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Abstract In sufficiently large schools, lessons are given to classes in sections
of various sizes, depending on the subject taught. Consequently, classes have
to be split into various given numbers of sections. We focus on how to subdi-
vide a class in subgroups, so as to be able to reproduce all required sections
by merging subgroups together, while minimizing the number of edges in the
resulting course conflict graph. As a main result, we show that subdividing the
students set in a regular way is optimal. We then discuss our solution unique-
ness and feasibility, as well as practical issues concerning teacher assignments
to sections.
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1 Introduction

Depending on the subject taught, classroom sizes, teachers preferences or bud-
get, the number of subgroups - or sections - created from a given class may
vary from one subject to the other. For instance, given a class with 120 stu-
dents, one may need to create 3 sections of 40 students for economics classes, 5
sections of 24 students for informatics and 6 sections of 20 students for english
courses. One of the tasks included in a timetable creation is to actually decide
how to dispatch students into these sections. If handled first, this task, called
student sectioning, has a crucial importance when it comes to timetabling, i.e.
assigning timeslots to courses1.

D. Schindl
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1 Although the word ”timetabling” usually refers to the whole process of creating a
timetable for each student and each teacher, in this paper we call timetabling the task
of assigning timeslots to courses, as a problem separate from student sectioning.
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While student sectioning usually refers to assigning students to optional
courses (see Section 2), we are interested here in the special but nontrivial
case where all courses are mandatory. Such a situation occurs in many, if not
most, schools: as soon as there are at least two different section numbers for
the same class, the question inevitably arises about how should the students
be dispatched into these sections. It is in particular the case each semester
on several classes at Haute Ecole de Gestion de Genève, and this is what
motivated this topic. We describe in next paragraph a reasonable criterion to
evaluate a sectioning and will show later that a natural construction produces
an optimal solution.

A timetable should avoid assigning two courses a common timeslot if they
have at least one student in common. Taking only this kind of constraints into
account, there is a straightforward feasible timetable obtained by assigning all
courses of the same subject the same set of timeslots. Indeed, since each stu-
dent has exactly one course of each subject, two courses of the same subject
will never share a student and can therefore be scheduled in parallel. How-
ever, there are usually many other constraints avoiding this simple timetable,
starting with the conflict between courses sharing the same teacher. Adding,
among others, teachers and classes availability constraints, it quickly becomes
very difficult (in general NP-complete) to predict what a feasible schedule will
be like, or if there is one at all. However, in order to maximize our chances to
obtain a good schedule, it is reasonable, while dispatching students into sec-
tions, to make the number of pairs of potentially conflicting courses as small
as possible. This number is precisely the criterion we aim at minimizing by
dispatching students into sections in an appropriate way.

The paper is organized as follows. Section 2 consists of a literature review
related to student sectioning and more specifically to our problem. A precise
formulation is given in Section 3 and its solution and proof are presented in
Section 4. We follow with a discussion in Section 5 and conclude by asking
two open questions.

2 Related literature

Our main contribution is based on mathematical considerations and concerns
a sectioning strategy to be applied on mandatory courses before timetabling,
whereas most literature on student sectioning deal with optional courses and
present heuristic approaches which are run before, in parallel of, or after a
timetabling algorithm. We refer the interested reader to [5] for a detailed
review on these methods, and we mention here only those who are most linked
to this work.

I
In [2], students have some mandatory courses and some optional ones, to

choose from a list. Prior to timetabling, the author proposes to create an ini-
tial, called homogeneous sectioning by grouping students in clusters according
to similarities between their optional course selections. The problem is then
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decomposed into smaller subproblems and greedy algorithms are run on each
of them to assign timeslots to courses. After timetabling, some assignments
are modified using an alternating tree approach, in order to decrease conflicts
in students schedules. The authors of [6] present and discuss several practical
timetabling issues in creating the timetable of a large university. Their initial
student sectioning is created in the same homogeneous way as above and once
the timetable is settled, the number of conflicts is lowered via a local search
over the student to sections assignments. This work is extended in [5], where
the same homogeneous sectioning is initially computed, but after the timetable
is set,it is improved by a batch sectioning heuristic using several kinds of
neighborhoods to diminish the number of conflicts. The obtained sectioning
can then be further modified in an online manner since students may make
schedule change requests, which are then processed by an algorithm trying to
satisfy them without changing previously sectioned students assignments. In
[1], an experimental study is reported about the impact on space utilization
and timetabling feasibility of varying the maximum size of groups and the
number of sections. They show that the latter parameter has the most impact
on feasibility and observe that allowing schedule changes while assigning stu-
dents also has a significant impact on feasibility. A similar issue is handled
with a graph theoretical approach in [7], where the author discusses on how
many vertex splits permit to decrease the chromatic number, i.e. how many
additional sections must be introduced in order to decrease the number of
necessary timeslots to ensure feasibility. A lower bound is given in function of
the total number of available subjects and the number of subjects to be chosen
by each student. The author of [4] proposes a heuristic consisting of two tabu
searches over the set of timetables allowing conflicts in student schedules. In
a first search, courses are only assigned to timeslots, and in the second search,
only students exchanges are allowed between different sections of a course, to
try to diminish the number of conflicts in the student’s schedules. In [3], the
authors investigate the problem of sectioning with a given timetable in terms
of complexity. They show that a basic version of sectioning where each course
uses exactly one timeslot is solvable with a network flow algorithm. On the
other hand, they prove NP-completeness of three generalizations, one of them
they call ”BSS + (E)”, where courses may have several timeslots. Our prob-
lem can be viewed as a special case of this last version, since we additionally
require sections of a same subject to be balanced. An even more special case
with practical interest could be obtained by requiring timeslots associated to
courses to be consecutive. To our knowledge the complexity statuses of these
two problems are not settled yet.

3 Problem formulation

Consider a class of students, each one following mandatory courses on k sub-
jects. Each subject i, with 1 ≤ i ≤ k, is taught in ni sections of equal sizes
(plus or minus 1). Consequently, for each i, our class has to be split into ni
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sections, each containing the fraction 1
ni

of the students. Courses on a same
subject i will be denoted ci,1, . . . ci,ni

and they have the same duration di.
Duration may however vary from one subject to the other. Each course has to
be assigned a set of students and a set of timeslots.

For the student assignment, we define for each subject i ∈ {1, . . . , k} a
function

si : [0, 1]→ {1, . . . , ni}

Each function si represents the students assignment to one of the ni sections
of subject i and will be called sectioning i. For instance, if s3(x) = 4 ∀ x ∈
[0.4, 0.45[, it means that each student ranked (for instance according to al-
phabetical order) between 40% and 45% belongs to the 4th section in the 3rd

sectioning. The set of sectionings together will be simply called a sectioning

set and denoted by S. Figure 1 is a schematic view of the following sectioning
set S = {s1, s2, s3} with k = 3 subjects, n1 = 2, n2 = 3 and n3 = 5.

s1(x) =

{

1 if x ∈ [0, 0.3[ ∪ [0.6, 0.8[
2 if x ∈ [0.3, 0.6[ ∪ [0.8, 1]

s2(x) =







1 if x ∈ [0, 0.2[ ∪ [0.867, 1[
2 if x ∈ [0.2, 0.533[
3 if x ∈ [0.533, 0.867]

s3(x) =























1 if x ∈ [0, 0.1[ ∪ [0.45, 0.55[
2 if x ∈ [0.1, 0.2[ ∪ [0.3, 0.4[
3 if x ∈ [0.2, 0.3] ∪ [0.9, 1]
4 if x ∈ [0.4, 0.45] ∪ [0.55, 0.7]
5 if x ∈ [0.7, 0.9]
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Fig. 1 Sectioning example with k = 3 subjects, n1 = 2, n2 = 3 and n3 = 5.

For the timeslots assignment, we define the following function which we
will call a timetable :

T : C → P(P )

where C is the set of courses and P is the set of time periods or timeslots. For
instance, if T (c3,4) = {5, 8, 9}, the fourth section of subject 3 is scheduled on
timeslots 5, 8 and 9.
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In a feasible timetable, two courses sharing a timeslot should not share a
student. We consequently define potential conflict graphs of the two following
kinds on the set of courses C. Given a sectioning set S = {s1, . . . , sn}, two
vertices ci,j and ci′,j′ are adjacent in the students conflict graph GS = (C,ES),
if and only if s−1

i (j)∩s−1
i′ (j′) '= ∅. Notice that for each subject i, the vertex set

Ci = {ci,j : j = 1 . . . ni} is a stable set in GS . Given a timetable T , two vertices
ci,j and ci′,j′ are adjacent in the timeslots conflict graph GT = (C,ET ), if and
only if T (ci,j) ∩ T (ci′,j′) '= ∅.

4 Optimal sectioning

Our main result, which is presented in this section, shows how to choose a
sectioning set S so as to minimize the number of edges of GS , regardless of the
timetable. By GCD(a, b) we denote the greatest common divisor of positive
integers a and b and by LCM(a, b) their least common multiple. These are
linked by the formula GCD(a, b)LCM(a, b) = ab.

Consider subjects i and i′ and a sectioning set S. Since the vertex sets Ci

and Ci′ are stable in GS , we have

min
s1,...,sk

|E(GS)| = min
s1,...,sk

∑

i,i′∈{1,...,k},i<i′

|E(GS [Ci ∪ Ci′ ])|

≥
∑

i,i′∈{1,...,k},i<i′

min
si,si′

|E(GS [Ci ∪ Ci′ ])|

Consequently, if we are able to find a sectioning set S = {s1, . . . , sk} such
that

|E(GS [Ci ∪ Ci′ ])| = min
si,si′

|E(GS [Ci ∪ Ci′ ])| ∀ 1 ≤ i < i′ ≤ k

we are done.

Next Proposition shows that it is actually the case, and the corresponding
sectionings are the ones where all preimages s−1

i (j) are intervals. Figure 2
displays the optimal sectioning set corresponding to our example above.
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Fig. 2 Optimal sectioning with k = 3 subjects, n1 = 2, n2 = 3 and n3 = 5.
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Proposition 1 If si(x) = ⌈nix⌉ ∀ i ∈ {1, . . . , k}, then for each i < i′ we have

|E(GS [Ci ∪ Ci′ ])| = min
si,si′

|E(GS [Ci ∪ Ci′ ])|

= ni + ni′ −GCD(ni, ni′)

Proof We begin our proof with the following observations on properties we
may assume on optimal sectionings si and si′ .

Observation 1. There are optimal sectionings si and si′ , with si(x) = ⌈nix⌉.

Indeed, let s̃i and s̃i′ be optimal. Since |s̃−1
i (j)| = |s−1

i (j)| = 1
ni

∀j ∈
{1, . . . , ni}, there is a bijection σ from the [0, 1] interval into itself, such that
s̃i(σ(x)) = ⌈nix⌉ = si(x). Then choosing si′(x) = s̃i′(σ(x)), si and si′ induce
exactly the same conflict graph as s̃i and s̃i′ , since x ∈ s−1

i (j)∩ s−1
i′ (j′) if and

only if σ(x) ∈ s̃−1
i (j) ∩ s̃−1

i′ (j′). In particular, both conflict graphs have the
same, minimal, number of edges.

From now on, we assume si(x) = ⌈nix⌉.

Observation 2. There are optimal sectioning si and si′ such that the sets
s−1
i (j) ∩ s−1

i′ (j′) are intervals.

For each 1 ≤ j ≤ ni, an argument similar to the above, with σ being a bijection
from the interval [ j−1

ni

, j
ni

[ into itself, permits to assume that the sets

s−1
i (j) ∩ s−1

i′ (j′) =

[

j − 1

ni

,
j

ni

[

⋂

s−1
i′ (j′), 1 ≤ j′ ≤ ni′

are connected, and hence are intervals.
We may thus assume that each set s−1

i (j) ∩ s−1
i′ (j′) is an interval. Recalling

that |E(G[Ci ∪ Ci′ ])| is equal to the number of sets s−1
i (j) ∩ s−1

i′ (j′) that are
non empty, |E(G[Ci∪Ci′ ])| is equal to the number of intervals s−1

i (j)∩s−1
i′ (j′).

We now show that |E(G[Ci ∪ Ci′ ])| ≥ ni + ni′ − GCD(ni, ni′). Assume
by contradiction that the number of intervals s−1

i (j) ∩ s−1
i′ (j′) is at most

ni + ni′ − GCD(ni, ni′) − 1. Of course, if there are, say p intervals, there are
p−1 separations, i.e. pairs of adjacent (in [0, 1]) intervals (see Figures 1 and 2).
This means that there are at most ni+ni′−GCD(ni, ni′)−2 such separations.
Further, exactly ni − 1 of them are induced by the intervals s−1

i (j). We call
them original. Hence there are at most ni′ −GCD(ni, ni′)−1 separations that
are non original and exclusively induced by the sets s−1

i′ (j′). Let us call them
additional.
Construct an auxiliary graph H = (Vh, Eh) with Vh = {h1, . . . , hn

i′
} =

{s−1
i′ (j′) : 1 ≤ j′ ≤ ni′} and two vertices hj′

1
and hj′

2
being adjacent in H

if and only if there is at least one pair of intervals s−1
i (j1) ∩ s−1

i′ (j′1) and
s−1
i (j1) ∩ s−1

i′ (j′2) sharing an additional separation. The number of connected
components of H is at least |Vh| − |Eh| = ni′ − (ni′ − GCD(ni, ni′) − 1) =

GCD(ni, ni′) + 1. Consider the smallest one. It has at most
⌊

n
i′

GCD(ni,ni′
)+1

⌋
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vertices. Observe that each connected component of the corresponding union
of intervals in [0, 1] is only delimited by original separations. As a consequence,
the sum of its interval lengths must be a multiple of 1

ni

, say a
ni

, a ∈ N
∗:

a

ni

=

⌊

ni′

GCD(ni, ni′) + 1

⌋

·
1

ni′

⇔ ani′ =

⌊

ni′

GCD(ni, ni′) + 1

⌋

ni

In particular ani′ ≥ LCM(ni, ni′). On the other hand,

a

ni

=

⌊

ni′

GCD(ni, ni′) + 1

⌋

·
1

ni′

<
ni′

GCD(ni, ni′)
·
1

ni′
=

1

GCD(ni, ni′)

=
LCM(ni, ni′)

nini′

Hence ani′ < LCM(ni, ni′), a contradiction.

To show that for si(x) = ⌈nix⌉ and si′(x) = ⌈ni′x⌉ we have |E(G[Ci∪Ci′ ])| =
ni + ni′ −GCD(ni, ni′), we only need to observe that the points in [0, 1] that
are both original and additional separations are

a
LCM(ni, ni′)

nini′
, a ∈ {1, . . . ,GCD(ni, ni′)− 1}

Indeed, separations that are common to both si and si′ are common multiples
of ni

nini′
and n

i′

nini′
.

So the total number of separations is

(ni − 1) + (ni′ − 1)− (GCD(ni, ni′)− 1) = ni + ni′ −GCD(ni, ni′)− 1

and the number of edges of the conflict graph, which is equal to the number
of intervals, is ni + ni′ −GCD(ni, ni′).

In the sequel, we call regular the sectioning set of Proposition 1, i.e. S =
{s1, . . . sk}, with si(x) = ⌈nix⌉, i = 1, . . . , k. Notice that unsurprisingly, regu-
lar sectioning follows the same principle as homogeneous sectioning proposed
in [2], in the sense that if two students are involved in the same sections for
subjects 1 to k − 1, it means that they are ranked closely and are therefore
likely to be also involved in the same section for subject k.

5 Discussion

5.1 Uniqueness

Observe that if there are only two different section numbers n1 and n2, other
sectioning sets may also minimize the edges in the conflict graph. For instance,
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Fig. 3 Sectioning set S̃.

if n1 = 3 and n2 = 4, the sectioning set S̃ depicted in Figure 3 also produces
n1 + n2 −GCD(n1, n2) edges in GS̃ . However, this sectioning set is specific to
the section numbers n1 = 3 and n2 = 4 and finding an optimal sectioning for
a third subject with a larger number of sections may become tedious, if not
impossible. In contrast, our regular sectioning function si = ⌈nix⌉ does not
depend on other values nj , j '= i, permitting to add any number of sections
with guaranteed optimality as long as regular sectioning is used.

5.2 Timetabling feasibility

Given any sectioning set, it is not clear whether a conflict free timetable ex-
ists or not, since there may be several additional constraints preventing it,
like restrictive teachers availabilities. However, permuting sections (i.e. set of
students) of the same subject may be allowed as long as teacher assignments
remain unchanged. Given a timetable T , we call a sectioning set S feasible

with respect to T if there exists a set of section permutations σ1, . . . ,σk, with
σi over the set {1, . . . , ni}, such that the resulting timetable is conflict free,
i.e. such that T (ci,j)∩T (ci,j′) = ∅ whenever s

−1
i (σi(j))∩ s−1

i (σi(j
′)) '= ∅. Ob-

viously, regular sectioning may not be feasible for any timetable, the simplest
example being where all courses are timetabled in parallel. A less trivial and
more useful question is the following: if there exists a feasible sectioning set
for some timetable T , is the regular sectioning set also feasible? In the general
case the answer is negative, and we illustrate it with a small example of 12
students, 2 subjects of 3 and 4 sections, durations d1 = 1 and d2 = 2, and
the timetable depicted in Table 1. Indeed, Figure 4 displays the corresponding

Course ci,j c1,1 c1,2 c1,3 c2,1 c2,2 c2,3 c2,4
T (ci,j) {1} {2} {3} {1, 2} {1, 3} {2, 3} {4, 5}

Table 1 Timetable incompatible with regular sectioning.

timeslots conflict graph2. If we apply the regular sectioning approach, the re-
sulting sectioning conflict graph is, up to section permutations within the same
subject, depicted in Figure 5. Clearly, S is feasible with respect to T if and
only if there is a permutation of {c1,1, c1,2, c1,3} (or {c2,1, c2,2, c2,3, c2,4}) such
that no pair of vertices is an edge in both conflict graphs. It is not the case,

2 For the sake of simplicity, we do not display edges between vertices of the same subject,
since these potential conflicts can never be realized.
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Fig. 4 Timeslots conflict graph GT .
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Fig. 5 Sectioning conflict graph GS obtained with regular sectioning.

since there are 3 vertices of degree 2 among the c2,j vertices in GT , whereas
there are only 2 vertices of degree one among them in GS . Now consider the
same sectioning set S̃ as in Figure 3, and described in Table 2 for our 12
students. The corresponding sectioning conflict graph is displayed in Figure

Student 1 2 3 4 5 6 7 8 9 10 11 12
Section for subject 1 1 1 1 1 2 2 2 2 3 3 3 3
Section for subject 2 3 3 3 4 2 2 2 4 1 1 1 4

Table 2 Sectioning set S̃.

6. This graph is the bipartite complement of the timeslots conflict graph GT ,
thus S̃ is feasible with respect to T .

This example shows that if regular sectioning permits to minimize the
number of edges, it may not be the only optimal solution in that sense, and
there may exist timetables that are not feasible for S, but feasible for another
sectioning set. However, in this example, the course c2,2 is assigned timeslots
1 and 3, and we did not find such an example where all course are assigned
only consecutive timeslots, which we may expect in practice. The existence or
not of such an example remains an open question.
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Fig. 6 Sectioning conflict graph G
S̃

obtained with sectioning set S̃.

5.3 Teacher assignments

In most cases, teachers are indifferent to which sections they are assigned. The
section assignments among teachers within a same subject can therefore be
freely permuted. We provide here some hints on how to exploit this flexibility
prior to timetabling. We again base our discussion on the number of potential
conflicts, and consider teachers like students, in the sense that they contribute
to edges in the student conflict graph.

If we restrict attention to only one subject, we observe that changing
teacher assignments to sections will not change the conflict subgraph (up to
isomorphism) induced by sections of this subject, hence the number of edges.

If a teacher gives courses in two subjects, it may be preferable to assign him
or her sections with similar sets of students. Indeed, these sections are likely
to be already adjacent in the student conflict graph, so adding the teacher
to them will create only few new edges, if any. Observe that this similarity
argument is consistent with regular sectioning and homogeneous sectioning
([2]).

Finally, for the vast majority of cases where two teachers give courses in
two different subjects, a criterion could be based on their availabilities: it may
be suitable to assign similar sections to teachers having different availabili-
ties. This criterion suggests a preprocessing consisting in permuting teachers
among sections in order to maximize the probability of existence of a feasible
timetable. However, this task does not promise to be trivial: if two teach-
ers have complementary availabilities and are assigned similar sections, what
about a third teacher having availabilities similar to the first one?

6 Conclusion

In this paper, we address the problem of student sectioning on mandatory
courses with various numbers of sections, before knowing the timetable. We
prove that sectioning students in a regular way permits to minimize the num-
ber of potential conflicts between courses. We then discuss uniqueness of this
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optimal solution, the existence of a feasible timetable and some issues about
teachers assignments. We leave the reader with the following open questions:

– Are there section numbers n1, . . . nk on k subjects, with durations d1, . . . , dk,
a non-regular balanced sectioning S̃ and a timetable T where all courses
are assigned consecutive timeslots, such that S̃ is feasible with respect to
T , but the regular sectioning is not?

– Is the problem ”BSS + (E)” defined in [3] still NP-complete, when re-
stricted to the case where sections of a same subject have to be balanced
and courses are assigned only consecutive timeslots?
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