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Abstract

The two-level problem studied in this paper consists of optimizing the refueling costs of a fleet of

locomotives over a railway network. The goal consists of determining: (1) the number of refueling trucks

contracted for each yard (truck assignment problem denoted TAP), and (2) the refueling plan of each

locomotive (fuel distribution problem denoted FDP). As the FDP can be solved efficiently with existing

methods, the focus is put on the TAP only. In a first version of the problem (denoted (P1)), various

linear costs (e.g., fuel, fixed cost associated with each refueling, weekly operating costs of trucks) have

to be minimized while satisfying a set of constraints (e.g., limited capacities of the locomotives and the

trucks). In contrast with the existing literature on this problem, two types of nonlinear cost components

will also be considered, based on the following ideas: (1) if several trucks from the same fuel supplier are

contracted for the same yard, the supplier is likely to propose discounted prices for that yard (problem

(P2)); (2) if a train stops too often on its route, a penalty is incurred, which represents the dissatisfaction

of the clients (problem (P3)). Even if exact methods based on a MILP formulation are available for (P1),

they are not appropriate anymore to tackle (P2) and (P3). Various methods are proposed for the TAP:

a descent local search, a tabu search, and a learning tabu search (LTS). The latter is a new type of local

search algorithm. It involves a learning process relying on a trail system, and it can be applied to any

combinatorial optimization problem. Results are reported and discussed for a large set of instances (for

(P1), (P2) and (P3)), and show the good performance of LTS.

Keywords: Truck allocation problem, Metaheuristics, Tabu Search.

1 Introduction and presentation of the problem

The considered problem, which was initially motivated by a problem described in the Railway Applications

Section of INFORMS, consists of optimizing the refueling costs of a fleet of locomotives over a railway

network [32]. It is assumed that there is only one source of fuel: refueling trucks, located at yards. Usually,

such trucks are contracted on a yearly or quarterly basis. The problem has two important components:
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choose the number of trucks contracted at each yard, and determine the refueling plan of each locomotive

(i.e. the quantity of fuel that must be dispensed into each locomotive at every yard). Such components

are respectively called the truck assignment problem (TAP) and the fuel distribution problem (FDP). The

constraints are the following: the capacity of the tank of each locomotive is limited, as well as the maximum

amount of fuel a truck can provide the same day (capacity constraints); it is forbidden to run out of fuel (fuel

constraint). The encountered costs are the weekly operating cost of each refueling truck, the fuel price per

gallon associated with each yard (which can vary from yard to yard), and the fixed cost associated with each

refueling. A solution satisfying all the above constraints is called feasible. The problem consists of finding a

feasible solution minimizing the sum of the costs.

Three versions of the problem are studied. They are denoted (P1), (P2) and (P3). In (P1), all the costs

are linear and there is a maximum number of times (which is two in the considered instances) a train can

stop to be refueled (stop constraint). (P2) is an extension of (P1) where discounted prices can be obtained

from fuel suppliers. More precisely, if several trucks from the same supplier are contracted for a same yard,

the weekly operating costs of the trucks are reduced in a nonlinear fashion, depending on the number of

contracted trucks. (P3) is derived from (P1) by relaxing the stop constraint. Instead, if a train stops too

often on its route from the origin station to the destination station, a penalty is incurred, which represents

the dissatisfaction of the clients. Such a penalty depends on the number of refueling stops and is nonlinear.

Therefore, problem (P3) has a link with customer satisfaction, which is a crucial performance indicator for the

railway industry. As mentioned in [11], many organizations monitor their actual performance by measuring

service quality (e.g., [16, 17, 30, 38]). As exposed in [31], the refueling operation represents a significant

share of the operational costs in the transportation industry and in particular in railway transportation.

The indirect costs caused by the delay of trains when their locomotives are being refueled or waiting to be

refueled are obviously part of the refueling cost function. In [31], other possible extensions of problem (P1)

are also presented, which may be applicable for various practical situations.

Given a solution of the TAP (i.e. a number of trucks for each yard), the FDP can be very efficiently tackled

with a so-called FDP algorithm, and this was presented in [32]. Therefore, this paper will only focus on the

TAP. Some information is however given here to have some idea about the FDP algorithm, which consists of

three components: a flow algorithm, a repairing procedure and a descent local search. The flow algorithm

is an exact method based on a graph model in which a compatible flow with minimum cost is searched.

If the fuel constraint is violated, the associated TAP solution is not considered further (as at least one

refueling truck is necessarily missing). If the fuel constraint is satisfied but the stop constraint is violated,

the repairing procedure is triggered in order to reduce the number of stops without running out of fuel. If it

fails, the associated FDP solution is again not considered any further. If a feasible solution is found, then it

is improved with a descent local search, where a move consists of adding or removing a refueling opportunity.

This work is an extension of [32], where only problem (P1) is considered, and for which only the single

instance provided in [15] is tackled. The main contributions of this paper are the following: (1) two nonlinear

extensions of problem (P1) are studied, namely problems (P2) and (P3); (2) a more complete literature review

is exposed; (3) a new and general metaheuristic, called the learning tabu search, is proposed in a way it can

be adapted to any combinatorial optimization problem; (4) we report on a comprehensive numerical study:
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57 instances for (P1), 15 instances for (P2), and 15 instances for (P3).

The paper is organized as follows. Based on [15], an extended literature review is presented in Section 2. In

Section 3, some well-known local search techniques are first briefly described (namely the descent algorithm

and tabu search). Then, a new type of local search is proposed within a tabu search framework (namely

learning tabu search), involving a learning process relying on a trail system. Solution methods for the TAP

are designed in Section 4, namely a descent local search, a tabu search, and a learning tabu search. The

obtained results are discussed in Section 5. The paper ends up with a conclusion in Section 6.

2 Illustration of the considered problem and literature review

In this section, problem (P1) is illustrated on a small example (subsection 2.1). Then, important surveys

on railroad planning and operations are discussed (subsection 2.2). Finally, the literature review focuses on

papers dealing with refueling aspects (subsection 2.3).

2.1 Presentation of a small instance of problem (P1)

Based on [15], a small instance is now provided to better capture problem (P1). Consider a simple railroad

network made of four yards: y1, y2, y3 and y4. There are tracks connecting directly y1 with y2, y2 with y3,

and y3 with y4. Two trains (t1 and t2) run in this railroad every day of the week. Assume that for t1, the

sequence (or the route) in which it stops at the yards is y1 → y2 → y3 → y4. In such a case, y1 is the origin

station, y4 is the destination station, and y2 and y3 are intermediate stations. The sequence in which t2

stops at the yards is y4 → y2 → y1. The distance (in miles) between yards is symmetrical: d(y1, y2) = 106,

d(y2, y3) = 146, d(y2, y4) = 162, d(y3, y4) = 16. There are two locomotives available for powering the trains:

l1 and l2. Each locomotive consumes 3.5 gallons of fuel per mile and a locomotive tank holds up to 4, 500

gallons of fuel. Therefore, on a full tank, a locomotive can run for 1285.71 miles. Further, assume that a

truck can fuel up to 25, 000 gallons per day. The weekly operating cost per truck is 4, 000$ and fuel cost per

gallon at each yard is: 3.25$ for y1, 3.05$ for y2, 3.15$ for y3 and 3.15$ for y4. The fixed refueling cost is 250$.

The optimal decision on the number of contracted trucks consists of only contracting a single truck at yard

y2. The refueling plan for each locomotive train assignment cycle is described in Table 1. In this table, the

column ”Yard” marks the sequence of yards where the corresponding locomotive can be refueled. Column

”Day” denotes the day in the planning horizon in which this event takes place. In the column ”Station”,

”Or.” denotes ”Origin” and ”Int.” denotes ”Intermediate”. Finally column ”Stop No.” (for ”Stop Number”)

is used to describe the sequential order of potential refueling stops for a locomotive. Observe that neither l1

nor l2 are refueled for the first sequence of the train assignment cycle (first row on the table) and this is still

a feasible solution because both locomotives still have fuel remaining from the previous occurrence of the

cycle. The cost of this solution over the planning horizon (2 weeks) is 90, 105.5$. Fuel costs are 80, 105.5$,

truck costs are 8, 000$ and the stop costs are 2, 000$.
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Locomotive l1 Locomotive l2
Stop No. Yard Station Day Gallons Yard Station Day Gallons

1 y1 Or. 1 0 y4 Or. 1 0
2 y2 Int. 1 1,870 y2 Int. 1 0
3 y3 Int. 1 0 y1 Or. 2 0
4 y4 Or. 2 0 y2 Int. 2 0
5 y2 Int. 2 0 y3 Int. 2 0
6 y1 Or. 3 0 y4 Or. 3 0
7 y2 Int. 3 4,500 y2 Int. 3 4,500
8 y3 Int. 3 0 y1 Or. 4 0
9 y4 Or. 4 0 y2 Int. 4 0
10 y2 Int. 4 0 y3 Int. 4 0
11 y1 Or. 5 0 y4 Or. 5 0
12 y2 Int. 5 0 y2 Int. 5 0
13 y3 Int. 5 0 y1 Or. 6 0
14 y4 Or. 6 0 y2 Int. 6 0
15 y2 Int. 6 3,010 y3 Int. 6 0
16 y1 Or. 7 0 y4 Or. 7 0
17 y2 Int. 7 0 y2 Int. 7 0
18 y3 Int. 7 0 y1 Or. 8 0
19 y4 Or. 8 0 y2 Int. 8 4,494
20 y2 Int. 8 0 y3 Int. 8 0
21 y1 Or. 9 0 y4 Or. 9 0
22 y2 Int. 9 0 y2 Int. 9 0
23 y3 Int. 9 0 y1 Or. 10 0
24 y4 Or. 10 0 y2 Int. 10 0
25 y2 Int. 10 3,752 y3 Int. 10 0
26 y1 Or. 11 0 y4 Or. 11 0
27 y2 Int. 11 0 y2 Int. 11 386
28 y3 Int. 11 0 y1 Or. 12 0
29 y4 Or. 12 0 y2 Int. 12 0
30 y2 Int. 12 0 y3 Int. 12 0
31 y1 Or. 13 0 y4 Or. 13 0
32 y2 Int. 13 0 y2 Int. 13 3,752
33 y3 Int. 13 0 y1 Or. 14 0
34 y4 Or. 14 0 y2 Int. 14 0
35 y2 Int. 14 0 y3 Int. 14 0

Table 1: Fueling plan for each locomotive train assignment cycle in the solution

2.2 General literature review on railroad planning and operations

Railroad planning and operations is a wide field with a lot of money involved. It is exposed in [26] that

the railway planning process consists of three levels: (1) strategic (e.g., network planning, line planning);

(2) tactical (e.g., timetable generation, railway track allocation, train routing, rolling stock schedules, crew

schedules); (3) operational (e.g., real time management). The authors survey papers on the train timetabling,

train dispatching, train platforming, and train routing problems, group them by railway network type, and

discuss track allocation from a strategic, tactical, and operational level.

In [27], the authors concentrate on organizing, planning and managing the train movement in a network. The

three classical management levels for rail planning (i.e. strategic, tactical and operational) are introduced

followed by decision support systems for rail traffic control. In addition, they discuss train operating forms,

railway traffic control, train dispatching problems, rail yard technical schemes, the performance of terminals,

and timetable design. A description of analytical methods, simulation techniques and specific computer

packages for analyzing and evaluating the behavior of rail systems and networks is also provided.

In [6], the authors survey the main studies dealing with the train timetabling problem in its nominal and

robust versions. The nominal version of the problem amounts to determining good timetables for a set of
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trains (on a railway network or on a single one-way line), satisfying the so-called track capacity constraints,

with the aim of optimizing an objective function that can have different meanings according to the requests

of the railway company (e.g., one can be asked to schedule the trains according to the timetables preferred

by the train operators or to maximize passenger satisfaction). The following two are the main variants of the

nominal problem: one is to consider a cyclic (or periodic) schedule of the trains that is repeated every given

time period (for example every hour), and the other one is to consider a more congested network where only

a non-cyclic schedule can be performed. In recent years, many papers have been dedicated to the robust

version of the problem. In this case, the aim is to determine robust timetables for the trains, i.e. to find a

schedule that avoids, in case of disruptions in the railway network, delay propagation as much as possible.

The authors present an overview of the main papers on train timetabling, underlining the differences between

models and methods that have been developed to tackle the nominal and the robust versions of the problem.

In the general area of railroad planning and operations, a survey of optimization models for railroad op-

erations is presented in [8], particularly in the context of train routing and scheduling. Other interesting

surveys on railway optimization can be found in [4, 7, 9, 14]. Various railway features might be discussed

(e.g., assignment of seats to passengers [5], connection reliability in railroad yards [19], train pathing and

timetabling [24], maintenance requirement [28]). However, as this work focuses on refueling aspects, the

literature review in the next subsection concentrates on papers which consider refueling opportunities.

2.3 Literature review covering problems with refueling aspects

In [36], the authors develop robust optimization methods to solve the locomotive routing problem (LRP).

More precisely, given a schedule of trains, the locomotive planning (or scheduling) problem (LPP) is to

determine the minimum cost assignment of locomotive types to trains that satisfies a number of business

and operational constraints. Once this is done, the railroad has to determine the sequence of trains to

which each locomotive is assigned by unit number so that it can be refueled and serviced as necessary. This

problem is referred to as the locomotive routing problem (LRP). There are two major sets of constraints that

need to be satisfied by each locomotive route: (1) locomotive refueling constraints, which require that every

unit visit a refueling station at least once for every B1 miles of travel (e.g. 900 miles), and (2) locomotive

servicing constraints, which require that every unit visit a service station at least once for every B2 miles of

travel (e.g. 3000 miles). The output of the LPP is not directly implementable because the LPP does not

consider these refueling and servicing constraints. In contrast, the LRP considers these constraints and its

output is therefore implementable. Despite its importance in practice, reference [36] is the first attempt to

solve this problem.

A locomotive scheduling problem (or locomotive assignment problem) is proposed in [1], which consists of

assigning a set of locomotives to trains in a pre-planned train schedule, so as to ensure sufficient power

supply. A locomotive routing problem that minimizes the cost for locomotive ownership and assignment

over a railroad network is described in [35], where the fuel availability and service constraints are considered

in an ”aggregation-disaggregation” framework.

5



For other problems related to fuel cost optimization (airlines and railway), a linear programming model to

minimize the total fuel cost for an airline flight schedule, subject to airplane capacity and supplier constraints,

is developed in [33]. A multi-period capacitated inventory model is proposed in [39], where the goal consists

of determining the refueling schedule of each airplane (along its predetermined route) to minimize the overall

fuel costs. In [18], various refueling schedule problems are studied, with the objective to find the optimal

travel route that minimizes fuel costs needed to travel from an origin to a destination, or to visit a set of

predetermined points. Regarding fuel station selection, [20] and [22] present a greedy algorithm and a mixed

integer program to find the optimal location of refueling facilities that maximizes the flow volume covered

by the stations without running out of fuel. The model is extended in [21] by adding candidate facilities

along network arcs, and further extended in [34] for capacitated fuel stations. A heuristic algorithm for the

optimal refueling station locations to maximize the flow that can be refueled with a given number of facilities

is developed in [25].

A discretionary service facility model, which determines the optimal location of facilities to maximize the

possible potential customer flow, is presented in [2]. A flow-based set covering model to locate vehicle

refueling stations that minimizes the total facility cost, while ensuring each passing vehicle to meet a fuel

station before running out of fuel, is described in [37]. In [29], a linear mixed integer mathematical model

is presented, which integrates not only fuel station location decisions, but also locomotive refueling schedule

decisions. The proposed model helps railroads decide with which fuel stations to contract, and how each

locomotive should purchase fuel along its predetermined shipment path, without running out of fuel, while

minimizing the sum of fuel purchasing costs, shipment delay costs (due to refueling), and contracting charges.

In [31], a mixed integer program is formulated for problem (P1), and the formulation is enhanced by valid

inequalities and domination rules. The authors tackled successfully a large set of linear instances, which will

also be considered in this paper.

3 Local search algorithms

This section is dedicated to local search techniques. Two well-known methods are first presented within

this context: the descent algorithm and tabu search. Then, in subsection 3.2, a new type of local search is

proposed. This local search involves a learning process relying on a trail system within the framework of

tabu search.

3.1 Descent algorithm and regular tabu search

Let f be an objective function to minimize. At each step of a local search, a neighbor solution s′ is generated

from the current solution s by performing a specific modification on s, called a move. All solutions obtained

from s by performing a move are called neighbor solutions of s. The set of all neighbor solutions of s is

denoted by N(s). First, a local search needs an initial solution s0 as input. Then, the algorithm generates
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a sequence of solutions s1, s2, . . . in the search space such that sr+1 ∈ N(sr). The process is stopped for

example when an optimal solution is found (if it is known), or when a time limit is reached. Famous local

search algorithms are: the descent method, simulated annealing, variable neighborhood search, and tabu

search. The descent method consists of performing the best improving move iteratively until no such move

exists, in which case a local optimum has been reached. The tabu search uses the following strategy to avoid

being trapped in a local optimum. When a move is performed from a current solution sr to a neighbor

solution sr+1, it is forbidden to perform the reverse of that move during tab (parameter) iterations. Such

forbidden moves are called tabu moves. Formally, the solution sr+1 is computed as sr+1 = arg min
s∈N ′(sr)

f(s),

where N ′(s) is a subset of N(s) (set of neighbor solutions of s) containing solutions which can be obtained

from s by performing a non tabu move. Many variants of this basic tabu search algorithm can be found

in [13]. More generally, the reader is referred to [12] for a recent book on metaheuristics, and to [40] for

guidelines to efficiently design a metaheuristic.

3.2 Learning tabu search (LTS)

A tabu search with a learning process relying on a trail system is now proposed and denoted LTS. It is

assumed that a solution s of the considered problem can be denoted s = {c1, c2, . . . , cn}, where ci is the ith

characteristic (i.e. specific feature) of solution s. At each iteration, in order to generate a neighbor solution

s′ of the current solution s, a basic move m(ci) consists of adding to s – or removing from s – a characteristic

ci. The straightforward notation s′ = s+m(ci) can thus be used. Then, it is forbidden (i.e. tabu) to perform

the reverse move for tab (parameter) iterations. More precisely, if ci is added to (resp. removed from) s, it

is forbidden to remove it from (resp. add it to) s for tab iterations.

The trail system relies on the idea that if some combinations of characteristics often belong to good solutions

during the search process, such combinations of characteristics should be favored when generating new

solutions. If we consider combinations of two characteristics (for example), the trail tr(ci, cj) associated

with characteristics ci and cj indicates if it is a good idea to have both characteristics ci and cj in a solution,

according to the observation of the history of the search. The trail Tr(s, ci) associated with a neighbor

solution s′ = s+m(ci) can be defined as Tr(s, ci) =
∑

cj∈s tr(ci, cj). If m(ci) is an add move (i.e. feature ci

will be added to s to get s′), it is interesting to perform it if Tr(s, ci) is large. In contrast, if m(ci) is a drop

move (i.e. feature ci will be removed from s to get s′), it is interesting to perform it if Tr(s, ci) is small.

Note that this can be generalized if more than two characteristics are considered (for triplets, the notation

tr(ci, cj , ck) would for example be used).

Let us define a cycle of size I (parameter) as a sequence of I iterations of tabu search. Every I iterations,

the best solution ŝ of the last cycle is used to update the trail system as follows: tr(ci, cj) = ρ · tr(ci, cj) +
∆tr(ci, cj), where ∆tr(ci, cj) is proportional to the quality of ŝ if both characteristics ci and cj appear in ŝ,

and ∆tr(ci, cj) = 0 otherwise. The parameter ρ belongs to [0, 1] and simulates trail evaporation. Variants

would be to make ∆tr(ci, cj) proportional to: (1) the number of times both characteristics ci and cj appear

in the solutions visited within the cycle, or (2) the average quality of the solutions of the cycle having both

7



characteristics ci and cj .

At each iteration of LTS, we first pick a random set A of non tabu neighbor solutions obtained with add

moves, and a random set D of non tabu neighbor solutions obtained with drop moves, such that |A| = |D|.
Note that the size of A is an important and sensitive parameter to tune. Let Aq be the set containing the q

(parameter) solutions of A with the largest trail values, and let Dq be the set containing the q solutions of

D with the smallest trail values. The performed move among Aq ∪Dq is then the best one according to the

objective function f of the considered problem. This technique is particularly relevant if it is cumbersome

to evaluate a solution with objective function f , as f is only used to evaluate a sample of solutions which

rank highly according to the trail function Tr (which does not require much computation). In other words,

at each iteration of LTS, the objective function f (or its associated incremental computation) is only used

to evaluate 2 · q promising neighbor solutions according to Tr, which is faster than to evaluate a random

sample of 2 · q neighbor solutions.

In order to help visiting new regions of the solution space, the following diversification mechanism (denoted

DIV) is introduced, relying on a different use of the trail system. Conceptually, the trail system is used to

favor good moves which were often performed in the previous cycles. In contrast, to diversify the search, we

propose here to perform good moves which were not often performed in the previous cycles. More precisely,

let s′ = s+m(ci). If m(ci) is an add (resp. drop) move, then it is diversifying to perform it if Tr(s, ci) is small

(resp. large). Hence, each iteration of DIV is performed as above, but the set Aq (resp. Dq) respectively

contains the q solutions of A (resp. D) with the smallest (resp. largest) trail values. The mechanism DIV

relies on two sensitive parameters t1 and t2: it is triggered if t1 (parameter) iterations without improving

s⋆ (the best encountered solution during the search) have been performed, and it is performed until one of

the following conditions is satisfied: (1) s⋆ has been improved; (2) a sequence of t2 (parameter) iterations of

DIV have been performed. The complete LTS method is described in Algorithm 1.

We now discuss how LTS compares with standard local searches and more specifically with classical ant

algorithms (see [3] and [10] for recent overviews). We point out that within the local search framework,

there already exist some mechanisms favoring good moves (resp. attributes) which were frequently performed

(resp. encountered) in the past of the search process. Such mechanisms are however very differently managed

(e.g., see [12]). The technique proposed in this paper is original because of the joint use of the following two

elements: (1) a trail system managed with an evaporation component and a reinforcement component; (2)

combinations of characteristics are handled (instead of individually considering each characteristic).

Note that that the concept of trail system also exists in ant algorithms, but it is managed very differently in

LTS. In contrast with the ant algorithms: (1) LTS is a local search dealing with a single solution, and not

a method based on the management of a population of solutions; (2) fewer parameters have to be tuned in

LTS; (3) LTS does not require the use of a normalization process; (4) LTS performs each decision quickly

and with an aggressive manner; (5) LTS does not use jointly (but sequentially) information based on the

history of the search (known in the ant community as the trail system) and on the short term profit (known

in the ant community as the heuristic information or the visibility or the greedy force).
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In subsection 4.2, we describe how LTS can be successfully adapted to the TAP. Note that it might be

well-suited for other combinatorial optimization problems, like the following ones. (1) In the graph coloring

problem, a characteristic could be the belonging of a vertex to a color class, and the trail system could be

a matrix [ vertex, vertex ] indicating that two vertices should get the same color. (2) In the vehicle routing

problem, a characteristic could be the assignment of a client to a truck, and the trail system could be a

matrix [ client, client ] indicating that two clients should be served by the same truck. (3) In the facility

location problem, a characteristic could be the positioning of a facility (e.g., a distribution center, a central

warehouse, a plant) on a location, and the trail system could be a matrix [facility, facility] indicating that

two facilities should be close to each other.

Algorithm 1 LTS: Learning Tabu Search

Initialization

1. construct an initial solution s;

2. set s⋆ = s and f⋆ = f(s);

3. set iter = 0 (iteration counter);

4. set DIV as off (i.e. not active);

While a time limit is not reached, do:

1. from s, generate a set A (resp. D) of non tabu neighbor solutions obtained with add (resp. drop)
moves, such that |A| = |D|;

2. if DIV is off, identify the set Aq ⊆ A (resp. Dq ⊆ D) containing the solutions with the q largest (resp.
smallest) trail values;

3. if DIV is on, identify the set Aq ⊆ A (resp. Dq ⊆ D) containing the solutions with the q smallest (resp.
largest) trail values;

4. select the neighbor solution: set s′ = arg min
s′′∈Aq∪Dq

f(s′′);

5. update the current solution: set s = s′;

6. update the tabu status: the reverse move is forbidden for tab iterations;

7. update the best encountered solution: if f(s) < f⋆, set s⋆ = s and f⋆ = f(s);

8. set iter = iter + 1;

9. update the status of DIV:

(a) switch on DIV if p1 iterations without improving s⋆ have been performed;

(b) switch off DIV if it has been performed during p2 consecutive iterations, or if s
⋆ has been improved

within the current application of DIV;

10. if (iter mod I) = 0, update the trail system with the best solution ŝ among the last I iterations;

Return s⋆
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4 Local search algorithms for the TAP

In this section, three solution methods are proposed for the TAP and thus for the whole problem: a descent

local search DLS, a regular tabu search TS, and a learning tabu search LTS. In each method, an initial

solution is generated by running the FDP algorithm with an infinite number of trucks on each yard and all

stops considered as open (in order to avoid any bias). In such a case, for each yard y and each day d, the

output of the FDP algorithm is a quantity Qy,d of fuel (in gallons) that must be dispensed to the locomotives.

Let Qy be the maximum (among the days) quantity of delivered fuel at this yard (i.e. Qy = maxd Qy,d),

and C be the given capacity of a truck (in gallons/day). Then we set the number of trucks on each yard as

⌈Qy/C⌉. Finally, we keep open only the stops where the corresponding locomotive is refueled.

4.1 Descent algorithm and tabu search

The common features of DLS and TS are the following. A solution is a pair (T, S), where T and S are vectors

of respective sizes equal to the number of yards and the total number of stops (among all locomotives). The

jth component of T is the number of contracted trucks at yard yj , and the ith component of S indicates

if the ith stop in S is open or closed. From a current solution (T, S), a move simply consists of adding a

contracted truck to a yard (add move), or in removing a contracted truck from a yard (drop move). When

a move is performed, it is evaluated by the use of the FDP algorithm. During the evaluation, all the costs

are considered: the refueling costs for the used gallons of fuel, the fixed refueling costs and the contracting

costs of the trucks. At each iteration, |A| add moves and |D| drop moves are generated. Preliminary tuning

experiments led to the following parameter setting: |A| = |D| = 10. Note that more refined strategies (e.g.,

dynamic ways of updating |A| and |D|) were also tested to tune these parameters, but since they did not

clearly improve our results, we preferred to keep the algorithms as simple as possible. The same remark

actually holds for all parameters introduced in this paper. The resulting descent local search DLS for the

TAP is presented in Algorithm 2.

In contrast with DLS, the proposed tabu search TS does not stop when it reaches a local optimum, but

returns the best encountered solution within a predefined time limit. When an add (resp. drop) move is

performed on yard yj , it is forbidden to consider yard yj for a drop (resp. add) move for tab iterations

(parameter tuned to 10).
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Algorithm 2 DLS: Descent Local Search for the TAP

Construct an initial solution (T, S);

While a local optimum is not reached, do:

1. In solution (T, S), randomly choose a set D containing yards for which drop moves are allowed; for any
yard yj ∈ D and from (T, S), remove a truck from it, open all the stops and apply the FDP algorithm
to evaluate such a drop candidate move;

2. In solution (T, S), randomly choose a set A of yards; for any yard yj ∈ A and from (T, S), add a truck
to it, open all the stops and apply the FDP algorithm to evaluate such an add candidate move;

3. From (T, S), perform the best move among the | A ∪ D | above candidate moves, and rename the
resulting solution as (T, S);

4.2 Learning tabu search

In order to adapt LTS to the considered problem, we mainly have to define what is a characteristic and to

set a learning process based on a trail system.

A characteristic is simply a truck on a given yard. Note that there is no a priori upper bound on the number

of trucks on each yard. Consequently, the set of characteristics may be infinite. However, the number of

distinct characteristics is finite and equal to the number of yards. Since two trucks on the same yard are

perfectly identical and interchangeable, the trail function can naturally be expressed on the finite set made

of all pairs of yards. In our implementation, the trail tr(x, y) associated with two yards x and y aims to

indicate if it is a good idea (according to the objective function) to have trucks on both yards x and y in

the same solution.

All trails are initialized to 0, and at the end of each iteration of LTS, they are globally updated with ŝ (the

best solution of the cycle) as follows (with ρ tuned to 0.9): tr(x, y) = ρ · tr(x, y)+∆tr(x, y), where ∆tr(x, y)

is the number of trucks on x and y, computed only if ŝ has at least one truck on both x and y (it is 0

otherwise). Let Tr(s, x) =
∑

y∈s tr(x, y) be the trail value associated to yard x in solution s. If Tr(s, x) is

large, it is interesting to select a move which adds a truck to x (because the history of the search seems to

indicate that it is a good idea to have trucks on yard x, as well as on the yards which already contain trucks

in the current solution s). Otherwise, it is interesting to select a move which removes a truck from x.

We now describe more precisely how to select a move at each iteration. Recall that in DLS and in TS,

the performed move is the best among the ones in the set | A ∪ D |, with |A| = |D| = 10. In LTS, we

first randomly choose two sets A and D of size 20. Then, let Aq (resp. Dq) be the subset of A (resp. D)

containing the q (parameter fixed to 10) moves with the largest (resp. smallest) trail values. Note that

computing the trail value of a move is much quicker to compute than the value of the resulting neighbor

solution, as the FDP algorithm is requested for it. The performed move among Aq ∪ Dq is the best one

according to the objective function of the problem (i.e. the sum of the costs). Therefore, for DLS, TS and

LTS, the performed move has the best objective function value among a sample of 20 evaluated solutions.
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This will allow to better measure the impact of the trail system on the search. Note that if DIV is open

(i.e. the diversification mechanism is activated), Aq (resp. Dq) is the subset of A (resp. D) containing the

q moves with the smallest (resp. largest) trail values.

5 Results

In this section, we first present the set of considered (P1) instances in subsection 5.1, and the way we have

generated the instances for (P2) and (P3). Then, we discuss the obtained results for (P1), (P2) and (P3)

in subsections 5.2, 5.3 and 5.4, respectively. We tested the proposed algorithms on an Intel Quad-core i7

@ 3.4 GHz with 8 GB DDR3 of RAM memory. A common time limit TT = 60 minutes is imposed to

each proposed method (i.e. DLS, TS and LTS). Note that DLS is restarted from scratch each time a local

optimum is found, in order to be able to apply it during TT minutes, and thus to perform a fair comparison

with the two other metaheuristics. In addition, all the provided results are average values over 5 runs.

Problem (P1) was initially motivated by an INFORMS contest involving 31 research teams. The approaches

of the three best teams are described in [15] and are also discussed in [32]. The winners of the contest

(Mor Kaspi and Tal Raviv) formulated the problem as a mixed integer linear program (MILP), for which the

original formulation was tightened with nine families of valid inequalities and symmetry breaking constraints.

This MILP approach was published in [31]. The authors proposed a set of 56 additional instances, which

will be tackled in subsection 5.2. Note that other MILP formulations exist (e.g., [23]).

5.1 Description of the instances

The considered 57 instances are presented in Table 2, and the way they have been generated is detailed in

[31]. As exposed in [31], the instance labeled I1 was introduced as a challenge in [15]. It is characterized

by a fourteen day cyclic schedule, and the schedule of each locomotive is divided into fourteen runs. The

instance consists of 74 yards, 214 locomotives and 5,264 stops. The fixed refueling cost is 250$ for all

stops, the truck contracting cost is 8,000$, the tanker truck capacity is 25,000 gallons per day, and the

locomotive tank capacity is 4,500 gallons. The new instances proposed in [31] (labeled from I2 to I57) are

based on: (1) random networks with a number N of yards; (2) twelve-day cyclic schedules with a number n

of stops. Instances I2 to I49 consist of 8 instances for each combination of values for N in {75, 100, 120}, n
in {5, 000; 10, 000; 30, 000}, while instances I50 to I57 are larger instances with N = 196 and n = 130. For

each (N,n) combination, the 8 instances correspond to each combination of values for: the contracting costs

(5,000$ and 7,000$), tanker truck capacities (25,000 and 50,000 gallons), and locomotive tank capacities

(3,500 and 5,500 gallons). The fixed refueling cost was set to 250$ for each stop.

The (P2) instances have been generated based on the following idea. If several trucks from the same company

are contracted for the same yard, the company is likely to propose discounted prices for that yard. More

formally, for the linear instances presented in Table 2, let CCy be the contracting cost (in $/(truck·period))
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associated with yard y. Each (P2) instance is generated from its corresponding (P1) instance as follows. If

m trucks are located at yard y, then the corresponding contracting cost (in $/(truck·period)) becomes the

nonlinear function CCy = (0.8)m · CCy (where m ≥ 2).

Let k be the number of stops (excluding the origin) of a train. The (P3) instances have been generated

based on the following idea. Firstly, the clients would probably not mind if one or two refueling stops

are encountered along the route of a train. But from a certain threshold (fixed to two in this paper),

a dissatisfaction D will appear, which will augment in a quadratic fashion with k. For this reason, the

following penalty function is proposed, where c is a parameter: D(k) = c · (k − 1) · (k − 2) if k > 0, and

D(k) = 0 if k = 0. One can remark that D(k) = 0 as well if k ∈ {1, 2}. Parameter c was chosen to be equal

to the fixed cost associated with a refueling action. Therefore, for a given route, the dissatisfaction penalty

will dominate the fixed refueling costs if k > 2.
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Table 2: Description of the (P1) instances.

Instance Number N of yards Number n of stops Tanker Capacity Contracting cost Locomotive capacity

I1 73 5,250 25,000 4,000 4,500

I2 75 10,000 25,000 5,000 3,500

I3 75 10,000 25,000 5,000 5,500

I4 75 10,000 25,000 7,000 3,500

I5 75 10,000 25,000 7,000 5,500

I6 75 10,000 50,000 5,000 3,500

I7 75 10,000 50,000 5,000 5,500

I8 75 10,000 50,000 7,000 3,500

I9 75 10,000 50,000 7,000 5,500

I10 75 5,000 25,000 5,000 3,500

I11 75 5,000 25,000 5,000 5,500

I12 75 5,000 25,000 7,000 3,500

I13 75 5,000 25,000 7,000 5,500

I14 75 5,000 50,000 5,000 3,500

I15 75 5,000 50,000 5,000 5,500

I16 75 5,000 50,000 7,000 3,500

I17 75 5,000 50,000 7,000 5,500

I18 100 10,000 25,000 5,000 3,500

I19 100 10,000 25,000 5,000 5,500

I20 100 10,000 25,000 7,000 3,500

I21 100 10,000 25,000 7,000 5,500

I22 100 10,000 50,000 5,000 3,500

I23 100 10,000 50,000 5,000 5,500

I24 100 10,000 50,000 7,000 3,500

I25 100 10,000 50,000 7,000 5,500

I26 100 5,000 25,000 5,000 3,500

I27 100 5,000 25,000 5,000 5,500

I28 100 5,000 25,000 7,000 3,500

I29 100 5,000 25,000 7,000 5,500

I30 100 5,000 50,000 5,000 3,500

I31 100 5,000 50,000 5,000 5,500

I32 100 5,000 50,000 7,000 3,500

I33 100 5,000 50,000 7,000 5,500

I34 120 10,000 25,000 5,000 3,500

I35 120 10,000 25,000 5,000 5,500

I36 120 10,000 25,000 7,000 3,500

I37 120 10,000 25,000 7,000 5,500

I38 120 10,000 50,000 5,000 3,500

I39 120 10,000 50,000 5,000 5,500

I40 120 10,000 50,000 7,000 3,500

I41 120 10,000 50,000 7,000 5,500

I42 120 5,000 25,000 5,000 3,500

I43 120 5,000 25,000 5,000 5,500

I44 120 5,000 25,000 7,000 3,500

I45 120 5,000 25,000 7,000 5,500

I46 120 5,000 50,000 5,000 3,500

I47 120 5,000 50,000 5,000 5,500

I48 120 5,000 50,000 7,000 3,500

I49 120 5,000 50,000 7,000 5,500

I50 196 30,000 25,000 5,000 3,500

I51 196 30,000 25,000 5,000 5,500

I52 196 30,000 25,000 7,000 3,500

I53 196 30,000 25,000 7,000 5,500

I54 196 30,000 50,000 5,000 3,500

I55 196 30,000 50,000 5,000 5,500

I56 196 30,000 50,000 7,000 3,500

I57 196 30,000 50,000 7,000 5,500
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5.2 Results on the (P1) instances

Firstly, we would like to mention the results obtained by the MILP approach proposed in [31]. Their MILP

approach relies on ILOG-CPLEX 12.1 and was tested on a Xeon X3450 2.67 GHz workstation with 16 GB

of RAM. The smallest instance I1 (i.e. the one of the competition) was optimally solved within 24 hours.

This was achieved by reinforcing their formulation with nine problem-specific families of valid inequalities,

which dramatically improved both the lower bound and the quality of the obtained solution. On average,

they observed that adding these cuts to the initial formulation permitted to close 99.34% of the remaining

optimality gap on the smaller instances (with number of yards n ∈ {75, 100, 120}), and 91.10% on the large

instances (with n = 196). They set the time limit to one hour for the small instances and three hours for

the large ones.

Our results on the 57 linear instances are presented in Table 3. For each instance indicated in column 1,

the following pieces of information are given. The solution value obtained by the MILP approach is given

in column 2. Note that the times needed to get such values are not detailed in [31]. Column 3 gives the

percentage gap of the MILP approach according to LB (lower bound returned by CPLEX). The percentage

gap of DLS according to MILP is indicated in column 4. The same information is provided for TS and

LTS in columns 5 and 6, respectively. Average results are given in the last line, and indicate that after 60

minutes of computation, the three proposed algorithms have an average gap of approximately 2% from the

MILP approach. We can remark that LTS is slightly better than DLS and TS: on average, LTS saves 4083$

(resp. 3850$) when compared to DLS (resp. TS). We can observe that the MILP approach finds the optimal

solution on all but 17 instances, and when the optimal solution is not found, the gap according to LB is

very small. This occurs on almost all the large instances, which indicates again that metaheuristics would

be appropriate for much larger instances of (P1).

In order to better compare the behavior of the proposed algorithms, Figure 1 is helpful. For DLS, TS

and LTS, Figure 1 compares the evolution of the best encountered solution value during 60 minutes (again

averaged over 5 runs). On the one hand, we can observe that LTS clearly outperforms the other two methods

from the beginning to the end of the hour of computation. This indicates that the learning process (i.e. the

trail system) introduced to TS to derive LTS is relevant. On the other hand, we also remark that TS is

better than DLS in the first 30 minutes, and then both methods have a comparable behavior.
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Table 3: Results on the (P1) instances.

Instance MILP MILP vs LB DLS vs MILP TS vs MILP LTS vs MILP

I1 11399670.88 0.00% 0.32% 0.38% 0.31%

I2 19060186.08 0.09% 1.39% 1.36% 1.37%

I3 18655818.52 0.00% 1.24% 1.23% 1.20%

I4 19135933.94 0.08% 1.79% 1.79% 1.80%

I5 18729818.52 0.00% 1.55% 1.57% 1.55%

I6 19037307.6 0.01% 1.32% 1.30% 1.31%

I7 18627101.52 0.00% 1.14% 1.13% 1.14%

I8 19109525.2 0.01% 1.72% 1.71% 1.71%

I9 18691101.52 0.00% 1.46% 1.45% 1.48%

I10 9569687.48 0.00% 2.26% 2.27% 2.28%

I11 9352917.24 0.00% 1.68% 1.66% 1.66%

I12 9639946.52 0.00% 3.00% 3.02% 3.03%

I13 9405898.56 0.00% 2.20% 2.19% 2.20%

I14 9569436.44 0.00% 2.24% 2.27% 2.26%

I15 9347917.24 0.00% 1.68% 1.68% 1.69%

I16 9638742.52 0.00% 3.00% 3.03% 3.02%

I17 9400731.76 0.00% 2.22% 2.21% 2.22%

I18 18486857.64 0.01% 1.53% 1.57% 1.59%

I19 18115582.24 0.00% 1.40% 1.37% 1.37%

I20 18576870.68 0.02% 1.98% 2.00% 2.04%

I21 18190541.16 0.00% 1.77% 1.73% 1.74%

I22 18481809.8 0.01% 1.49% 1.48% 1.49%

I23 18107425.32 0.00% 1.38% 1.34% 1.33%

I24 18569628.16 0.02% 1.88% 1.90% 1.89%

I25 18178384.24 0.00% 1.70% 1.68% 1.67%

I26 9513404.44 0.00% 2.34% 2.35% 2.38%

I27 9307231.88 0.00% 1.86% 1.85% 1.89%

I28 9587819.24 0.00% 3.13% 3.17% 3.18%

I29 9367219.32 0.00% 2.45% 2.45% 2.48%

I30 9513404.436 0.00% 2.35% 2.36% 2.39%

I31 9307231.88 0.00% 1.88% 1.89% 1.88%

I32 9587819.24 0.00% 3.14% 3.15% 3.18%

I33 9367219.31 0.00% 2.47% 2.48% 2.48%

I34 19118270.68 0.01% 1.75% 1.70% 1.71%

I35 18727561.28 0.00% 1.42% 1.39% 1.39%

I36 19220470.08 0.01% 2.22% 2.17% 2.20%

I37 18809509.08 0.00% 1.84% 1.78% 1.78%

I38 19115473.16 0.00% 1.66% 1.65% 1.64%

I39 18720151.48 0.00% 1.44% 1.42% 1.42%

I40 19216606.56 0.00% 2.17% 2.10% 2.11%

I41 18800151.48 0.00% 1.86% 1.82% 1.82%

I42 9480955.8 0.00% 2.85% 2.92% 2.91%

I43 9283343.119 0.00% 2.24% 2.24% 2.24%

I44 9568439.8 0.00% 3.80% 3.92% 3.90%

I45 9355576.56 0.00% 2.94% 2.96% 2.96%

I46 9480955.8 0.00% 2.83% 2.91% 2.87%

I47 9283343.12 0.00% 2.24% 2.24% 2.24%

I48 9568439.8 0.00% 3.80% 3.85% 3.92%

I49 9355576.56 0.00% 2.94% 2.98% 2.96%

I50 53748956.06 0.28% 1.69% 1.64% 1.50%

I51 52591915.2 0.08% 1.77% 1.71% 1.56%

I52 53979085.06 0.35% 2.15% 2.14% 1.94%

I53 52781608.56 0.09% 2.32% 2.28% 2.04%

I54 53596524.72 0.04% 1.52% 1.50% 1.41%

I55 52495703.16 0.00% 1.40% 1.42% 1.28%

I56 53782299.4 0.05% 1.94% 1.92% 1.76%

I57 52658448.16 0.01% 1.79% 1.80% 1.59%

Average 19532799.21 0.0205263% 2.0271817% 2.0259959% 2.0061365%
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Figure 1: Evolution of DLS, TS and LTS on the (P1) instances

5.3 Results on the (P2) instances

The results on the (P2) instances are presented in Table 4. The considered set of 15 instances is a represen-

tative sample generated from the 57 linear instances. For each instance indicated in column 1, the following

information is given. Column 2 gives the best value f⋆ obtained with the best run of all the compared

metaheuristics. The percentage gap of DLS according to f⋆ is indicated in column 3. The same information

is provided for TS and LTS in columns 4 and 5, respectively. Average results are given in the last line.

Again, we can remark the superiority of LTS over the other methods.

Table 4: Results on the (P2) instances.

Instance f⋆ DLS TS LTS

I1 11435319.27 0.00% 7.44% 0.16%

I2 19234059.01 2.35% 0.99% 0.00%

I9 18874080.52 2.20% 0.00% 0.83%

I10 9713546.672 0.00% 1.48% 2.19%

I17 9535836.048 0.58% 0.21% 0.00%

I18 18683351.5 1.42% 0.00% 1.94%

I25 18390821.3 2.06% 0.54% 0.00%

I26 9660556.888 0.25% 0.00% 2.38%

I32 9517126.984 0.00% 1.30% 1.50%

I33 19340993.46 3.68% 0.00% 0.92%

I41 19035034.74 1.33% 0.00% 0.03%

I42 9656106.576 0.00% 5.16% 6.24%

I49 9532777.6 0.00% 2.10% 2.59%

I50 54269407.81 12.24% 12.89% 0.00%

I57 53266695.02 13.09% 11.36% 0.00%

Average 2.61% 2.90% 1.25%
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Figure 2 is similar to Figure 1 but is associated with the (P2) instances. The same observations as before

can be made: LTS outperforms TS and DLS, TS is better than DLS during half an hour, TS and DLS are

comparable during the second half hour.

Figure 2: Evolution of DLS, TS and LTS on the (P2) instances

5.4 Results on the (P3) instances

The results on the (P3) instances are presented in Table 5, which has the same format as Table 4. The

considered set of 15 instances is again a representative sample generated from the 57 linear instances. Again,

we can remark the average superiority of LTS over the other methods, particularly on the larger instances.

Table 5: Results on the (P3) instances.

Instance f⋆ DLS TS LTS

I1 11446570.05 0.000000000% 0.023256084% 0.036615335%

I2 19324160.48 0.019589943% 0.000000000% 0.028009030%

I9 18975380.52 0.000000000% 0.022408742% 0.025809179%

I10 9792158.584 0.005651379% 0.000000000% 0.035485945%

I17 9621090.32 0.016110440% 0.000000000% 0.038799262%

I18 18782861.56 0.000000000% 0.000323699% 0.007360220%

I25 18512637.3 0.025547522% 0.000000000% 0.003511137%

I26 9741347.08 0.000000000% 0.014050788% 0.029679181%

I32 9628320.68 0.007389201% 0.000000000% 0.010688136%

I33 19453901.54 0.038045386% 0.000000000% 0.002928431%

I41 19167618.12 0.042874727% 0.009196260% 0.000000000%

I42 9760601.12 0.003710427% 0.000000000% 0.022935800%

I49 9661933.68 0.000000000% 0.025584609% 0.031378067%

I50 54488723.66 0.170712540% 0.149455943% 0.000000000%

I57 53505311.55 0.191943385% 0.116490405% 0.000000000%

Average 0.034772% 0.024051% 0.018213%

Figure 3 is similar to Figure 2 but is associated with the (P3) instances. Again, LTS outperforms TS and
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DLS. But in contrast with the previous problems, DLS and TS are comparable during the first 5 minutes,

and then TS outperforms DLS.

Figure 3: Evolution of DLS, TS and LTS on the (P3) instances

6 Conclusion

A refueling problem in a railway network is considered in this paper. We decompose it in two optimization

levels. The top level consists of determining the number of refueling trucks at each yard. It is called the

truck assignment problem (TAP). The bottom level of the problem consists of determining the refueling plan

of each locomotive. It is called the fuel distribution problem (FDP) and it can be efficiently solved with the

FDP algorithm proposed in a previous study. The goal consists of minimizing the sum of various types of

cost components, while respecting several operational constraints.

Three variants of the problem are considered, which are denoted (P1), (P2) and (P3). In (P1), all the costs

are linear and there is a maximum number of times a train can stop to be refueled (stop constraint). (P2)

is an extension of (P1) where nonlinear discounted prices can be obtained from fuel suppliers when several

trucks are contracted for a same yard. (P3) is derived from (P1) by relaxing the stop constraint. Instead, the

refueling stops are penalized in the objective function in a nonlinear fashion. Three methods are proposed

for the TAP: a descent local search DLS, a tabu search TS, and a learning tabu search LTS. The latter is a

new type of local search approach, involving a learning process which relies on a trail system.

We have observed that LTS outperforms the other considered solution methods. On the (P1) linear instances,

LTS has an average gap of 2% from the optimum provided by a refined MILP approach relying on CPLEX

12.1. On the (P2) and (P3) instances – for which the MILP approach cannot be used because nonlinear

costs have to be tackled – LTS shows promising results. An important advantage of LTS is its flexibility: in

contrast with a MILP approach, LTS can be easily adapted if new costs and constraints, including nonlinear
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ones, are added to the problem.

Among future avenues of research, we mention the following. Firstly, dual information from the FDP network

flow optimal solution could be used to better guide the TAP local search. Secondly, extensions of the problem

may be considered by taking into account other types of costs and constraints, or adding other optimization

levels (e.g., the sorting of the trains on the tracks of each yard). Finally, as LTS turned out to be the most

promising approach, it would be interesting to apply it to other problems.
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