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Abstract. This work studies the ultrasensitivity of multisite binding processes where

ligand molecules can bind to several binding sites. It considers more particularly recent

models involving complex chemical reactions in allosteric phosphorylation processes

and for transcription factors and nucleosomes competing for binding on DNA. New

statistics-based formulas for the Hill coefficient and the effective Hill coefficient are

provided and necessary conditions for a system to be ultrasensitive are exhibited. It

is first shown that the ultrasensitivity of binding processes can be approached using

sharp-threshold theorems which have been developed in applied probability theory

and statistical mechanics for studying sharp threshold phenomena in reliability theory,

random graph theory and percolation theory. Special classes of binding process are

then introduced and are described as density dependent birth and death process.

New precise large deviation results for the steady state distribution of the process are

obtained, which permits to show that switch-like ultrasensitive responses are strongly

related to the multi-modality of the steady state distribution. Ultrasensitivity occurs if

and only if the entropy of the dynamical system has more than one global minimum for

some critical ligand concentration. In this case, the Hill coefficient is proportional to the

number of binding sites, and the systems is highly ultrasensitive. The classical effective

Hill coefficient I is extended to a new cooperativity index Iq, for which we recommend

the computation of a broad range of values of q instead of just the standard one I = I0.9
corresponding to the 10% to 90% variation in the dose-response. It is shown that this

single choice can sometimes mislead the conclusion by not detecting ultrasensitivity.

This new approach allows a better understanding of multisite ultrasensitive systems

and provides new tools for the design of such systems.
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1. Introduction

Ultrasensitive responses, that is, switch-like input-output relationships are commonplace

in signal transduction systems involving signaling cascades or bistable switches, see, e.g.,

the review articles [1, 2, 3, 4]. This work focuses on switching mechanisms based on

multisite phosphorylation processes, and on multisite binding processes, where ligand

molecules can bind to N binding sites. Such processes create thresholds such that the

proportion of highly phosphorylated substrate is close to 0 when the ratio of kinase

to phosphatase activity is below a critical level. The system is ultrasensitive if the

response switches abruptly from a low to a high phosphorylation level when the ratio

of kinase to phosphatase crosses this critical threshold. Usually this occurs when N is

large, but having many phosphorylation sites is not sufficient to ensure ultrasensitivity,

see [5, 6]. Various processes like protein or enzyme sequestration [7, 8] or allosteric

mechanisms [9, 10, 8, 11, 12] are known to induce ultrasensitivity. It is therefore difficult

to give a clear picture of all mechanisms leading to ultrasensitive responses.

Consider a macromolecule containing N sites S = {1, · · · , N} where ligand

molecules can bind. The binary variables ni = 0, 1, i = 1, · · · , N are used to describe

site occupancy: ni = 1 means that site i is occupied (or phosphorylated), while ni = 0

indicates that no molecule is bound at site i. The configuration space is denoted by

Λ = {n = (ni)1≤i≤N ; ni = 0, 1}, which has size |Λ| = 2N . Let v denote the ligand

concentration. The probability π(n) to see a configuration n is assumed to be of the

generic form

π(n) =
µ(n)v|n|

Z(v)
, (1)

where the µ(n) are non-negative weights, |n| denotes the number of bound sites, that

is,

|n| =
N∑
i=1

ni

and Z(v) is the normalization constant Z(v) =
∑

n∈Λ µ(n)v|n|. In what follows, π̄

denotes the law of |n|, which is defined on the set Λ̄ = {0, 1, · · · , N}, and is such that

π̄(k) =
∑

n: |n|=k

π(n) = vk
∑

n: |n|=k µ(n)

Z(v)
. (2)

The mathematical expectation of any function h(n) is denoted by Eπ(h).

1.1. Transcription factors binding and transcription rates

In its simplest formulation, the expression of some gene is activated by the binding

of transcription factors (TF) at a set of N binding sites. Let v > 0 denote the (TF)

concentration. The transcription rate, that is the rate at which mRNAs are produced is

often modeled using Hill functions of the form

f(v) =
vη

Kη + vη
, (3)
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where η is the so-called Hill exponent and K is the equilibrium constant of the chemical

reaction. Switching systems are characterized by transcription rates that exhibit super

steep behaviours in the neighbourhood of some critical concentration vc, a typical

example being a Hill function with a large coefficient η, see Fig. 1.

Figure 1: Hill functions for two Hill exponents η = 1.5 and η = 7. The larger η, the

steeper the Hill function.

Hill functions are used as first order approximations, and more realistic models

should encompass protein-protein interactions and cooperative effects, where the binding

of a (TF) on DNA favours the binding of other molecules, see, e.g., [13]. Such

interactions can be modeled using well-chosen probability measures π, see sections 1.2, 3

and 4. For arbitrary π, the related transcription rate can be modeled as the mean value

of some increasing activity function a of the fractional ligation number

f(v) = Eπ(a(
|n|
N

)). (4)

It turns out that such responses can switch for well-chosen a even when sites are not

interacting [14]. One recovers Hill functions when a(x) ≡ x, and when the probability π

is so extreme that it puts positive weights only on the empty configuration n = 0 (that

is ni ≡ 0 for all i) and on the fully occupied configuration (ni ≡ 1). In this particular

all or none situation, binding sites act cooperatively, since they are either all vacant or

all occupied.

Cooperativity is a well-known mechanism that can lead to steep and ultrasensitive

responses, see [3]. Further in the text, we will introduce the Hill coefficient of

cooperativity ηH(v) for arbitrary binding probability π and for any ligand concentration

v > 0, see section 2 . It is defined by comparing the mean fractional ligation number

(4) to a Hill function (3). Classically, positive cooperativity holds when ηH(v) is larger

than one. This work focus on ultrasensitive multisite systems where the Hill exponent

ηH(v) is very large, and gives examples where it is asymptotically linear in N .

1.2. Modeling binding sites interactions using the Ising model

Interactions between binding sites or protein-protein interactions can be modeled by

suitably choosing the probability π. A basic model which describes interactions between

binding sites is the Boltzmann machine model (or Ising model). Consider the free energy

function

H(n) = −
∑
i 6=j

Jijninj −
∑
i

hini, (5)



Ultrasensitivity and sharp threshold theorems for multisite systems 4

where the coefficients Jij = Jji model pairwise interactions, and where the parameters

hi form a local field. One then defines the related Gibbs distribution

πβ(n) =
1

Z(β)
exp(−βH(n))v|n|,

where β > 0 is the inverse temperature. Such models appear in systems biology when

modeling, e.g., transcription rates, see [15, 16] and the references therein. The model

is said to be ferromagnetic when Jij ≥ 0. In this situation, assuming that hi ≡ 0 and

v > 1, the most probable configuration is the fully occupied one with ni ≡ 1.

The mean field Curie-Weiss model corresponds to the case Jij ≡ J , i 6= j, for some

positive parameter J . In this case, the free energy function only depends on n through

|n|, since H(n) = −J |n|2 + J |n|/2, and therefore π̄(k) = vk
(
N
k

)
exp(βJ(k2 − k/2))/Z,

see (2).

Similar models have been studied in statistical mechanics, see [17, 18, 19, 20] and

also within biological and biochemical frameworks, see [21, 22, 23], where links between

switch like behaviours and phase transitions are established. The Ising model has

been used, for example, to model transcription logic in prokaryotes [15], nucleosome

positioning along the DNA [24], allosteric regulation [25, 26], or hysteresis in DNA

compaction [23]. A well-known example is the case of regulation of the λ phage repressor

where the OR λ right operator contains three sites to which repressor dimers bind

cooperatively. The authors of [27, 28] estimated the binding free energies to obtain

empirically derived free energy functions H. It turns out that H corresponds to a free

energy associated with a Boltzmann machine with up to three body interactions, which

can be ferromagnetic and anti-ferromagnetic, see [16].

1.3. Competition for binding between nucleosomes and transcription factors

In eukaryotes, (TF) compete with multi-component complexes of histones and other

proteins for DNA binding sites. Nucleosomes form the basic building blocks of

chromatin, and are composed of histones around which DNA segments are wrapped.

DNA accessibility to (TF) and RNA polymerase is then restricted by nucleosome and

chromatin fiber. Transcription rates have been modeled using statistical-mechanical

lattice models for protein-DNA binding and nucleosome arrangements along DNA,

see [24, 29, 30, 31, 32, 33]. The model given in [34] shows how indirect cooperativity

and ultrasensitivity can result from the competition between nucleosome positioning on

the DNA and hampering (TF) trying to occupy free non-interacting binding sites on

the DNA, see Fig. 2. Moreover, this mechanism, which has been well documented in

vivo and in vitro, see [35, 36, 37, 38], is shown to be equivalent to the Monod-Wyman-

Changeux allosteric model of cooperativity [39].

In the framework of this model, the state space is enlarged by considering pairs

(|n|, off) and (|n|, on) where |n| denotes the number of sites that are bound by (TF)

and where the (on) and (off) variable indicates if the binding sites are accessible or not

to (TF), see Fig. 2. The steady state is thus described by a probability on the set of
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pairs (k, y), with k ∈ {0, 1, · · · , N} and y ∈ {off, on}. In this model, the binding sites

are not interacting and identical, so that, the law of |n| is binomial on each of the two

on/off layers. The function of interest is then again of the form f(v) = Eπ̄(a(|n|/N)),

where π̄ is the steady state marginal distribution of the first component. Such response

curves are super steep in the neighbourhood of some critical concentration vc. Similar

statistical mechanical models have been developed to explain the allosteric Monod-

Wyman-Changeux cooperativity [40]. Sections 5 and 6.1 propose a general and new way

of understanding these phenomena using and developing new precise large deviations

results for density dependent birth and death processes.

Figure 2: Nucleosome mediated cooperativity. (a) Transcription factors (TF) try to

access free binding sites on the DNA. The nucleosome can bind/unbind only when all

binding sites are free from (TF). (b) In the active (on) state, the nucleosome is unbound

and (TF) can easily access the DNA. (c) In the inactive (off) state, the nucleosome is

bound and hampers the access of (TF).

1.4. Phosphorylation processes

Phosphorylation and dephosphorylation processes play a fundamental role in eukaryotic

signaling. Multisite phosphorylation with up to N = 150 sites in eukaryotes (see, e.g. [6])

form the basis for a strong switch-like response to an increase in kinase concentration.

The authors of [41] have shown that such switches are strongly enhanced by non-essential

phosphorylation sites. This mechanism is based on a model where a substrate molecule

is active when the number of phosphorylated sites is larger than a threshold κ0 = αN ,

for some positive parameter 0 < α < 1. It turns out that phosphorylation processes can

be ordered and unordered, see, e.g. [1]. In the first case, sites are being phosphorylated

in a well defined order that is given by biochemistry, while in the unordered case, sites

are being phosphorylated and dephosphorylated at random, see [16, 41].

Phosphorylation can be described using enzymatic reactions of the generic form

Sk + E
κk+←→
κk−

ESk
κk2−→Sk+1 + E, (6)



Ultrasensitivity and sharp threshold theorems for multisite systems 6

(see, e.g, [41]), where Sk denotes a substrate molecule having k phosphorylated sites,

and where E is the kinase. Similarly, dephosphorylation is represented by the reactions

Sk+1 + F
lk+←→
lk−

FSk+1

lk2−→Sk + F, (7)

where F is the phosphatase. These chemical reactions describe a Markov chain

associated with the related chemical reaction networks. Forgetting the intermediate

states composed of the complexes ESk and FSk, and just focusing on the states Sk,

this Markov process is approximated by a birth and death process of steady state

distribution π̄. One can check that the steady state distribution associated with

ordered phosphorylation is π̄(k) = vk(v − 1)/(vN+1 − 1), where v = λu with u the

ratio of the kinase to phosphatase concentrations and λ the relative phosphorylation

efficiency. In the unordered case, the steady state is given by a binomial law of the form

π̄(k) =
(
N
k

)
vk/(1+v)N . The probability that a substrate molecule is active is then given

by

f(v) = π(
|n|
N
≥ α) = π̄({dαNe, dαNe+ 1, · · · , N}), (8)

where dxe denotes the ceiling function. This probability exhibits a super steep behaviour

in the neighbourhood of a critical value vc, see [16, 41].

1.5. Allosteric phosphorylation processes

The model proposed in [11] considers proteins that are either active (A) or inactive (I),

and which have N sites that can be phosphorylated see Fig. 3. This is an adaptation

of the classical Monod-Wyman-Changeux (MWC) model [39] which is one of the first

model where ultrasensitivity was considered. Similar models have been studied using

methods from statistical mechanics, see, e.g., [25, 26, 34, 40]. Interestingly, this model is

used to study a newly discovered check point signalling pathway in budding yeast. The

authors show that the known components of this pathway can form a robust hysteretic

ultrasensitive switch, where a yeast bud first grows in a particular direction (polar

growth) and next switches to isotropic growth.

Sections 5 and 6.2 give new techniques to handle such mechanisms using large

deviation theory for birth and death processes. As for the model of section 1.3, the state

space is enlarged by considering pairs (k, off) and (k, on), where k denotes the number of

phosphorylated sites. The response function is again of the form f(v) = Eπ̄(a(|n|/N)),

where π̄ is the steady state marginal distribution of the first component. In this

model, the transition rate from (on) to (off) is strongly decreasing with the number

of phosphorylated sites. This mechanism is responsible for the ultrasensitive behaviour,

since it leads to the establishment of two stable equilibria corresponding to an (off) state

for small k, and to an (on) state for large k.
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Figure 3: Allosteric phosphorylation. The process is a Markov Chain evolving along a

strip. Arrows thickness illustrates that for small k, the transition toward (off) is strong,

while for large k, it is weak.

1.6. Substrate-Catalyst reaction

Consider a substrate molecule containing N sites where ligand molecules can bind at rate

v. The transition rates are provided in Fig. 4. This model has been used for example

in [42] for proposing a mechanism depicting kinetic memory. The substrate-catalyst

reactions

Sk + C
Lk
1←→

Lk
2

CSk
k−→Sk−1, (9)

and the reactions associated with ligand binding

Sk
v(N−k)−→ Sk+1, (10)

define a Markov chain evolving on a strip, see Fig. 4. The model described in section 1.4

considers analogous enzymatic reactions corresponding to (unordered) phosphorylation

and dephosphorylation steps by forgetting intermediate complex species. It assumes also

fast reactions and quasi-equilibrium in reactions (6) and (7), while the present model

only assumes quasi-equilibrium for the phosphorylation step (10). The state space is

here again described by pairs (k, Sk) and (k, CSk). As in the previous model, the ratio

between the transition rate towards (off) to the rate towards (on) decreases with k, as

illustrated in Fig. 4. This results in a switch-like behaviour of the mean number of

phosphorylated sites, since it leads two stable equilibria corresponding to an (off) state

for small numbers of phosphorylated sites, and to an (on) state for a large number of

phosphorylated sites, see sections 5 and 6.3 for further details.

1.7. Organization of the paper

The paper is organized as follows. Section 2 recalls the thermodynamical definitions of

the Hill coefficient of cooperativity ηH(v) and of the effective (or Goldbetter-Koshland)

cooperativity index I, which are the two basic measures of cooperativity of common

use in both empirical and theoretical studies in biochemistry, molecular biology and

biophysics. Positive cooperativity in the Hill sense is next introduced for general

response functions f(v). Generalizations Iq of the effective Hill coefficient I are described
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Figure 4: Transition scheme associated with substrate-catalyst reactions. L1 and L2

are such that L1 << L2 so that (L2/L1)k increases very fast, which is suggested by the

arrows thickness showing that transitions towards (off) state are less and less likely as

k becomes large.

following the results of [16]. Section 3 introduces the notion of site-specific Hill coefficient

for binding processes. It allows to compare positive cooperativity in the Hill sense with

local and microscopic positive cooperativity. Section 4 introduces the notion of influence

function, which has been introduced to study sharp threshold phenomena in reliability

theory, statistical mechanics and percolation theory, where functions exhibiting super

sensitive behaviours are commonplace. Two fundamental inequalities giving lower

bounds for the derivative of response functions are provided. This might be of interest

for giving lower bound for finite size switch-like systems from systems biology. Section 5

develops new tools for studying a large class of models where ultrasensitive behaviours

occur, including the models of sections 1.3, 1.5 and 1.6. These results are obtained

using birth and death processes approximations and lead to the emergence of a global

picture. We show that there exists a critical ligand concentration vc for which ηH(vc)

grows linearly in the number of binding sites if and only if some entropy function has

more than one global minimizer. Section 6 revisits the examples given in sections 1.3, 1.5

and 1.6 using these new tools. Finally, details of computations, of formula derivation

and proofs are provided in the Supplementary Information.

2. Measures of ultrasensitivity for general input-output responses

According to [2], ultrasensitivity is a property of steady states input-output response

that makes them switch-like character. Goldbetter and Koshland [43, 44] defined a

response function f(v) to be ultrasensitive if it takes less than a 81-fold change in input

concentration v to drive the output f(v) from 10% to 90% of its maximum. This means

that for increasing f , v0.9 < 81 v0.1, where the quantiles v0.1 and v0.9 are chosen so that

f(v0.1) = 0.1 f(∞) and f(v0.9) = 0.9 f(∞). Hence, f is ultrasensitive when the so-called

Goldbetter-Koshland index I is larger than one:

I =
ln(81)

ln(v0.9
v0.1

)
> 1. (11)
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The Hill coefficient ηH(v) also provides a measure of steepness of dose-response

functions. It is defined as

ηH(v) =
d

d ln(v)
ln
( f(v)

f(∞)− f(v)

)
. (12)

Basically, this coefficient is related to the derivative of f at v, and is thus large for steep

curves. ηH(v) can however be understood in various ways, using, e.g., affinity functions

associated with generic chemical reactions, see [16, 45, 46].

Hill proposed ηH(v) as an indicator of cooperativity by comparing f with Hill

functions of the form (3) to get a Hill exponent η reflecting the degree of coooperativity

of the system. Indeed, if f were proportional to a Hill function, one would have

f(v)

f(∞)
=

vη

Kη + vη
, (13)

for positive K and η. In this case,

ln

(
f(v)

f(∞)− f(v)

)
= η ln(v)− η ln(K),

and ηH(v) in (12) would simply be η, which explains the idea behind this definition.

When for example f is the mean fractional ligation number of some multisite system,

the following terminology is of current use:

• When ηH(v) > 1 for all v > 0, the system exhibits positive cooperativity in the Hill

sense.

• When ηH(v) < 1 for all v > 0, one speaks o negative cooperativity in the Hill sense.

• The special case where ηH(v) ≡ 1 is synonomous with non-cooperativity.

The Golbetter-Koshland coefficient I and the Hill coefficient are closely related. To

show this, let us introduce a more general definition of I that has already been given

in [16]. When f is increasing, the ratio 0 ≤ f(v)/f(∞) ≤ 1 can be seen as a probability

distribution function. Let q ∈ [1/2, 1], and consider the quantiles vq and v1−q defined as

q = f(vq)/f(∞) and 1− q = f(v1−q)/f(∞). The effective Hill coefficient is defined by

Iq =
2 ln( q

1−q )

ln( vq
v1−q

)
. (14)

The standard definition in (11) corresponds to the special choice q = 0.9, with I = I0.9.

Let η̄H be such that ηH(v) = η̄H(ln(v)). Then

Iq =
1

ln(vq)− ln(v1−q)

∫ ln(vq)

ln(v1−q)

η̄H(y) dy, (15)

see [16] and [47].

In the following, we will focus on mechanisms leading to super sensitive or highly

ultrasensitive responses where either Iq or ηH(v) diverges to ∞ as N → ∞ for some

parameter q or for some critical concentration v = vc.



Ultrasensitivity and sharp threshold theorems for multisite systems 10

3. Cooperativity and ultrasensitivity of binding processes

In the special case where the activity function is given by a(x) ≡ x, it will be useful in

what follows to consider this nice formula for ηH(v)

ηH(v) =
Varπ( |n|

N
)

p̄(1− p̄)
N, (16)

where p̄ =
∑

i π(ni = 1)/N and where Varπ denotes the variance under probability

π, see [46, 48]. Indeed, one obtains that there is a critical concentration vc such

that ηH(vc) ∼ CN as N → ∞ for some positive constant C as N → ∞ when

Varπ( |n|
N

)/(p̄(1 − p̄)) ∼ C. The basic question is then to give conditions ensuring that

the variance is asymptotically positive, see section 5.

There is an intuitive probabilistic picture behind positive cooperativity given by

π({sites i and j are occupied}) ≥ π({site i is occupied})π({site j is occupied}),

with a strict inequality for at least one pair of sites i and j, which suggests some

synergistic effect, see [49]. Mathematically, this last inequality becomes

Covπ(ni, nj) ≥ 0,

so that the random variables ni and nj are positively correlated when the above

inequality is strict. A typical example where such inequalities hold is the ferro-magnetic

Ising model, see section 1.2 or [20] for more details. This suggests to consider site-specific

Hill coefficients ηH,i(v) which measure the effect of the binding of a molecule at site i

on the binding of molecules at sites different from i, see [45]. They are defined by [16]

ηH,i(v) = 1 + Eπ(n̄i|ni = 1)− Eπ(n̄i|ni = 0), (17)

where Eπ(·|ni = ·) denotes the conditional expectation under the probability measure

π given the state of the site i, and where n̄i =
∑

j 6=i nj is the ligation number at sites

different from i. The coefficient ηH,i(v) gives thus the gain in bound molecules at site

different from i when adding a molecule at site i, and should be larger than 1 for

cooperative biochemical systems. One can check that

ηH,i(v) = 1 +
Covπ(ni, n̄i)

Varπ(ni)
= 1 +

∑
j 6=i Covπ(ni, nj)

pi(1− pi)
, (18)

where pi = π(ni = 1). Hence,

Covπ(ni, n̄i) ≥ 0 if and only if ηH,i ≥ 1. (19)

Both kind of coefficients are related to each other by, see [16],

ηH(v) =
Varπ(|n|)
Np̄(1− p̄)

=

∑
i pi(1− pi)ηH,i(v)

Np̄(1− p̄)
. (20)
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Note that local positive cooperativity (19) at all sites i does not imply positive

cooperativity in the Hill sense (ηH > 1). This is a consequence of (18) and (20), since∑
i p

2
i /N > (

∑
pi/N)2 for non-constant pi. Hence, a system which exhibits negative

cooperativity in the Hill sense (ηH(v) < 1) can be such that there is a site i with

ηH,i(v) > 1 (see [46, 47] for discussions on this problematic). It is therefore necessary

to consider the system in its entirety.

The following result provides a generalization of (16) for any activity function a(x).

Theorem 1. Let π be a probability measure of the form given in (1) and let f(v) be

given by (4). Then,

ηH(v) =
Covπ(a( |n|

N
), |n|

N
)a(k

∗

N
)

f(v)(a(k
∗

N
)− f(v))

N, (21)

where k∗ denotes the largest k for which there is a configuration n such that |n| = k and

µ(n) > 0, in such a way that a(k
∗

N
) = f(∞). Moreover, limv→∞ ηH(v) = limv→0 ηH(v) =

1.

The proof can be found in the Supplementary Information.

4. Influence functions and sharp-thresholds

As seen previously, Hill coefficients ηH(v) and their effective versions Iq are used

to measure the steepness of binding curves in biological problems. Efficient genetic

switches occur when the binding curve switches abruptly from a low saturation level to

a high saturation level within a small concentration interval at the log scale. Similar

switches occur in many frameworks of applied probability and statistical mechanics, like

reliability theory, random graph theory and percolation theory, where sharp-threshold

phenomena are commonplace. A well-developed theory to study such phenomena

already exists [50, 51, 52, 53, 54]. In what follows, we will make links between these fields

explicit. These results give general conditions ensuring the emergence of ultrasensitivity

in systems biology.

4.1. Conditional influences

Let µ be a positive probability measure on the configuration space Λ, and define, for

0 < p < 1, the new probability measure

πp(n) =
1

Zp
µ(n)

∏
i

(
pni(1− p)1−ni

)
, (22)

where Zp is the normalization constant (or partition function). Then πp coincides with

a probability π given in (1) when the concentration v and p are such that v = p/(1−p).
Let A ⊂ Λ be a subset of Λ. The conditional influence IA(i) is defined as

IA(i) = πp(A|ni = 1)− πp(A|ni = 0), (23)
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that is,

IA(i) = Eπp(1A|ni = 1)− Eπp(1A|ni = 0),

where 1A is the indicator function of the subset A. One sees that

ηH,i(v) = 1 +
∑
j 6=i

I{j}(i).

When πp is a product measure with pi ≡ p and A is an increasing event (that is, if

n′ ∈ A and n′ ≤ n, then n ∈ A), there exists an absolute positive constant c such that,

for all N , p ∈]0, 1[, there exists i ∈ {1, . . . , N} such that

IA(i) ≥ cmin{πp(A), 1− πp(A)} ln(N)

N
, (24)

see [55, 56], where similar inequalities have been first studied for boolean functions, [51]

where (24) was derived for more general functions using discrete Fourier and harmonic

analysis, or [57] where such inequalities have been proven using probabilistic methods.

4.2. Conditional influence functions and sharp-thresholds

The aim of the sharp-threshold theory is to give conditions ensuring that the function

πp(A) exhibits a sharp-threshold as p varies within a small interval of values of size

1/ ln(N). Such conditions are obtained using a Russo-type formula (see [52, 53]) of the

form
dπp(A)

dp
=

1

p(1− p)
Covπp(1A, |n|), (25)

which is similar to (21). We follow next [53] to introduce various probabilistic notions

and a powerful theorem that yields results on sharp-thresholds. For J ⊂ S and ξ ∈ Λ,

let ΛJ = {0, 1}J and

Λξ
J = {n ∈ Λ; nj = ξj for j ∈ S \ J}.

The set of all subsets of ΛJ is denoted by FJ . Let π be a positive probability measure

on (Λ,FS). The conditional probability measure πξJ on (ΛJ ,FJ) is defined by

πξJ(nJ) = π(nJ |ni = ξi for i ∈ S \ J), nJ ∈ ΛJ .

The probability measure π is said to be monotonic when, for all J ⊂ S, all increasing

subsets A ⊂ ΛJ , and all ξ ∈ Λ,

πξJ(A) ≤ πηJ(A) whenever ξ ≤ η. (26)

It turns out that π is monotonic if and only if it is 1-monotonic, that is, if (26) holds

for all singleton sets J . The following result from [53] is very useful to obtain results on

sharp-thresholds.
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Theorem 2. There exists a positive constant c such that the following holds. Let A ∈ FS
be an increasing event. Assume that πp is monotonic for all p. If there exists a subgroup

of the permutation group of N elements that acts transitively on S leaving both π and

A invariant, then

dπp(A)

dp
≥ cαp
p(1− p)

min{πp(A), 1− πp(A)} ln(N), (27)

where αp = πp(ni)(1− πp(ni)).

This implies that, for 0 < ε < 1/2, the function f̃(p) = πp(A) increases from ε to

1− ε over an interval of values of p with length smaller in order than 1/ ln(N). This is

precisely a sharp-threshold, which implies that the quantiles vq and v1−q with q = 1− ε
are such that vq − v1−q ≤ 1/ ln(N) leading to ultrasensitive behaviour.

5. Density dependent birth and death processes

This section considers probability distributions π̄N on {0, 1, · · · , N} which are steady

state distributions of density dependent birth and death processes. The derived results

on ultrasensitivy will be then applied to the processes introduced in sections 1.3, 1.5

and 1.6. Let ck(t) denote the concentration of molecules with exactly k modified sites

for phosphorylation processes, or, with exactly k bound ligand molecules for binding

processes. The time evolution of these concentrations is often assumed to be of the

form (see [10]),
dck
dt

= bk−1ck−1 − dkck − bkck + dk+1ck+1, (28)

where bk depends linearly on the inducer concentration v. In the above equation, it is

assumed that ck turns into ck+1 at the linear rate bkck and that ck+1 turns back into

ck at rate dk+1ck+1. This equation can be seen as the Kolmogorov forward equation

associated with a birth and death process YN(t) of birth rate qN(k, k + 1) = bk and

death rate qN(k, k − 1) = dk (see e.g. [16]). This means that, for h small,

P (YN(t+ h) = k + 1 | YN(t) = k) ∼ bkh

P (YN(t+ h) = k − 1 | YN(t) = k) ∼ dkh.

Such processes are said to be density dependent when

qN(k, k + 1) = Nb(N)( k
N

) and qN(k, k − 1) = Nd(N)( k
N

),

for some functions b(N) and d(N). The birth rates b(N) and the death rates d(N) are given

by Lipschitz-continuous functions on [0, 1], such that b(N) > 0 and d(N) > 0 on ]0, 1[ ,

and b(N)(1) = d(N)(0) = 0. b(N) depends linearly on the inducer concentration v, so that

the steady state distribution π̄N has the form defined in (2). Assume for simplicity that

b(N) − d(N) −−−→
N→∞

F and ln

(
d(N)

b(N)

)
−−−→
N→∞

ln(r),
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for some well-behaved functions F and r (see Supplementary Information Assumption 3

for further details). One can check that the rescaled process XN(t) = YN(t)/N converges

as N →∞ towards the orbits of the ordinary differential equation (o.d.e.) (see [58])

dx(t)

dt
= F (x(t)), x(0) = x0, (29)

when XN(0) −→ x0, as N → ∞. The free energy function J and the entropy function

I are defined by

J(x) =

∫ x

0

ln(r(u))du and I(x) = J(x)− J0, (30)

where J0 = minx∈[0,1] J(x). The author of [59] proved that the family of steady state

distributions π̄N satisfies a large deviation principle of rate function I. The steady

state distribution of the process concentrates asymptotically in the neighbourhood of

the global minima xi of the entropy function I (see Lemma 12 in the Supplementary

Information). We provide new precise large deviations estimates which are necessary to

show that, under some assumptions, for any global minimizer xi of I,

lim
N→∞

π̄N([xi − ε, xi + ε]) > 0, (31)

for all ε > 0. On the other hand, classical large deviations results of [59] imply that

π̄N(A) converges exponentially fast towards 0 as N → ∞ for any subset A which does

not contain a global minimizer xi of I.

5.1. The basic mechanism underlying ultrasensitiviy

The above precise large deviations results show that the limiting steady state charges

asymptotically every neighbourhood of the global minimizers of the entropy function.

We next explain in detail the fundamental mechanism that lies at the heart of the

ultrasensitive behaviour for a large class of models. All of the previous results which

have been obtained for this class of models were based on ad-hoc computations using

various kind of approximations [60, 8, 11, 34, 42]. We propose here a new and global

picture for this new class of ultrasensitive multisite systems.

Assume that there is a concentration v such that the limiting (o.d.e.) (29) has a

finite number of stable equilibria 0 < x1 < x2 < · · · < xm < 1 that minimize the entropy

function I, with I(xi) = 0, i = 1, . . . ,m. Equation (31) implies that the steady state

π̄N concentrates on the set of global minima.

Assuming for simplicity that a(x) ≡ x, the Hill coefficient associated with the

steady state distribution π̄N is given by formula (16) and it writes within the birth and

death process context as

ηH(v) =
Varπ̄N (XN)

Eπ̄N (XN)(1− Eπ̄N (XN))
N. (32)
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• The unimodal case m = 1. When there is a single miminizer 0 < x1 < 1, the

variance σ2
N = Varπ̄N (XN) converges towards 0, and the expected value Eπ̄N (XN)

converges towards x1, so that

ηH(v)

N
∼ σ2

N

x1(1− x1)
−→ 0, as N →∞,

and the Hill coefficient is sublinear in N .

• The multimodal case m ≥ 2. When the number of minimizers is larger that 1, the

limiting variance σ2 is positive and the expected value Eπ̄N (XN) converges towards

a limiting positive constant eX > 0. In this situation,

ηH(v)

N
∼ σ2

eX(1− eX)
> 0,

so that the system is ultrasensitive with a Hill coefficient of order N .

In all of the biological models provided in sections 1.3, 1.5 and 1.6, there is a critical

concentration vc such that the limiting (o.d.e.) has one global minimizer (m = 1) when

v 6= vc, and two global minimizers 0 < x1 < x2 < 1 when v = vc. This situation is

illustrated in Fig. 5, where one can see that the steady state is unimodal when v 6= vc
and bimodal when v = vc. The Hill coefficient is of order N when v = vc, and otherwise

is sublinear in N . From (21), analogous results hold for more general increasing and

continuous activity functions a(x), see Theorem 4 of the Supplementary Information.

5.2. Sharp threshold and finite N inequalities

This section shows how the inequalities given in section 4 can be applied to finite size

systems of interest in systems biology as those given in sections 1.3, 1.5 and 1.6. When

the sites are identical, π̄N( |n|
N

) = π̄(|n|) =
(
N
|n|

)
π(n) (see (2)) and the related probability

measure is monotonic when

k + 2

N − k − 1
d(N) (k + 1) b(N) (k + 1) >

k + 1

N − k
d(N) (k + 2) b(N) (k) , (33)

for all k = 0, .., N − 2. A typical increasing event of interest is AN = {n; |n| > αN} for

some threshold α > 0, (see also section 1.4, where this kind of event has been used to

model the effect of non-essential phosphorylation sites on ultrasensitivity). Section 5.1

explains the importance of bimodal steady states in ultrasensitive systems of this sort

for large N . For finite N , (27) gives that

dπ(AN)

dp
≥ cαp
p(1− p)

min{π(AN), 1− π(AN)} ln(N)

where αp = π(ni)(1 − π(ni)) and p = v
1+v

(or equivalently v = p
1−p). The steady

states associated with the examples of sections 1.3, 1.5 and 1.6 all satisfy (33) (see

sections 6.1, 6.2 and 6.3).
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Figure 5: Bistability and steady state distribution for allosteric phosphorylation

processes. The stable equilibria x1 and x2 of a bistable system are the local minima

of the entropy function I. Bistable systems lead to bimodal steady state distributions

and ultrasensitivity only when I possesses two global minima. (a-b) When v < vc,

the unique equilibrium x1 minimizing I(x) is the mode of the related unimodal steady

state distribution π̄(x). (c-d) When v = vc, both equilibria minimize I and the steady

state distribution is bimodal of modes x1 and x2. In this case, the system exhibits

ultrasensitivity with a Hill coefficient ηH(vc) linear in the number N of binding sites.

(e-f) When v > vc the unique equilibrium minimizing I is x2 > x1 resulting in a

unimodal steady state distribution.

Suppose that there is a single stable equilibrium x∗ which minimizes the entropy

function I, so that the Hill coefficient is sublinear in N , see section 5.1. The limiting

steady state concentrates in any neighbourhood of x∗, and one can check that, when

α = x∗, lim infN π(AN) > 0 and lim infN π(AcN) > 0, showing that the plot of this

probability versus v or p becomes steep and exhibits a sharp threshold with a derivative

lower bounded by ln(N). When x∗ 6= α, the inequality (27) is useless since large

deviations estimates show that min{π(AN), 1 − π(AN)} converges exponentially fast

toward 0 as N →∞.

6. Illustrations from systems biology

The results of section 5 apply to the models from systems biology which have been

described in sections 1.3, 1.5 and 1.6. In these examples, the method follows three main

steps:
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(i) find the associated density-dependent birth and death process YN(t) and the

limiting (o.d.e.) (29);

(ii) compute the equilibria of this differential equation;

(iii) look for the global minimizer of the entropy function I as a function of v.

6.1. Nucleosome mediated cooperativity

This section studies the model introduced in section 1.3. Let us define a process W (t)

such that W (t) = A if the nucleosome is not bound to the DNA at time t (active state)

and W (t) = I otherwise (inactive state). The DNA possesses N binding sites and the

nucleosome can access or leave the DNA only when all binding sites are free of (TF).

The transitions between active and inactive state occur at rate g (inactive to active)

and κ (active to inactive), such that L = g/κ = KN , see Fig. 6.

Let N(t) denotes the number of occupied sites at time t. The birth rate is given

by µAv in the active state and by µIv < µAv in the inactive state. Here, v denotes

the protein concentration. Fig. 6 sums up the whole process, which is equivalent to the

Monod-Wyman-Changeux model of allosteric regulation [39] (see [12]).

Figure 6: Nucleosome mediated cooperativity. (a) Description of the related birth and

death process, which evolves on a three pieces component composed of two segments

linked at their end. (b) The related birth and death process approximation YN(t) as

described in section 5.

Following [34] and [16] the full Markov-chain process (N(t),W (t)) at equilibrium

is such that

P (N(∞) = k , W (∞) = I) =

(
N
k

)
(µIv)k

νI + LνA
,

P (N(∞) = k , W (∞) = A) =
L
(
N
k

)
(µAv)k

νI + LνA
,

where νI = (1 + µIv)N and νA = (1 + µAv)N . This measure is the invariant measure of

a birth and death process evolving in a three pieces component, see [16] and Fig. 6 (a).
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A computation shows that

P (W (∞) = I | N(∞) = k) =
L (µIv)k

L (µIv)k + (µAv)k
,

P (W (∞) = A | N(∞) = k) =
(µAv)k

L (µIv)k + (µAv)k
.

This leads to a birth and death process YN(t) counting the number of bound sites

in either the active or the inactive state, of birth and death rates qN (k, k + 1) and

qN (k, k − 1), as in Fig 6 (b).

The associated limiting (o.d.e.) (29) is given by

dx

dt
=

{
(1− x)µAv − x, for x > xc,

(1− x)µIv − x, for x < xc,
(34)

where xc = ln(1/K)
ln(µA/µI)

. It possesses two stable equilibria x1 = vµI
1+vµI

and x2 = vµA
1+vµA

which

are functions of v. They both belong to [0, 1] when 1 > K > µI
µA

. A direct computation

shows that both equilibria x1 and x2 are global minima of the entropy I(x) when v is

equal to the critical concentration v = vc = 1−K
KµA−µI

. The limiting stationary distribution

of the birth and death process converges to a probability measure π̄ which is a mixture of

Dirac measures concentrated at the equilibria x1 and x2. Fig. 7 provides two illustrations

corresponding to the cases where v 6= vc and v = vc, the latter situation leading to a

bimodal steady state with a Hill coefficient ηH(vc) which is linear in the number of

binding sites N . The explicit form of π̄N and I(x) are given in equations (10) and (13)

of the Supplementary Information. In Fig. 8, one sees that the effective Hill coefficient

Iq detects the switch-like response for an appropriate choice of q.

6.2. Allosteric phosphorylation processes

This section applies the results presented previously to the biological model introduced

in section 1.5. For this model, in settings that will be made precise, it is possible to find

explicit formulas and apply Theorem 1, as well as the birth and death process approach

described in section 5 in order to study the sensitivity of the system. The reader is

referred to section 3.2 of the Supplementary Information for further details, and more

particularly to Propositions 5 and 6.

We follow [10, 11, 14] using a probabilistic framework. Let W (t) be the

Markov chain associated with the protein activity (W (t) ∈ {I, A}). The number

of phosphorylated sites at time t is described by a process N(t), so that the full

process is given by a bivariate time-continuous Markov chain (N(t),W (t)). The authors

of [10, 11, 14] opt for Markov chains of the transition rates that are given in Fig. 3, with

ε < 1 small. See also [9] where the reason for taking εk in the switching rates is motivated

using free energies.

Following [11, 14], suppose that L1 = L1(N) = ε−N/2 and L2 ≡ 1. In this

settings, the steady state distribution of N(t) is a mixture of two binomial distributions
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Figure 7: Bistability and ultrasensitivity in nucleosome mediated cooperativity. The

parameters are set to µI = 0.1, µA = 0.86 and K = 0.3 which satisfy the conditions

ensuring the existence of two minimizers. (a) The entropy function I(x) possesses two

roots when v = vc and only one when v 6= vc . (b) The stationary distribution π̄N
is bimodal when v = vc (illustrated for N = 1000) and unimodal when v 6= vc. The

modes are situated at x1 and (or) x2, the zeros of I(x). (c) The Hill coefficient ηN(v)

has been numerically computed with formula (21) with the distribution π̄N (v = vc in

black and v 6= vc in continuous grey line). It is proportional to N when v = vc and

the system is ultrasensitive. It is also compared with the coefficient obtained with the

limiting distribution when v = vc, that is a mixture of Dirac masses (dotted line).

Figure 8: Numerical approximation of the effective Hill coefficient Iq in nucleosome

mediated cooperativity. The parameters are set to µI = 0.1, µA = 0.86 and K = 0.3

and a(x) ≡ x. (a) Activity of the macromolecule f(v) = Eπ̄N (a( |n|
N

)) for different values

of N . When q < min {x2(vc), 1− x1(vc)}, Iq goes to infinity when N →∞. Otherwise

Iq converges towards a constant. (b) Iq as a function of q for several values of N . (c)

Iq as a function of N for three values of q.

B(N, εv
1+εv

) and B(N, v
1+v

), which, once rescaled on [0, 1], concentrate respectively on

x1 = εv/(1 + εv) and x2 = v/(1 + v) as the number of sites grows. The limiting

behaviour of this mixture depends on the value of the concentration v with respect to

the critical value vc = 1/
√
ε: (i) if v < vc, then the steady state distribution converges

to a Dirac measure on x1; (ii) if v > vc, then it converges to a Dirac measure on x2;

(iii) if v = vc, then it converges to a mixture of two half Dirac measures on x1 and x2

respectively.

Assuming now that the activity function a is continuous, bounded and strictly

increasing on the unit interval, this particular form of π̄ allows to compute explicitly
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the Hill coefficient in the limit when N →∞ using the thermodynamical formula (21).

We end up with two cases:

• when v 6= vc, ηH(v) is asymptotically constant;

• when v = vc, ηH(vc) is asymptotically linear in N

ηH(vc) ∼ Cvc N, (35)

for some positive constant Cvc > 0, so that the system is highly ultrasensitive.

This latter case is illustrated in Fig. 9.

Figure 9: Hill coefficient for allosteric phosphorylation processes for ε = 0.1 and

a(x) = x
1+x

. (a) Hill coefficient with respect toN when v = vc: explicit value (continuous

line) and simulated value (dotted line) obtained by equation (21) with a mixture of Dirac

random variables π = 1
2
δx1 + 1

2
δx2 . (b-c) ηH(v) and Varπ̄N (XN) as functions of v, for

different values of N . They concentrate on their maximum at v = vc as N grows.

On the other hand, using the birth and death process approach described in

section 5, the same steady state distribution appears and the stable equilibria of the

limiting (o.d.e) (29) coincide with x1 and x2 so that, we get back to same conclusion as

above. Consider the processes obtained by assuming fast switching rates between the

active and inactive states, see e.g. [16, p.46]. Given that N(t) = k, the fast process

W (t) evolves according to the quasi-equilibrium

P (W (∞) = I | N(∞) = k) = σk(I) =
ε−

1
2

(N−2k)

1 + ε−
1
2

(N−2k)

P (W (∞) = A | N(∞) = k) = σk(A) =
1

1 + ε−
1
2

(N−2k)
.

The pair process (N(t),W (t)) is then replaced by a birth and death process YN(t)

whose birth and death rates qN(k, k+1) and qN(k, k−1) are given in Fig. 10 and whose

steady state measure π̄N coincides with the mixture π̄ above. The associated limiting

(o.d.e.) (29) is

dx

dt
=

{
(1− x)εv − x, if 0 ≤ x < 1/2,

(1− x)v − x, if 1/2 ≤ x ≤ 1,
(36)

which possesses two stable equilibria x1 and x2. These are minimizers of the entropy I

and are both are global minima if and only if v = vc = 1/
√
ε, as illustrated in Fig. 11.
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Figure 10: Schematic representation of the approximate allosteric phosphorylation

process. (a) Quasi-equilibrium approximation. (b) Density dependent birth and death

process approximation when N →∞.

Figure 11: Steady state distribution of a phosphorylation process is unimodal when

v 6= vc and bimodal when v = vc. (a) The entropy function I(x) = J(x)−J0 for different

values of v and for ε = 0.1 (See section 3.2.4. in the Supplementary Information). The

minima are highlighted with dots. When v = vc = 1/
√
ε, I(x) possesses two global

minima. (b) The measure π̄N concentrates at the global minima (plain dots) of the

entropy function. This is illustrated for N = 1000.

Therefore, the case v = vc leads to a bimodal steady state in the limit and the Hill

coefficient is of order N (ultrasensitive system), as described in section 5.1.

Finally, in the particular case when a(x) ≡ x, it is possible to compute explicitly

f(v) (see Supplementary Information). As one can see in Fig. 12 (a), larger N

produce steeper curves, with a switch occurring around v = vc, in accordance with

our findings concerning ηH(vc). Consider the quantile v
(N)
q given by the equation

q = f(v
(N)
q ). Lemma 7 of the Supplementary Information shows that for a(x) = x

and 1/2 ≤ q ≤ 1/(1 +
√
ε), one has limN→∞ v

(N)
q = limN→∞ v

(N)
1−q = vc, so that

lim
N→∞

Iq = +∞.

Fig. 12 (b) and (c) show that Iq is asymptotically linear in N . However, if q is close

to 1, then Iq is asymptotically constant, so that one does not detect ultrasensitivity of

order N . This shows the importance of using a broad range of coefficients Iq instead of

only looking at the classical index Iq=0.9.
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Figure 12: Numerical approximation of the effective Hill coefficient, equation (14), in

the framework of allosteric phosphorylation processes. The activity function is a(x) = x

and ε = 0.1, such that vc =
√
ε
−1 ≈ 3.2 and x2 ≈ 0.76. (a) The activity of the

macromolecule f(v) for different values of N . When q = 0.9, v0.9 and v0.1 converge

to different limits when N grows. When q is smaller than the threshold qc = x2(vc),

v
(N)
q − v

(N)
1−q converges towards zero so that Iq goes to infinity. (b) The effective Hill

coefficient Iq as a function of q for several values of N and (c), as a function of N , for

three values of q. The index Iq, in broad outline, takes two values. The first one goes

to infinity with N and the second one goes to 1, for larger q.

In conclusion, we see that the effective Hill coefficient Iq, which is nothing but

an average of Hill coefficients (see (15)), diverges as N → ∞ for a broad range of

values of q, whereas the Hill coefficient ηH(vc) ∼ CvcN only when v = vc. Detection of

ultrasensitivity should therefore be easier with Iq than with ηH(v).

6.3. Substrate-Catalyst reactions

This section considers the model given in section 1.6. The catalytic reactions are

simplified by assuming fast formation of the complex CSk. To this extent, let be

Lk1, L
k
2 � 1 for every 0 ≤ k ≤ N . This last assumption leads to an approximating

birth and death process YN(t), of transition rates qN(k, k+ 1) and qN(k, k− 1) given in

Fig. 13. Following [42], set

Lk =
Lk2
Lk1

=
L0

2

L0
1

γ
k
N = L0γ

k
N

for some positive constant γ. The related limiting (o.d.e.) is

dx

dt
=
v(1− x)L0γ

x − x
L0γx + 1

, (37)

and may possess multiple stable equilibria depending on the value of γ, v and L0.

Conditions leading to ultra sensitivity are detailed in section 3 of Supplementary

Information. This happens, as for the previous examples and as illustrated in Fig. 14,

for a critical concentration v = vc. In this case, the entropy of the system possesses
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Figure 13: Transition rates associated with the birth and death process approximation

of the substrate-catalyst reactions model.

Figure 14: Bistability, bimodal distribution and ultrasensitivity for the substrate-

catalyst reactions model. Here, a(x) = x. (a-b-c) Comparison with two values of γ

when the concentration is critical v = vc. (d-e-f) Comparison with two values of v 6= vc
with γ = 300. (a) The entropy I(x) has two global minima and a local maximum, the

unstable equilibrium of (37) . (b) The steady state π̄N converges towards a mixture of

two Dirac masses. Here, N = 1000. (c) The Hill coefficient (32) computed with π̄N is of

order N (continuous lines) and follows the same trend as if computed with the limiting

stationary distribution (dotted lines). (d) When v 6= vc, I(x) has two minima, but only

one of them (plain disks) is global. (e) The stationary distribution is unimodal. Here,

N = 1000. (f) The system does not exhibit ultrasensitivity.

two global minima, the steady state is bimodal and consequently the Hill coefficient is

proportional to N , see Fig. 14 (a-c). Otherwise, the Hill coefficient is asymptotically

constant, see Fig. 14 (d-f). Fig. 15 shows that to detect ultra-sensitivity with the

effective Hill coefficient Iq, q has to be smaller than x2, the second stable equilibrium

of (37), when v = vc. Various plots of f for increasing values of N are represented with

the global finding that the effective Hill coefficient Iq is proportional to N for sufficiently

small q.

7. Conclusion

Multisite binding systems or phosphorylation processes are essential features of many

switch-like responses in signal transduction. Various mechanisms are known to generate



Ultrasensitivity and sharp threshold theorems for multisite systems 24

Figure 15: Numerical approximation of the effective Hill coefficient, equation (14), for

the substrate-catalyst reactions model. Here, a(x) = x, γ = 300 and L0 = 1. In this

case vc ≈ 0.057 and x2 ≈ 0.92. (a) The activity of the macromolecule f(v) = Eπ̄N ( |n|
N

)

for different values of N . Ultrasensitivity is detected for the standard q = 0.9 since

0.9 < x2(vc) = qc and Iq goes to infinity. (b) Plot of the effective Hill coefficient versus

q for several values of N , and (c), as a function of N , for three values of q. The related

measure π̄N is given in equation (20) of the Supplementary Information

.

ultrasensitive behaviours where a small change in ligand concentration leads to an

abrupt change of the response function output. Cooperativity and synergistic effects

where modifications at some site directly or indirectly increase the rate of modification

of neighbouring sites are particularly well known mechanisms that lead to switch-like

outputs. This work models binding sites and protein-protein interactions, or enzymatic

phosphorylation chemical reactions using probability measures π that are defined on

the configuration space composed of the possible states n = (ni) of the system, and

that depend on the ligand concentration v > 0. A recent work of [14] has shown that

response functions that are the statistical averages of non-linear functions a(|n|/N) of

the fractional ligation number can switch even when binding sites are not interacting.

This occurs for example when considering non-essential phosphorylation sites where a

is a threshold like function which vanishes when the number of phosphorylated sites

is smaller that a fraction κN of the total number N of binding sites, and is set to 1

otherwise. In most studied multisite systems, the activation function a is however linear.

In this case, binding sites interactions and positive cooperativity play a major role for

producing switch-like responses functions. A different class of examples from systems

biology is provided in sections 1.3, 1.5 and 1.6, which model allosteric regulation. In

these examples, binding sites are not interacting, and the activity function is linear.

This work gives new tools for understanding and studying ultrasensitivity within these

various classes of models.

Section 1.2 introduces the Ising model which is one of the most typical example

of statistical mechanical lattice model of interacting binding sites; in this setting, local

positive cooperativity is modelled by choosing ferro-magnetic coupling constants. For

example, mean field Curie-Weiss models have been used in biological frameworks to
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consider long-range interactions, and the switch-like behaviour of the mean fractional

ligation number has been associated to phase transitions [17, 19, 20, 21].

The models given in sections 1.3, 1.5 and 1.6 introduce three examples of

biochemical processes which are given through transition rates that define Markov

chains. The first model is concerned with the competition for binding on DNA between

nucleosomes and transcription factors, while the second one deals with phosphorylation

processes that control the activity of proteins. Both dynamics can be seen as allosteric

regulation processes, where the binding of ligand molecules can alter enzymatic and

protein activity via allosteric communication. Recent research, see, e.g., [61, 62, 63], led

to the discovery of hidden allosteric pockets that control the activity of proteins, but

that are not present in conventional crystallographic structures. Pharmaceutics exploits

such hidden allosteric sites by designing drug-like molecules that bind to such pockets

to control protein activity. The methods developed in this paper might thus be useful

for the design of such therapeutic molecules.

Sections 2 and 3 introduce basic measures of cooperativity like the Hill coefficient

ηH(v), site-specific Hill coefficients and a new effective Hill coefficient Iq, for which we

recommend the computation of a broad range of values of q instead of just the standard

one I = I0.9 corresponding to the 10% to 90% variation in the dose-response. It is

shown that this single choice can sometimes mislead the conclusion by not detecting

sharp thresholds. The paper focus on ultrasensitivity where there is a critical ligand

concentration v = vc such that ηH(vc) is asymptotically linear in the number of binding

sites N , by recalling results from statistical mechanics on sharp threshold phenomena,

and by proposing a completely new approach based on large deviations for birth and

death processes.

Section 4 recalls results from probability theory and statistical mechanics where

systems exhibiting sharp thresholds are commonplace. Theorem 2 gives a useful

inequality that can be used to check if the steady state distribution of a given finite

size stochastic process leads to super steep responses.

When such dynamical processes can be approximated by density dependent birth

and death processes, new mathematical results on precise large deviations for the related

steady state distributions are obtained. A new and global picture emerges in section

5.1: it is shown that the asymptotic behaviour of the Hill coefficient is strongly related

to the existence of multiple stable equilibria of a related (o.d.e.). The existence of a

critical ligand concentration vc such that ηH(vc) is asymptotically linear in N is strongly

related to the existence of at least two stable equilibria of the (o.d.e.) that are global

minimizers of the entropy function of the dynamical system.

This occurs in the examples of sections 1.3, 1.5 and 1.6. In these models, the

transition diagrams define Markov chains that are evolving on planar strips where the

nodes are given by pairs (k, off) and (k, on), where k denotes the number of bound (TF)

or the number of phosphorylated sites, and the second component gives the activity

level of the protein. In this framework, the binding probability is given by the marginal

steady state distribution associated to the first component k. The transition rates are
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designed to favour the (off) state for small k and the (on) state for large values of k.

As a consequence of this mechanism, the limiting (o.d.e.) has one stable equilibrium x1

which is associated with small values of k and to the (off) state, and one another stable

equilibrium x2 > x1 corresponding to large values of k and to the (on) state. When

the ligand concentration is such that v < vc, the entropy function is minimized for

x = x1 and the related steady state is unimodal of mode x1, so that the Hill coefficient

is sublinear in N . When v > vc, a similar picture holds for x = x2. When v = vc, both

stable equilibria minimize the entropy. In this case, the steady state is bimodal and the

Hill coefficient ηH(vc) is asymptotically linear in the number of binding sites. This new

approach allows a better understanding of multisite ultrasensitive systems and provides

new tools for the design of such systems.
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