሼ௕∈஻ሽ 														∀	v ∈ V                                                                                                            (1) 

ܾ௩ ൒ ܽ௩																												∀	v ∈ V                                                                                                            (2) 

݀௩ ൌ ܾ௩ ൅		
ொೡ
ଶ௥
															∀	v ∈ V                                                                                                             (3) 

݀௩ ൒ ݀௪ ൅	
ொೡ
ଶ௥
െ ,ݒ∀																	௩,௪,௝ݕܯ ݓ ∈ ܸ, ݆ ∈  (4)                                                                            ܤ

݀௪ ൒ ݀௩ ൅	
ொೢ
ଶ௥
െ ሺ1ܯ െ ,ݒ∀				௩,௪,௝ሻݕ ݓ ∈ ܸ, ݆ ∈  (5)                                                                             ܤ

௩,௪,௝ݕ ൅ ௪,௩,௝ݕ 	ൌ ,ݒ∀																											1 ݓ ∈ ܸ, ݆ ∈  (6)                                                                             ܤ

௩,௪,௝൯ݕ൫ܫ ௩ܱ ൐ ௪ܱ																														∀ݒ, ݓ ∈ ܸ, ݆ ∈  (7)                                                                             ܤ

,௩,௝ݔ ௩,௪,௝ݕ ൌ ሼ0,1ሽ	, ݀௩, ܾ௩ ∈ ܴା																										∀	ݒ ∈ ܸ, ∀	݆ ∈  (8)                                                        ܤ

௩݌ ൌ 	 ௠݌ݑݏ 	∑ ௩,௝ሺܾ௠ାଵݔ௦,௠,௝ݍݎ െ ܾ௠ሻ
௣
௠ୀ௦ | ܳ௩ െ ∑ ௦,௠,௝ሺܾ௠ାଵݍݎ െ ܾ௠ሻ

௣
௠ୀ௦ ൐ 0                         (9) 



݀௦ ൒ ܾ௦ ൅ ∑ ሺܾ௠ାଵ െ ܾ௠ሻ ൅	
ܳ௩ െ ௠݌ݑݏ ∑ ௩,௝ሺܾ௠ାଵݔ௦,௠,௝ݍݎ െ ܾ௠ሻ

௣
௠ୀ௦

௦,௣,௝ݍݎ
൘௣

௠ୀ௦ 				∀	v ∈ V        (10) 

Constraint in Equation (1) states that all the ships have to be berthed in only berth. Constraints (2-3) 

impose that the ship is berthed after its arrival and departs after un-loading. Constraints (4 - 6) illustrate 

the precedence relationship between two ships where M is a large number. Constraint (7) relates order 

of a ship to its precedence relation in Equations (4-6) where I (.) is the indicator function. Equation (8) 

states the domain of the two decision variables. Equation (9) determines the number of ships that get 

berthed such that the ship v has not been completely unloaded for v ∈ ܸ, ∀	݆ ∈  Constraint (10) .ܤ

determines the departure time of ship v ∈ ܸ, ∀ ݆ ∈   .ܤ

4. Decision Support System (DSS) 

The Decision Support System (DSS) is intended to generate the ordering of ships to pass through 

the channel and manage dynamic allocation of ship un-loaders according to the methodology 

presented in Figure 1. This problem is multi- objective NP - Hard problem (Cordeau et al., 2005). 

In phase I, optimal decisions are taken considering the trade-offs between two or more conflicting 

objectives: Minimizing total waiting time of ships for berthing at the port while maximizing port 

efficiency and minimizing the customer priority deviation. In Phase II: decisions pertaining to 

assign the ship unloader to berthed ship and minimizing the total operating time to unload the bulk 

cargo from the berthed ship at the port.  

For a non-trivial multi-objective optimization problem with conflicting objective functions, there 

does not exist a single solution that simultaneously optimizes each objective. In that case, there 

exists a (possibly infinite) number of Pareto optimal solutions. A solution is called non-dominated, 

Pareto optimal, Pareto efficient or non- inferior, if it is not inferior to any other solution in all the 

different objective value functions. Without additional subjective preference information, all 

Pareto optimal solutions are considered equally good.  

The presence of multiple objectives gives preference to a family of non-dominated or non-inferior 

solutions, known as a Pareto - optimal solutions (Sarkar and Modak 2005). Since, no solutions in 

non-dominated set is absolutely better than any other, any one of them can be taken as an 

acceptable solution based on the decision maker’s choice. Therefore, controlled elitist non-



dominated sorting genetic algorithm (CENSGA-II) is proposed to solve the problem. In fact, the 

literature shows that CENSGA-II outperforms most of the multi-objective genetic algorithms, in 

particular non-dominated sorting genetic algorithm (NSGA-II) (Deb and Goel 2001 and Deb and 

Pratap 2002) that contributes the most used technique for these types of optimization problems. 

Phase II, pertaining to ship un-loader allocation problem, is also NP hard in nature. A number of 

studies suggest that, for this kind of resource allocation problems, chemical reaction optimization 

(CRO) algorithm is well adapted (Xu et al. 2011 and Xu et al. 2013). In this, CRO gives 

outperforming result in comparison to other meta-heuristic algorithm. Hence, to solve the problem 

for model 1 considered, we propose to use CENSGA-II for phase I, and CRO for phase II and for 

the model 2 (phase III), we propose to use CENSGA-II to solve the tri-objective problem. 

<<<<Insert Fig.1>>>> 

4.1 Controlled Elitist Non-dominated Sorting Genetic Algorithm (CENSGA II) Phase I 

Genetic algorithm is a meta–heuristic which is frequently used to solve the single objective 

scheduling and resource allocation problem, which generates the near optimal solution for all 

alternatives. In multi-objective problems, objectives conflict with each other. NSGA-II (Dai et al. 

2014) and CENSGA-II (Mohapatra et al. 2014) are generally used to solve such type of multi-

objective scheduling and allocation problem and to generate the Pareto-front which gives set of 

optimal solution. In this phase, the problem has two objectives: 1) minimizing the waiting time of 

the ships. 2) Minimizing the deviation of the order of berthing with user defined priority. This 

phase is multi-objective ship scheduling and allocation problem.  

Implementation of Controlled Elitist NSGA-II 

The detail of the implementation of the algorithm on the berth allocation problem is discussed below. 

Chromosome representation 

The chromosome is represented as shown in Fig.2. A digit of the chromosome represents the order 

of a ship with that particular index. The order is the sequence in which the ships are allowed to pass 



through the channel which connects anchorage to the berths. The heuristics for berth allocation 

according to the chromosome is described in section 5.1.  

Mutation Operation 

The chromosome experiences mutation in the form of exchange of the berthing orders as shown in 

Fig.3. According to figure 3, the ship 12 is given a higher priority in moving through the channel 

than ship 1 after the mutation operation is performed on the chromosome. 

<<<<Insert Fig.2 and Fig. 3>>>> 

Crossover Operation  

The crossover operation is performed through real number crossover; Random numbers are 

generated on the interval [0-1] as a binary and sorted such that their orders are the same as the order 

sequence in the chromosome. 

<<<<Insert Fig.4>>>> 

Selection in CENSGA-II 

In CENSGA-II, the number of individuals to be selected as new parents from the current best non-

dominated Pareto front is restricted. The restriction is based on a pre-defined distribution of the 

number of individuals in each Pareto front using Geometric distribution (deb and goel 2001). The 

number of individuals in each front is restricted to ni where the geometric distribution is obtained 

from Equation (21): 

                                         (21) 

Where ni is the maximum number of allowed individuals in front i and r (r <1) is the reduced rate 

the new population size N. Let k be the number of non-dominated fronts in population. Then, ni 

can be defined as (22): 
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Let n(i) denotes the maximum number of individuals from front i. Then, 

                                                                       (23) 

The selection of ni individuals from the front i is done by the crowded distance operator (23). The 

geometric distribution ensures an exponential decrease of the number of solutions. The selection 

process is shown in Fig.5, where the required number of chromosomes is not taken from the top 

Pareto but rather following a geometric distribution in order to maintain the diversity.  

<<<<Insert Fig.5>>>> 

Quality of Pareto 

The quality of a Pareto front is defined by the diversity and the number of solutions in it. Examples 

of poor Pareto fronts are given in Fig.6. Pareto in figure 6(a) presents intermittent solutions. Pareto 

in figure 6(b) has very few points to be considered as high quality Pareto front.    

<<<<Insert Fig.6 (a and b) >>>> 

4.2 Chemical Reaction Optimization technique (Phase II) 

Chemical Reaction Optimization (CRO) (Li and Pan 2013) is proposed to find the optimal number 

of ship un-loaders. The problem is considered as dynamic since the number of ship un-loaders 

available in a particular berth is variable and depends on the number of ships. The dynamic 

scheduling problem of bulk material handling ship un-loaders is an NP Hard as it comes under 

nondeterministic polynomial – time hard class of problems.  Chemical Reaction Optimization is a 

meta-heuristics inspired by the nature of chemical reactions (Roy et al. 2014). A chemical reaction 

is inspired from the natural process of transforming unstable substances into stable ones. In a 

chemical reaction, molecules interact through a sequence of elementary reactions. The CRO is 

inspired by the first two laws of thermodynamics – 1) the total energy remains constant, that is, the 

energy cannot be created nor destroyed but can only be transferred. 2) All reacting systems tend to 

increase the stability by minimizing their potential energy by attaining equilibrium state. In CRO, it 

is obtained by converting potential energy into kinetic energy and by transferring energy of the 

( )i

in n



molecules to the surroundings. The energy profile of the reactants is a representation of single 

energetic pathway, along the reaction co-ordinate and the final product are shown in Fig. 7. A 

chemical reaction is triggered by collisions which may be inter-molecular or uni-molecular. The uni-

molecular collision occurs when a molecule collides with the wall of the container in which the 

reaction is taking place, which may lead to decomposition of the molecule into smaller molecules. 

The inter-molecular reaction occurs when the two molecules collide which may lead to the synthesis 

of a new molecule.  

<<<<Insert Fig.7 >>>> 

Implementation of CRO 

The CRO is population-based meta–heuristics. The population consists of molecules. The population 

size may vary based on decomposition or synthesis with iterations. The decomposition and synthesis 

are controlled by factors α and β respectively. Proper values of α and β balance intensification and 

diversification. The different attributes of CRO can be explained as: 

Molecular structure captures a solution in form of specific format i.e. number, vector, or even a 

matrix. In this phase of problem, we deal with berth with ship-unloader and store the solution in 

matrix form as shown in Fig. 8.  

<<<<Insert Fig.8 >>>> 

The Potential Energy PEw for a molecule w is equal to the fitness function of the molecule. The 

Kinetic Energy KEw is a non-negative number quantifying the tolerance for accepting poorer 

solution over the current one. NumHit is the number of hits a molecule undergoes (collisions). A 

molecule experiences a change in molecular structure with each hit. MinStruc is the molecular 

structure of a molecule, which has attained minimum potential energy. MinPE stores the potential 

energy stored by MinStruc. MinHit is the number of hits a molecule has undergone when it realized 

its minimum potential energy in MinStruc. MoleCall is a parameter set to decide if a molecule 

undergoes uni-molecular collision or inter-molecular collision. KELossRate is the parameter which 

determines the rate at which the kinetic energy of the molecule is lost. There are four kinds of 

elementary reactions: 



1. On-wall ineffective collision. 

In an on-wall ineffective collision, a molecule collides with container or external agents. In 

this collision,  , the molecule undergoes changes. In this process, some amount of 

KE of the transformed molecule is added to the central buffer. The motive is to provide 

kinetic energy to a new molecule that has less potential energy than the current one. Let 

 be a random number, then: 

 

The remaining energy is transferred to the buffer as shown in Fig.9. 

 

<<<<Insert Fig.9 >>>> 

2. Decomposition  

In decomposition reaction, the molecules collide with the wall or external agent, 

, and in this collision, the molecule decomposes into two molecules. 

Decomposition allows exploring the search space.  

To increase the possibility of having decomposition, a small amount of energy is provided 

from buffer. The energy conservation can be seen in Fig.10 and described by the following 

equations, which state that how energy is taken from the buffer and how it is given to two 

molecules in the form of kinetic energy. Where, δ1 and δ2 are random numbers, ϵ (0, 1). 

 
 

buffer =buffer(1- ) 

and
 

 

<<<<Insert Fig.10 >>>> 

 

3. Inter– molecular ineffective collision 

In inter-molecular collision, , multiple molecules collide with each other 

and bounce away. Molecularity remains unchanged. The process is similar to the uni-

molecular collision, but since more molecules are involved, the total sum of energy of the 

'w w 
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molecule sub-system is larger than uni-molecular collision. The molecules have a higher 

probability of exploring the surroundings. If the potential energy of the new molecules 

obtained from searching the neighbors follows E > 0 where: 

 

then, the energy conservation in the reaction can be stated through the following equations 

and according to the Fig.11. However, δ3 and δ4 are random numbers   ϵ (0, 1). 

'
1

3*
w

KE E    and '
2

4*(1 )
w

KE E  
 

and
 

<<<<Insert Fig.11 >>>> 

 

4. Synthesis  

In the synthesis, two molecules combine to form a new molecule. as shown in 

Fig.12. The resulting molecule has a higher ability to explore regions for new solutions. The 

kinetic energy of the new molecule is given as follows: 

 

 

<<<<Insert Fig.12 >>>> 

The CRO algorithm is shown in Fig.13. Molecules with higher energy move and trigger collisions. 

A molecule undergoes uni-molecular collision or intermolecular based on a random number b from 

a uniform distribution on [0, 1]. If b >MoleColl then, the molecule undergoes inter-molecular 

collision. If b <= MoleColl then, uni-molecular collision occurs and decomposition criteria are 

checked for the decomposition reaction or on-wall ineffective collision. If (NumHit – MinHit)> α 

then, the molecule undergoes decomposition. If b >MoleColl, inter-molecular collision occurs and 

synthesis criteria are checked for synthesis or inter-molecular ineffective collision. The two 

molecules are randomly selected. If KE<= β for both molecules, synthesis occurs. Otherwise, inter-

molecular ineffective collision occurs. The iterations continue for a predetermined number of times 

and stops when the stopping criteria are met. 

<<<<Insert Fig.13 >>>> 
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4.3 Integration Approach for Ship Scheduling and Ship - unloader Allocation  

In the integrated approach, the chromosome is developed such that it includes the ship ordering 

and ship-unloader allocation. CENSGA II is used to solve the integrated problem. The 

chromosome is an extension of the chromosome shown in Figure 8 where the chromosome has n 

row and b+1 columns. The first column is a transpose of the chromosome shown in Figure 2. The 

rest of chromosome structure is same as in chromosome used for ship un-loader allocation as 

shown in figure 14. The genetic operations are modified such that the feasibility in the chromosome 

is maintained. Real number crossover is used in the first column of the chromosome while 

intermolecular collision operation is used for the rest of the chromosome. Similarly, for mutation, 

genetic operations are used differently for first column (mutation) and rest of the chromosome (on 

wall ineffective collision). This ensures the feasibility of the solution. 

<<<< Insert Fig.14 >>>> 

5.  Case Study 

In this article, a real life case of a private port located in east coast of India is discussed. The data 

collected consist of 22 ships with expected anchorage within a fortnight in the month of October. 

There are 3 berths in the port and 5 ship un-loaders. At any time, there can be at most 3 ships un-

loaders in any berth.  

The implementation of the case study is carried out using the software MATLAB 2009-A on i7 

processors (8.0 GHz) in Windows 8 platform.  

5.1. Sequential Approach to Berth Allocation and ship-unloader allocation 

Determination of the optimal order of ships 

The optimal ships orders are obtained using CENSGA-II. The parameters adopted are: Population 

size is 100, Mutation probability is equal to 0.1 and crossover probability is equal to 0.65. The 



quality of the Pareto is characterized by its diversity and its efficient frontier coverage. To show 

the solution quality with respect to the generations, the Pareto front for CENSGA-II is shown in 

Fig. 14 (a) to Fig.14 (f). In each figure, ten different runs are used to generate the results. It is 

observed that the Pareto becomes continuous with the increase of the number of generations 

(number of solutions in Pareto increases). 

<<<<Insert Fig.15 (a) to Fig.15 (d) >>>> 

The quality of the solution can be characterized through the average of the objective functions of 

the Pareto solutions as shown in Fig.15.  

The number of iterations is kept at 250 as the quality of Pareto deteriorates after 200 iterations due 

to the convergence to the same solutions.  

The heuristics for allocation of berth based on order of ships is explained as: 

Heuristics for Berth Allocation 

Initialize t (b) = 0 for all berths 
For i = 1 to V: 
 v = ship with order v 
 b = berth with min {t} 

Assign berth b to ship v 
 if t (b) < av then 
  t (b) = av + av/2r 
 else if t (b) > av then 
  t (b) = t (b)  + av/2r 
end For 
 
The berth allocation results are shown in Fig. 16. The figure is a schedule of the ships berthing 

over the period of time considered. The rectangle number is the ship number and the rectangle 

width shows the operating time of the ship. 

<<<<Insert Fig.16 >>>> 

Results of the ship un-loader allocation 



The optimal ships order is considered to solve the ship un-loader allocation problem. The 

parameters adopted are: Population size 10, MoleColl 0.12, Buffer 0, KERateLoss 0.2, Alpha 50, 

Beta 10, Generations = 100. 

A comparative study between CRO and Genetic Algorithm (GA) is provided. Fig.17 shows the 

average objective values of MinPE in each generation. It is observed that as the number of 

generation’s increases, the average value of the MinPE decreases. Fig.18 shows the objective 

function value using GA. The minimum objective (operating time) value obtained is 375 hours for 

CRO, improving the GA results by 19 hours from which is very significant in terms of objective 

value and also the computational complexity as it is obtained at lesser number of iterations and 

smaller population. The optimal ship un-loader allocation using CRO is shown in Fig.19. 

<<<<Insert Fig.17 >>>> 

<<<<Insert Fig.18 >>>> 

<<<<Insert Fig.19 >>>> 

 Computational experiments are developed on a number of problem instances as described 

in table 1. To compare the solutions, the average objective values of waiting time and priority 

deviation for solutions in efficient frontier are compared with the average objective function values 

for 100 randomly generated solutions. Regarding operating time, a solution from the center of 

Pareto is taken to be solved using CRO and the objective function value is compared with the 

solution provided by GA. In the operating time column, the number inside the brackets represents 

the number of generations in which the Meta–heuristics converge for the same value. For 

simplicity reasons, results are presented in integer format. 

<<<<Table .1 >>>> 

 It is observed that CRO performs better than GA in all the tested cases with respect to the 

operating time and the number of generations required converging to a final solution. The 

experimental results show that increasing the number of ship un-loaders is more effective than 

increasing the number of berths, .i.e. increasing the number of ship unloaders (by one unit) will 

perform better than increasing the number of berths (by one unit) when the other parameters are 

unchanged. Practically, it is also easy to use more ship un-loaders than building berths 



Integrated Approach for berth allocation and ship-unloader allocation 

The optimal sequence of ships and allocation of ship unloaders are obtained using CENSGA-II in 

an integrated manner. The parameters considered are: Population size is 100, Mutation probability 

is 0.1 and crossover probability is equal to 0.65. The quality of the Pareto is characterized by its 

diversity and its efficient frontier coverage. To show the solution quality with respect to the 

generations, the Pareto front for CENSGA-II is shown in Fig. 21 

<<<<Insert Fig.20 (a and b) >>>> 

The number of iterations is kept at 300 as the quality of Pareto deteriorates after 300 iterations due 

to the convergence to the same solutions.  

Computational experiments are shown on a number of instances as described in table 2. To 

compare the solutions, the average objective values of waiting time and priority deviation and 

operation time solutions for sequential approach are compared with integrated approach. For 

simplicity reasons, results are presented in integer format. 

<<<<Table .2 >>>> 

It is observed that sequential approach performs better than integrated approach in all cases with 

respect to number of generation to finally convergence of solution.  

6 Conclusions and future research directions 

 This work proposes a decision support system to integrate berth allocation and ship un-

loader allocation by solving them sequentially. In total, three key considerations to holistically 

approach the port scheduling problem are considered – minimizing waiting time, minimizing 

operating time of ships after berthed and minimizing priority deviation of the ships. To solve the 

problem, two different approaches have been proposed. In the sequential approach, two Meta–

heuristics have been proposed – CENSGA-II and CRO. In phase I, the optimal ship order is 

determined using CENSGA-II. Based on this order, in phase II, CRO is used to find the optimal 

ship un-loader allocation. A comparative study is done between CRO and GA, where it is observed 

that CRO performs better than GA, both in terms of solution quality and computational time. The 

sequential approach is useful for the port authorities to revise their contract with their clients. 



Further, an integrated approach is considered to integrate ship sequencing and ship un-loader 

allocation to mitigate the impact on the optimality the problem may face because of breaking the 

problem into two stages of ship sequencing and ship un-loader allocation.  

The developed model offers reassessment opportunity for the port authorities for their decisions 

on developing the infrastructure either by employing more ship un-loaders or by increasing the 

number of berths. The decision support model enables the user to select from a number of optimal 

solutions based on his final decision. This DSS can also react to the changes in the system by 

updating the data inputs. 

 This paper considers that ship un-loaders change from a berth to another only when a ship 

is ready to get berthed. Future work may consider the occurrence of unexpected situations; The 

model can also be extended by incorporating stochastic features of ship operations like over delay 

due to break down maintenance, uncertain loading/unloading time, operating status of ship un-

loaders, and uncertainties in stockyard management. 
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Fig.1 Schematic representation of the proposed methodology 

 

 

 

Fig2: Chromosome Encoding 

 

Fig3: Chromosome Mutation 

 

 

Fig4: Chromosome real number crossover 

Phase III



 

Fig.5: Selection procedure in CENSGA-II 

Figure 6 (a): Pareto not covered   Figure 6 (b): less number of solutions in Pareto 

 

Fig.6: Examples of Poor Pareto 

 

Fig.7: Energy profile of reactants 



 

Fig.8 Molecular Structure for Ship un-loader allocation 

 

Fig.9. On wall Ineffective collision 

 

Fig.10. Decomposition 



 

Fig.11. Inter –molecular Ineffective collision 

 

Fig.12. Synthesis 

 

Fig.13: Framework for Chemical Reaction Optimization 



 

Figure 14. Chromosome for the Integrated Approach 

 

 

Fig. 15 (a): Generations = 125 

 

            Fig. 15 (b): Generations = 175 

 

Fig. 15 (c): Generations = 225 

 

Fig. 15 (d): Generations = 250 

  

Fig. 15 (a) to Fig.15 (d): The Pareto front for CENSGA-II, shows the solution quality with respect to 

the generations (Model 1) 



 

Fig. 16. Ship berth allocation 

 

Fig.18. Average Objective values of MinPE (CRO) 

 

 

 

 

 

Fig.19. Objective value using GA 



 

Fig.20: Optimal Allocation of ship un-loaders 

 

 

 

Fig.20 (a): Pareto front for instance 1 (Model 2) 

 

Fig.20 (b): Pareto front for instance 3  

(Model 2) 

 



 
 

Table 1. Computational experiments 

Instan
-ces 

Number 
of berths 

Number 
of ship 
un-
loaders 

Average objective value 
(efficient frontier) 

Average objective value 
(100 random solutions) 

Operating 
time 
(CRO) in 
hrs. 

Operating 
time (GA) 
in hrs. 

Waiting 
time (in 
hrs.) 

Priority 
deviation 

Waiting time 
(in hrs.) 

Priority 
deviation 

1 3 6 329 129 2684 159 308 (71) 316(182) 

2 3 7 528 109 2661 157 265(53) 283(137) 

3 3 8 251 131 2609 150 235(92) 240(169) 

4 4 6 156 127 1988 162 374(98) 386(204) 

5 4 7 302 116 1951 153 327(101) 353(223) 

6 4 8 308 109 1988 151 287(99) 300(259) 

7 5 7 168 104 1600 156 285(112) 317(110) 

8 5 8 76 151 1470 162 267(95) 269(170) 

9 5 9 116 140 1504 160 245(100) 264(220) 

10 5 10 111 157 1547 161 237(58) 257(192) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Table 2. Computational experiments 

 

Instan
-ces 

Number 
of berths 

Number 
of ship 
un-
loaders 

Average objective 
value (efficient frontier) 

Sequential Approach 

Operati
ng time 
(CRO) 
in hrs. 

Average objective value (efficient 
frontier)  

Integrated Approach 

Waiting 
time (in 
hrs.) 

Priority 
deviation 

Waiting 
time (in 
hrs.) 

Priority 
deviation 

Operating 
time in hrs. 

1 3 6 329 129 308  332 130 312 

2 3 7 528 109 265 531 113 276 

3 3 8 251 131 235 269 132 238 

4 4 6 156 127 374 172 129 383 

5 4 7 302 116 327 321 119 339 

6 4 8 308 109 287 336 121 301 

7 5 7 168 104 285 176 116 296 

8 5 8 76 151 267 87 159 271 

9 5 9 116 140 245 121 153 249 

10 5 10 111 157 237 119 163 241 
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