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ABSTRACT

This paper investigates how welfare losses for facing risks change as a function of the
number of risk exposures. To that aim, we define the risk apportionment of order n (RA-
n) utility premium as a measure of pain associated with facing the passage from one risk
to a riskier one. Changes in risks are expressed through the specific concept of stochastic
dominance of order n defined by Ekern (1980). Three configurations of risk exposures
are considered. The paper first shows how the RA-n utility premium is modified when
individual’s wealth becomes riskier. This makes it possible to generalise earlier results on
the topic. Second, the paper provides necessary and suffi cient conditions on individual
preferences for superadditivity and subadditivity of the RA-n utility premium. Third,
the paper investigates welfare changes of merging increases in risks.

Keywords: risk apportionment, superadditivity, RA-n utility premium

JEL classification: D81

– – – – – – – – – – – – – – – – – – – – – – – – – – –
∗Corresponding author. Email: Henri.Louberge@unige.ch

1



1. INTRODUCTION

The issue of how the presence of multiple risks modify individual behaviour in the face
of another risk has been leading to a prolific literature during the last decades.1 Most of
these studies use monetary measures to analyze behaviour towards risk, the most well-
known being the risk premium and the willingness to pay. More recently, a few papers
have made used of non-monetary measures to provide new behavioural results in the
face of risks. In particular, the concept of the utility premium originally introduced by
Friedman and Savage (1948) has regained present interest. For instance, Eeckhoudt and
Schlesinger (2006) rely on the utility premium to propose a unified approach to explain
the meaning of the signs of the successive derivatives of the utility function. Eeckhoudt
and Schlesinger (2009) also reexamine the properties of the utility premium and explain
the relevance of this tool for decision making. Recently, Crainich and Eeckhoudt (2008)
and Courbage and Rey (2010) used non-monetary measures of prudence and temperance
to extract behavioural results. Such non-monetary measures not only offer alternative
tools to analyse the individual loss of welfare due to the presence of risks, but also allow
for much simpler conditions on individual preferences to predict behaviour towards risks.
An issue of importance when dealing with measures of risks is how these measures react

to a riskier environment. In particular, knowing how welfare losses of facing increases in
risks change as a function of the number of risk exposures offers crucial knowledge on how
individuals react to riskier environment. To address these issues, this paper defines the
risk apportionment of order n (RA-n) utility premium as a measure of pain associated
with facing the passage from one risk to a riskier one. Changes in risks are expressed
through the specific concept of stochastic dominance of order n defined by Ekern (1980).
The paper first shows how the RA-n utility premium is modified when individual

wealth becomes riskier. It makes it possible to generalise earlier results on the topic, and
in particular those of Courbage and Rey (2010). Second, the paper provides necessary
and suffi cient conditions on individual preferences for superadditivity and subadditivity of
the RA-n utility premium. A measure is said to be superadditive or convex in risks if the
measured value of two risks is superior to the sum of the values of each risk; the opposite
holding for subadditivity. Superadditivity/subadditivity is of relevance when one wants to
know how welfare loss changes as a function of the number of risk exposure. This concept
sheds light on whether risks are self-aggravating for individuals. For instance, Eeckhoudt
and Gollier (2001) look at the superadditivity of three monetary measures of risk, the
compensating premium, the risk premium and the willingness to pay. They provide con-

1See Eeckhoudt and Gollier (2013) for a review.
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ditions on individual preferences for which these measures are supperadditive. They show,
in particular, that risk vulnerability (see Gollier and Pratt, 1996) is a suffi cient condition
for superadditivity of the risk premium. The concept of subadditivity of risks measures
has also been popularised through the definition of coherent risk measures defined by
Artzner et al. (1999). A measure is said to be coherent if it verifies four axioms among
which subadditivity. Third, the paper uses the RA-n utility premium to investigates a
related but different issue, that is whether welfare loss changes when increases in risks are
merged instead of facing them seperately.
The paper shows that the degree of pain due to facing an increased risk grows when

the initial wealth becomes riskier if the signs of the successive derivatives of the utility
function alternate in signs, i.e. when preferences exhibit mixed risk-aversion as defined
by Caballé and Pomansky (1996). It also shows that risk aversion and temperance are
suffi cient conditions for superadditivity of the RA-n utility premium. Finally, mixed
risk-aversion is shown to drive welfare changes of merging increases in risks.
The paper is organised as follows. Section 2 introduces the benchmark model for

non-monetary measures of risk and in particular the RA-n utility premium. Section 3
investigates the effect of riskier initial wealth on the RA-n utility premium. Section
4 addresses the conditions on individuals preferences for superadditivity/subadditivity of
non-monetary measures of risks. Section 5 deals with welfare changes of merging increases
in risks. Section 6 finally offers a short conclusion.

2. THE BENCHMARK MODEL

2.1. Non-monetary measures in the face of risks

Non-monetary measures in the face of risks stem from the work of Friedman and
Savage (1948) who used expected utility theory to define risk aversion and introduced
two ways for its measure. The two measures reflect the subjective cost of risk for a risk
averter.
Let an individual’s final wealth be represented by x + ε̃ where x (x > 0) denotes the

initial wealth of the individual and ε̃ is a zero-mean random variable2. The first measure
of risk aversion in the face of the risk ε̃ at wealth level x is a monetary measure, the risk
premium π(x, ε̃), and is such that:

E[u(x+ ε̃)] = u(x− π(x, ε̃)), (1)

where u denotes the individual’s von Neumann-Morgenstern utility function (with u′(x) ≥
0 ∀x) and E denotes the expectation operator. π(x, ε̃) is the amount of money that the

2We assume that the support of ε̃ is defined such that x+ ε is in the domain of u.
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agent is ready to pay to get rid of the zero-mean risk ε̃. π(x, ε̃) ≥ 0 if and only if the
individual is risk-averse (u′′(x) ≤ 0 ∀x). The second one is a non-monetary measure of
risk aversion, the utility premium, wA(x, ε̃):

wA(x, ε̃) = u(x)− E[u(x+ ε̃)]. (2)

wA(x, ε̃) measures the degree of “pain”associated with facing the risk ε̃, where pain is
measured by the loss in expected utility from adding the risk ε̃ to wealth x. From Jensen’s
inequality, wA(x) ≥ 0 if and only if u′′(x) ≤ 0 ∀x3

Prudence is known as preference for a zero-mean risk in the wealthier state of nature.
The prudence utility premium as introduced by Crainich and Eeckhoudt (2008), denoted
wP (x, ε̃), measures the increase in pain of facing the risk ε̃ in the presence of a sure loss
k > 0. This is defined as follows:

wP (x, ε̃) = u(x− k)− E[u(x− k + ε̃)]− (u(x)− E[u(x+ ε̃)]), (3)

which is equivalent to:

wP (x, ε̃) = wA(x− k, ε̃)− wA(x, ε̃). (4)

Naturally, wP (x, ε̃) ≥ 0 if and only if u′′′ ≥ 04.
Temperance is known as preference for disaggregation of two independent zero-mean

risks. The temperance utility premium as introduced by Courbage and Rey (2010), de-
noted wT (x, ε̃), measures the increase in pain of facing the risk ε̃ in the presence of an
independent zero-mean risk θ̃. It writes as follows:

wT (x, ε̃) = E[u(x+ θ̃)]− E[u(x+ θ̃ + ε̃)]− (u(x)− E[u(x+ ε̃)]), (5)

which is equivalent to:
wT (x, ε̃) = wA(x+ θ̃, ε̃)− wA(x, ε̃), (6)

wT (x, ε̃) ≥ 0 if and only if u(4) ≤ 05.
Courbage and Rey (2010) suggested an extension of these measures to higher orders

defining the utility premium by iteration following Eeckhoudt and Schlesinger (2006).

3We assume throughout this article that the utility function u is nth differentiable. As it is usual, we
assume that the derivative of order k (∀k ≥ 1), denoted u(k)(x), has a constant sign in the domain of u:
u(k)(x) ≥ 0 or u(k)(x) ≤ 0 ∀x. To simplify notations we will only write u(k) ≥ 0 or u(k) ≤ 0.

4To see this note that, using Eeckhoudt and Schlesinger (2006), Eq. (3) is positive by preference for
disaggregation of harms by a prudent individual. Now, prudence defined in this way is equivalent to a
positive third derivative of the utility function, by Jensen’s inequality.

5Note that Eq. (5) is positive iff the individual is temperant by the expected utility equivalence of the
definition of temperance in Eeckhoudt and Schlesinger (2006). Now, we see from Eq. (6) that wT ≥ 0 is
equivalent to wA is convex by Jensen’s inequality. From the definition of wA in Eq. (2) wA is convex iff
u′′ is concave, which is equivalent to u(4) ≤ 0 by Jensen’s inequality again.
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Denoting w(2)(x, ε̃) the Friedman and Savage (1948) utility premium of Eq. (2), we can
proceed from their remark by defining for all n even and n ≥ 2:

w(n+1)(x, ε̃) = w(n)(x− k, ε̃)− w(n)(x, ε̃)

with k > 0 and
w(n+2)(x, ε̃) = w(n)(x+ θ̃n, ε̃)− w(n)(x, ε̃),

where θ̃n is an independent random variable (i.e. random variables ε̃, θ̃2, θ̃4, θ̃6, etc,
are mutually independent) and such that E(θ̃n) = 0. As an illustration, when n =

2, w(n+1)(x, ε̃) corresponds to the prudence utility premium, wP (x, ε̃), and w(n+2)(x, ε̃)

corresponds to the temperance utility premium, wT (x, ε̃).

2.2. The RA-n utility premium

While Courbage and Rey (2010) suggested to define utility premia of higher orders by
iteration of the previous premia of lower orders and in the context of specific lotteries, in
this section we present a very general way to define the utility premium at higher orders
using the concept of Ekern’s increase in risk of order n (Ekern, 1980).
Let’s consider two risky situations: a first situation represented by the random variable

Y1 and a second one represented by the random variable X1. We assume that X1 and Y1
are independent, and that X1 corresponds to an Ekern’s increase in risk of order n from
Y1 (X1 �n Y1).
Ekern’s increase in n-th order risk is defined as follow. Consider X1 and Y1 with F

and G, respectively, their two cumulative distribution functions of wealth, defined over a
probability support contained within the interval [a, b]. Define F1 = F and G1 = G. Now
define Fk+1(z) =

∫ z
a
Fk(t)dt and Gk+1(z) =

∫ z
a
Gk(t)dt for k ≥ 1. The variable X1 is an

increase in nth-order risk over Y1 (X1 �n Y1) if Fn(z) ≤ Gn(z) for all z, Fk(b) ≤ Gk(b) for
k = 1, 2, .., n−1, and E[(X1)

k] = E[(Y1)
k] for k = 1, . . . , n−1 (i.e the first n−1 moments

of X1 and Y1 are equal). Ekern’s (1980) definition includes the case of mean-preserving
increase in risk of Rothshild and Stiglitz (1970) as well as of increase in downside risk
defined by Menezes et al. (1980) as, respectively, a second-degree and a third-degree
increase in risk.
We aim to define the non monetary measure of the cost of facing the risk transition

e.g. the passage from Y1 to X1. We define the function w as follows:6:

w(x;Y1, X1) = E[u(x+ Y1)]− E[u(x+X1)]. (7)

The function w(x;Y1, X1) measures the degree of pain associated with facing the pas-
sage from the risk Y1 to the less favorable one, X1, when the decision-maker initial wealth

6We assume throughout this article that the support of any random variable z̃ is defined such that
x+ z is in the domain of u.
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is x. From Ekern (1980), we know that w(x;Y1, X1) ≥ 0 if and only if (−1)(1+n)u(n) ≥ 0.
We formulate the following definition.

Definition
The function w defined as w(x;Y1, X1) = E[u(x + Y1)] − E[u(x + X1)] is named the

risk apportionment of order n utility premium, also denoted the RA-n utility premium. It
measures the degree of pain due to misapportionment of order n.

Note that (−1)(1+n)u(n) ≥ 0 means that all odd derivatives of u are positive and all
even derivatives of u are negative. Following Brockett and Golden (1987) and according
to Cabballé and Pomansky (1996), an individual with such a utility function is said to
be mixed risk-averse. Hence, for all order n, the RA-n utility premium of a mixed risk
averse agent is always positive. In other words, such an individual always incurs a pain
when facing an increase in risk.
Particular cases of this premium are the various premia defined in the previous section.

For instance, when Y1 = 0 and X1 is a zero-mean background risk, X1 = ε̃ with E(ε̃) = 0,
the function w writes as w(x; 0, ε̃) = u(x) − E[u(x + ε̃)] = wA(x, ε̃). It is the utility
premium introduced by Friedman and Savage (1948) to define the non monetary risk
aversion measure: w(x; 0, ε̃) ≥ 0 if and only if the individual is risk averse (u′′(x) ≤ 0).
When Y1 and X1 are defined as equiprobable lotteries describing an increase in downside
risk (Menezes et al. (1980)): Y1 = [−k, ε̃; 12 ,

1
2
] and X1 = [0,−k + ε̃; 1

2
, 1
2
] with k > 0 and

E(ε̃) = 0, the function w writes as

w(x;Y1, X1) =
1

2
wP (x, ε̃), (8)

with wP (x, ε̃) the prudence utility premium defined by Crainich and Eeckhoudt (2008)
which is positive if and only if u(3) ≥ 0. When Y1 and X1 are defined as the following
lotteries: Y1 = [θ̃, ε̃; 12 ,

1
2
] and X1 = [0, θ̃+ ε̃;

1
2
, 1
2
], with θ̃ and ε̃ independent and zero mean

random variables (E(θ̃) = E(ε̃) = 0), the function w writes as

w(x;Y1, X1) =
1

2
wT (x, ε̃), (9)

with wT (x, ε̃) = E[u(x + θ̃)] + E[u(x + ε̃)] − u(x) − E[u(x + θ̃ + ε̃)], that corresponds to
the temperance utility premium defined by Courbage and Rey (2010) which is positive if
and only if u(4)(x) ≤ 0.

3. RA-n UTILITY PREMIUM AND INCREASES IN RISKS

As Courbage and Rey (2010), we can also investigate, in this more general context
of the RA-n utility premium, how this measure reacts to the introduction on wealth of
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a sure loss or a zero-mean background risk. As intuition suggests, the pain increases in
both cases under usual conditions on the signs of higher-orders derivatives of the utility
function.
Indeed, rewriting the impact of a sure loss and a background risk using the RA-n

utility premium, we obtain:

w(x;Y1, X1)− w(x− k;Y1, X1) ≤ 0⇔ (−1)(n)u(n+1) ≥ 0, (10)

w(x;Y1, X1)− w(x+ ε̃;Y1, X1) ≤ 0⇔ (−1)(n+1)u(n+2) ≥ 0. (11)

This result is rather easy to obtain. Eq. (10) rewrites as E[u(x+Y1)]−E[u(x+X1)] ≤
E[u(x − k + Y1)] − E[u(x − k +X1)] which is equivalent to E[u(x + Y1)] + E[u(x − k +
X1)] ≤ E[u(x + X1)] + E[u(x − k + Y1)]. Using Eeckhoudt et al. (2009), we obtain
that this inequality holds iff (−1)(n)u(n+1) ≥ 0. In the same vein, Eq. (11) rewrites as
E[u(x+ Y1)]−E[u(x+X1)] ≤ E[u(x+ ε̃+ Y1)]−E[u(x+ ε̃+X1)] which is equivalent to
E[u(x+ Y1)] +E[u(x+ ε̃+X1)] ≤ E[u(x+X1)] +E[u(x+ ε̃+ Y1)]. Using Eeckhoudt et
al. (2009), we obtain that this inequality holds iff (−1)(n+1)u(n+2) ≥ 0.
Eqs. (10) and (11) respectively mean that (−1)(n)u(n+1) ≥ 0 is equivalent to the RA-n

utility premium being vulnerable to a sure loss and that (−1)(n+1)u(n+2) ≥ 0 is equivalent
to the RA-n utility premium being vulnerable to a zero-mean background risk. Results of
Eq . (10) and (11) respectively also mean that the RA-n utility premium is a decreasing
and convex function in x, the wealth level. This is rather intuitif as when the individual
gets richer the pain of facing increases in risks is reduced as he can deal with them more
easily, but this reduction in pain diminishes as the individual’s wealth increases. Hence, a
positive, respectively negative, sign of the derivative of order k when k is even, respectively
odd, means that the RA-(k − 1) utility premium is decreasing in x and the RA-(k − 2)
utility premium is convex in x.
The concept of the RA-n utility premium makes it possible to extend such analysis

to a more general context. The question is then to measure the degree of pain associated
with facing the passage from Y1 to X1 when the wealth level becomes riskier. A riskier
wealth corresponds to the random wealth level, initially equalled to x + Y2 becoming
x + X2 where X2 is an Ekern’s increase in risk of order s from Y2 (X2 �s Y2 with X2

and Y2 being independent random variables). The degree of pain associated with facing
the passage from Y1 to X1 when the initial wealth level becomes riskier is defined by the
following expression7:

w(x+X2;Y1, X1)− w(x+ Y2;Y1, X1). (12)

A positive sign of (12) means that the pain facing the passage from Y1 to X1 increases
when the wealth level becomes riskier. We obtain the following proposition.

7Note that Eqs. (4) and (6) correspond to cases where Y2 = 0 and X2 = −k (k > 0) or X2 = θ̃

(E(θ̃) = 0).
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Proposition 1.
Given mutually independent random variables X1, Y1, X2, and Y2, such that X1 �n Y1

and X2 �s Y2 w(x+X2;Y1, X1) ≥ w(x+ Y2;Y1, X1) for all utility functions u if and only
if the utility function u is such that (−1)(1+n+s)u(n+s) ≥ 0.

Proof. Using the definition of w, w(x +X2;Y1, X1)− w(x + Y2;Y1, X1) ≥ 0 rewrites
equivalently as E[u(x+Y1+X2)]−E[u(x+X1+X2)] ≥ E[u(x+Y1+Y2)]−E[u(x+X1+Y2)],
that is equivalent to E[u(x + Y1 + X2)] + E[u(x + X1 + Y2)] ≥ E[u(x + Y1 + Y2)] +

E[u(x +X1 +X2)]. Following Eeckhoudt et al. (2009), this last expression is equivalent
to (−1)(1+n+s)u(n+s) ≥ 0 that ends the proof.

From this proposition, we can extrapolate the following corollary

Corollary 1.
The four following items are equivalent:
(1) risk apportionment of order S holds,
(2) the pain due to misaportionment of order (S − 1) is vulnerable to a sure loss,
(3) the pain due to misaportionment of order (S − 2) is vulnerable to a zero-mean

background risk,
(4) the pain due to misaportionment of order (S − s) is vulnerable to an increase in

risk of order s.

This result offers an alternative interpretation of the sign of the utility function S-
order derivative (u(S)) which can be easily understood and remembered, without reference
to any specific decision problem.
For instance in the case of the utility premium for which Y1 = 0 and X1 = ε̃ in Eq.

(12), Proposition 1 tells us that the degree of pain of facing the risk ε̃ increases when ini-
tial wealth becomes risky, i.e. when the zero-mean risk X2 is added to initial wealth, for
a temperant individual. In the same way, in the case of the prudence premium, for which
X1 represents an increase in downside risk over Y1, Proposition 1 tells us that the degree
of pain of facing an increase in downside risk increases when initial wealth becomes risky,
i.e. when the zero-mean risk X2 is added to initial wealth, for an individual featuring
edginess.8

8The concept of edginess, i.e. u(5) ≥ 0, was introduced by Lajeri-Chaherli (2004) to explain the effects
of background risks on precautionary savings.
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4. SUPERADDITIVITY OF THE RA-n UTILITY PREMIUM

An issue of importance when dealing with measures of risks is that of superadditivity
or subadditivity of these measures. From the risk theory literature (see for example
Buhlmann (1985) or Gerber and Goovaerts (1981)), it is well-known that financial risks are
very often self-aggravating. This would suggest that the cost of risk for two independent
risks should be greater than the sum of costs of the two risks taken in isolation. If it were
the case, the cost of risk should be superadditive. Eeckhoudt and Gollier (2001) examine
this issue when the cost of risk is defined in terms of risk premium. They show that the
risk premium is superadditive if risk aversion is risk vulnerable9.
We first address the issue of supperadditivity when the cost of risk is defined in non-

monetary terms through the concept of the utility premium. The definition of supperad-
ditivity is the following. A real-valued function f is superadditive if f(n1 + n2) is larger
than f(n1) + f(n2) for all n1 > 0 and n2 > 0. The opposite inequality holding true for
subadditivity.
We show that the utility premium is supperadditive if and only if the utility function

is temperant. This gives the following proposition.

Proposition 2.
Given mutually independent zero-mean risks X1 and X2 , the utility premium is sup-

peradditive, i.e. w(x; 0, X1 + X2) ≥ w(x; 0, X1) + w(x; 0, X2) if and only if the utility
function is such that u(4) ≤ 0.

Proof. Supperadditivity of the utility premium rewrites as u(x)−E[u(x+X1+X2)] ≥
u(x)−E[u(x+X1)] + u(x)−E[u(x+X2)] which is equivalent to wT ≥ 0, i.e. u(4) ≤ 0. �

Proposition 2 states that the pain of facing two risks simultaneously is higher than the
sum of the pains of facing each risk separately for a temperant individual. Note that while
risk vulnerability is required for monetary measures of risk to be supperadditive, for which
temperance is a necessary condition, temperance is suffi cient to obtain supperaditivity in
the case of the utility premium.
Extending supperadditivity to the RA-n utility premium, it writes as

w(x;Y,X1 +X2) ≥ w(x;Y,X1) + w(x;Y,X2) (13)

9Risk vulnerability means that risk aversion increases with the presence of an independent background
risk (Gollier and Pratt, 1996). Suffi cient and necessary conditions on the utility function to have risk
vulnerability are quite complex. A necessary condition for risk vulnerability is u(4) ≤ 0.
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Subaddivity of the RA-n utility premium corresponds naturally to the opposite inequali-
ties.
We obtain that the RA-n utility premium is superadditive for zero-mean risks if the

individual is risk-averse and temperant as exhibited in the following proposition.

Proposition 3
Given mutually independent zero-mean risks, the RA-n utility premium is supperaddi-

tive, i.e w(x;Y,X1 +X2) ≥ w(x;Y,X1) + w(x;Y,X2) if u′′0 and u(4) ≤ 0 .

Proof: w(x;Y,X1 +X2) > w(x;Y,X1) + w(x;Y,X2) is equivalent to E[u(x+X1)] +

E[u(x + X2)] > E[u(x + X1 + X2)] + E[u(x + Y )]. If u” < 0 then E[u(x + Y )] < u(x)

and then E[u(x+X1 +X2)] +E[u(x+ Y )] < E[u(x+X1 +X2)] + u(x). If u(4) < 0 then
E[u(x +X1 +X2)] + u(x) < E[u(x +X1)] + E[u(x +X2)]. Consequently, if u” < 0 and
u(4) < 0 then E[u(x+X1)] + E[u(x+X2)] > E[u(x+X1 +X2)] + E[u(x+ Y )].

According to Proposition 3, the pain of facing an increase in two risks simultaneously
is higher than the sum of the pains of facing an increase in each risk separately for a
risk-averse and temperant individual.
Note that Proposition 3 imposes no further conditions on the links between the risks,

i.e. on the nature of the change in risk between Y and respectively X1 and X2. It should
also be stressed that temperance only is not a suffi cient condition for supperadditivity of
the RA-n utility premium. We also need the individual to be risk averse. Hence contrary
to the results of Proposition 2 where the utility premium is supperadditive for a risk-lover
and temperant individual, a risk lover, even temperant, will never have a supperadditive
RA-n utility premium.

5. MERGING INCREASES IN RISKS

We know from Proposition 2 that whenever u(4) ≤ 0 then the Friedman and Savage
(1948) utility premium is superadditive i.e. w(x; 0, X1 +X2) ≥ w(x; 0, X1) + w(x; 0, X2).
This means that the non monetary cost of the total risk (X1 + X2) is greater than the
sum of the non monetary cost of each risk X1 and X2.
In the previous section, we generalised the concept of superadditivity of the RA-n

utility premium by considering an increase in risk through the passage from Y to Xi
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(i = 1, 2). In this section, we consider the increase in risk as the passage from Yi with
E(Yi) = 0 to Xi with X1 �n Y1 and X2 �s Y2.
In other words, we wonder under wich conditions on the utility function u the non

monetary cost of the total increase in risk (passage from (Y1+ Y2) to (X1+X2)) is larger
than the sum of the non monetary cost of each increase in risk (passage from Y1 to X1

and simultaneously passage from Y2 to X2). More formally our question is the following.
What are properties of u ensuring the following inequality :

w(x;Y1 + Y2, X1 +X2) ≥ w(x;Y1, X1) + w(x;Y2, X2) (14)

The following proposition provides conditions for such a comparison.

Proposition 4
Given mutually independent random variables X1, X2, Y1 and Y2, such that X1 �n Y1,

X2 �s Y2, with E(Y1) = E(Y2) = 0 then w(x;Y1 + Y2, X1 + X2) ≥ w(x;Y1, X1) +

w(x;Y2, X2), for all utility function u such that (−1)(1+n+s)u(n+s) ≥ 0 and (−1)(1+n)u(n+2) ≥
0 and (−1)(1+s)u(s+2) ≥ 0.

Proof.
Since E(Y1) = 0 we have Y1 �2 0. Given that X2 �s Y2 and applying Eeckhoudt et al.

(2009) theorem, we know that E[u(x+Y2)]+E[u(x+X2+Y1)]−E[u(x+X2)]−E[u(x+
Y1 + Y2)] ≤ 0 for all u such that (−1)(1+s)u(s+2) ≥ 0.
Also, since E(Y2) = 0 we have Y2 �2 0. Given that X1 �n Y1 and applying Eeckhoudt

et al. (2009) theorem, we know thatE[u(x+Y1)]+E[u(x+X1+Y2)]−E[u(x+X1)]−E[u(x+
Y1 + Y2)] ≤ 0 forall u such that (−1)(1+n)u(n+2) ≥ 0. However, Eeckhoudt et al. (2009)
theorem givesE[u(x+Y1+Y2)]+E[u(x+X1+X2)]−E[u(x+X1+Y2)]−E[u(x+Y1+X2)] ≤ 0
for all u such that (−1)(1+s+n)u(s+n) ≥ 0.
Thus, if u verifies (−1)(1+s)u(s+2) > 0, (−1)(1+n)u(n+2) ≥ 0 and (−1)(1+s+n)u(s+n) ≥ 0

then the following inequality holds:
(
E[u(x+Y2)] + E[u(x+X2 + Y1)]− E[u(x+X2)]−

E[u(x+Y1+Y2)]
)
+
(
E[u(x+Y1)]+E[u(x+X1+Y2)]−E[u(x+X1)]−E[u(x+Y1+Y2)]

)
+(

E[u(x+ Y1 + Y2)] +E[u(x+X1 +X2)]−E[u(x+X1 + Y2)]−E[u(x+ Y1 +X2)]
)
≤ 0.

It rewrites equivalently as: E[u(x+ Y1)]−E[u(x+X1)] +E[u(x+ Y2)]−E[u(x+X2)] ≤
E[u(x+ Y1 + Y2)]−E[u(x+X1 +X2) that is equivalent to w(x;Y1, X1) +w(x;Y2, X2) ≤
w(x;Y1 + Y2, X1 +X2) that ends the proof.

The result of Proposition 4 means that welfare is reduced by merging increases in
risks instead of facing them separately, i.e. the welfare loss of both increases in risks
taken together is larger than the sum of welfare losses from assuming each increase in risk
separately.
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Note, however, that the two risk sets are considered in isolation. In Eq. (14), on
the RHS, there is no link between (Y1, X1) on one hand and (Y2, X2) on the other hand.
Now, these two risk sets are present in the DM’s environment. A change of perspective
arises if we take this fact into account, and consider that risk 2 is a background risk for
the management of risk 1, and inversely. Interestingly, it turns out that this change of
perspective reverses the result. For example, in the case of the Friedman-Savage utility
premium, we obtain the following proposition:

Proposition 5.
Given mutually independent zero-mean random variables, X1 and X2, w(x; 0, X1 +

X2) ≤ w(x+X2; 0, X1) + w(x+X1; 0, X2) for all utility function u such that u(4) ≤ 0.

Proof.
The inequality w(x; 0, X1 + X2) ≤ w(x + X2; 0, X1) + w(x + X1; 0, X2) rewrites as(

E[u(x +X2)] − E[u(x +X2 +X1)]
)
+
(
E[u(x +X1)] − E[u(x +X1 +X2)]

)
≥ u(x) −

E[u(x+X1 +X2)]. Following Eeckhoudt et al. (2009) theorem, this inequality holds for
all utility function u verifying u(4) ≤ 0 that ends the proof.

Thus, we obtain that merging the risks that were present, but in the background of
each other, increases welfare.
The result can also be generalized, yielding the following proposition:

Proposition 6
Given mutually independent random variables X1, X2, Y1, and Y2, such that X1 �n Y1

and X2 �s Y2, then for all utility function u such that (−1)(1+n+s)u(n+s) ≥ 0:
(a) w(x;Y1 + Y2, X1 +X2) ≤ w(x+X2;Y1, X1) + w(x+X1;Y2, X2),
(b) w(x;Y1 + Y2, X1 +X2) ≥ w(x+ Y2;Y1, X1) + w(x+ Y1;Y2, X2).

Proof.
Item (a) rewrites as: E[u(x + Y1 + Y2)] − E[u(x + X1 + X2)] ≥

(
E[u(x + X2 +

Y1)]−E[u(x+X2+X1)]
)
+
(
E[u(x+X1+ Y2)]−E[u(x+X1+X2)]

)
that is equivalent

to E[u(x + Y1 + Y2)] + E[u(x + X1 + X2)] ≤ E[u(x + Y2 + X1)] + E[u(x + Y1 + X2)].
Following Eeckhoudt et al. (2009) theorem, this inequality holds for all u such that
(−1)(1+n+s)u(n+s) > 0.
Item (b) rewrites as: E[u(x+ Y1 + Y2)]− E[u(x+X1 +X2)] ≤

(
E[u(x+ Y2 + Y1)]−

E[u(x + Y2 + X1)]
)
+
(
E[u(x + Y1 + Y2)] − E[u(x + Y1 + X2)]

)
that is equivalent to
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E[u(x+ Y1+ Y2)] +E[u(x+X1+X2)] ≤ E[u(x+ Y2+X1)] +E[u(x+ Y1+X2)] as in the
case of item (a).

Note that Proposition 5 is a special case of item (a) of Proposition 6 and Proposition
2 is a special case of item (b). Indeed, if we pose Y1 = Y2 = 0 (that implies considering
n = s = 2 and E(X1) = E(X2) = 0), item (b) rewrites as w(x; 0, X1+X2) ≥ w(x; 0, X1)+

w(x; 0, X2) that is the result of Proposition 2, and item (a) rewrites as w(x; 0, X1+X2) ≤
w(x+X2; 0, X1) + w(x+X1; 0, X2) that is the result of Proposition 6.
The difference between items (a) and (b) arises from background risk considerations

on the RHS. In item (a), the DM is aware that risk Y2 will be replaced by risk X2 when
she feels the loss of welfare from facing the risk X1 instead of Y1. In item (b), the DM is
blind to this risk substitution. She feels a reduced loss from the sum of individual risk
substitutions because she ignores that risk Y2 will be replaced by risk X2 when dealing
with risk 1, and she ignores that risk Y1 will be replaced by risk X1 when dealing with
risk 2. In this sense, item (a) reflects a kind of rational expectations, whereas item (b)
reflects blindness.

6. CONCLUSION

The paper provides a generalization of non-monetary measures of risk by introducing
the concept of risk apportionment of order n (RA-n) utility premium. This measure
reflects the degree of pain due to facing the transition from one risk to a more severe one.
Changes in risks are expressed through the concept of nth degree increase in risk defined
by Ekern (1980). Risk apportionment is taken as a starting point using the definitions
of attitudes towards risk introduced by Eeckhoudt and Schlesinger (2006). The prudence
utility premium and the temperance utility premium are special cases of our RA-n utility
premium.
We first show that the RA-n utility premium increases when the decision-maker faces

a riskier wealth under mixed risk aversion. We then turn to the issue of deciding whether
the RA-n utility premium is subadditive or superadditive, i.e., deciding whether the cost of
an increase in several risks faced jointly is smaller or larger than the sum of these increases
in risks faced independently. We obtain that the utility premium for an individual with
no initial risk is superadditive if the fourth derivative of the utility function is negative
(the decision-maker is temperant). We further show that the more general RA-n utility
premium is superadditive if the decision-maker is both risk averse and temperant. We
finally adress a related but different issue which is whether it is valuable to merge risks
instead of facing them in separate entities. Our results show that an individual whose
preferences are mixed-risk averse will have a RA-n utility premium that exhibits all of
the properties just quoted. As all commonly used utility functions in economic theory,
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with the first derivative being positive and the second one being positive, exhibit mixed
risk aversion, our results then apply to most individuals facing higher number of risk
exposures.
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