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Al Applications in Nuclear

10

Medicine and Hybrid Imaging

Lefteris Livieratos, Christoph Jan Trauernicht,
and Mélanie Champendal

10.1 Introduction

This chapter provides an overview of Al in nuclear
medicine and hybrid imaging applications. It
refers to nuclear medicine with its widest defini-
tion, as the medical specialty that uses radioactive
tracers (radiopharmaceuticals) to assess bodily
functions and to diagnose and treat disease.
Hybrid imaging refers to the combination of any
imaging modality that uses radioactive tracers,
along with any other imaging modality, often one
that focuses on anatomy, for simultaneous or
sequential imaging such as with computed tomog-
raphy (CT) in positron emission tomography
(PET)/CT, single photon emission computed
tomography (SPECT)/CT, or magnetic resonance
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imaging (MRI) in PET/MR. Such hybrid imaging
modalities have been increasingly used to diag-
nose disease with improved accuracy of anatomi-
cal localisation compared to the typically poorer
spatial resolution in functional diagnostic findings
revealed by the radiotracer. The widespread use of
hybrid imaging has significantly empowered the
role of nuclear medicine imaging in recent years.
The co-registration of the images from the two
modalities offers a unique combination of func-
tional and anatomical information with advan-
tages, such as more accurate localisation of focal
metabolic abnormality, and the potential to use
the X-ray imaging data for attenuation correction
of the nuclear medicine imaging data.

Recent developments in radiochemistry have
led to radiopharmaceuticals where the same
molecular target can be labelled with either a pre-
dominately gamma photon emitting isotope to
drive diagnosis, or a predominately particle emit-
ting isotope such as beta or alpha, to drive a ther-
apeutic intervention aiming at a common
biological target. This combined diagnostic and
therapeutic approach is often referred to as ther-
anostics, or specifically for radioisotope applica-
tions as radio-theranostics. Radio-theranostics
are a driving force in modern nuclear medicine
and examples include %Ga-DOTATATE and
Lu-DOTATATE as a diagnostic (PET/CT) and
therapeutic (with post-therapy imaging with
SPECT/CT) complimentary pair. These are,
respectively, used for the diagnosis and treatment
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of neuro-endocrine tumours (NET) [1, 2] and
%8Ga-PSMA and 'Lu-PSMA as a diagnostic
(PET/CT), and therapeutic (with post-therapy
imaging with SPECT/CT) complementary pair,
respectively, for the diagnosis and treatment of
metastatic castration-resistant prostate cancer
(mCRPC) [3].

Nuclear medicine and hybrid imaging tech-
niques are affected by common challenges and
limitations as in other medical imaging modalities,
such as patient motion, variability of contrast-
defining biological parameters, variability of equip-
ment specifications and imaging protocols, data
size, data handling, and reviewer subjectivity. The
use of radiotracers often involves additional bur-
dens related to minimising radiation dose, control of
image noise (often as a result of limiting injected
activity and/or shortening acquisition times), the
biological variability of tracer uptake and tracer
availability. As with all other healthcare applica-
tions and imaging modalities, various computer
algorithm methodologies have been employed over
the years in nuclear medicine to mitigate those lim-
iting factors and optimise radiotracer imaging, diag-
nostic outcomes, resource allocation, and
personalised patient care. These include statistical
analysis, factor analysis, compartmental modelling,
image classification techniques, all of which are
based on pre-defined assumptions or models, and
applied to numerous tasks in image segmentation,
noise reduction, tracer kinetic analysis, and data
corrections, as discussed further in this chapter.

The emergence of artificial intelligence (Al)
in nuclear medicine has occurred over the last 50
years [4] and the integration of Al can be a dis-
ruptive addition to offer novel solutions in image
acquisition, reconstruction, processing, segmen-
tation, and analysis. Al supports specific tasks,
rather than entire processes, and its use has
increased rapidly over the past few years. Here
we refer to Al as a collective term for machine
learning techniques with a deep learning approach
based on convolutional neural networks (CNNs)
as the forefront of development in the field, as
outlined in Chaps. 1 and 2. The introduction of Al
approaches in nuclear medicine and hybrid imag-
ing extends to a wide range of applications with
potential impact to all stages of the diagnostic

process and the patient’s journey [5, 6]. These
may range from detector level for image acquisi-
tion to correction for physics-related processes,
for example, photon attenuation and scatter, to
image reconstruction, image processing, and
analysis including denoising, segmentation, and
hybrid image fusion. In addition, Al can be
applied in the construction of models to derive
diagnosis-specific metrics to aid the clinical
decision-making and to pursue further optimisa-
tion of the diagnostic or therapeutic process, such
as automated feature (lesion) detection or predic-
tive internal radiation dosimetry for personalised
therapy. Finally, Al is transforming nuclear medi-
cine by optimising exam planning, reducing costs
and resource usage, while also enhancing the
patient experience and contributing to more sus-
tainable waste and energy management [7, 8].

10.2 Data Acquisition and Image
Formation

10.2.1 Data Acquisition

In data acquisition, the introduction of Al
approaches at detector level includes the use of
CNNs for sorting PET data into sinograms for
large, pixelated crystal arrays to mitigate blurred
coarse sampling and large parallax errors [9],
thus potentially improving spatial resolution. In
the context of PET, the position of a positron
annihilation event can be determined more pre-
cisely along the line of response if the difference
in the timing of the detection of the two photons
is used, a methodology referred to as time-of-
flight or TOF PET. Al tools can be used to predict
the TOF differences from the detector signals
themselves, resulting in a 23% increase in timing
resolution in one study [10]. In PET imaging,
thin-pixelated crystal designs have been pro-
posed to provide higher spatial resolution images,
but at the cost of sensitivity. One group proposed
an approach to enhance PET image resolution
and noise from scanners with large pixelated
crystals [9], with potential of achieving compa-
rable image resolution with the larger crystals.
Whilst these approaches have been proposed by
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research-led teams, such advances have been rap-
idly explored by scanner manufacturers and may
be seamlessly incorporated into future system
designs and clinical scanning routine in the new
generation of scanners. Another area of impact to
routine scanning aims at ensuring reproducibility
and standardisation of the image acquisition pro-
cess, involves the introduction of deep learning
Al algorithms to apply a specific protocol to both
disease and patient characteristics and enable the
scanner to define relevant protocol ranges; an
example in hybrid imaging being the automated
landmarking technology for setting up a patient
scan [11]. Al enhances the optimisation of acqui-
sition protocols by selecting the most appropriate
settings for the patient, considering factors such
as positioning, CT dose modulation, and contrast
product injection [12, 13].

10.2.2 Spatial Alignment

Hybrid imaging relies on the co-registration of
two datasets from different imaging modalities.
Usually, a fixed set of spatial transformation
parameters is defined during installation of a
hybrid imaging system such as PET/CT or
SPECT/CT scanner and periodically checked as
part of a quality control program. Whilst such co-
registration parameters are expected to show
minimal variation with time, unless significant
structural changes are introduced in the system,
voluntary and involuntary patient motion can
affect the spatial alignment between images of
the two modalities [14—16]. Furthermore, images
from separate imaging sessions may often be
required to be co-registered to assist with feature
localisation or assessment of progression.
Machine learning models can be employed to
address the image registration problem. This can
be done by estimating the similarities between
images, for example, through better intensity cor-
respondences between the two imaging datasets,
by comparing corresponding anatomy in the two
datasets, by speeding up the optimisation of
existing image registration algorithms, or by
learning how to approximate the transformations
directly [17].

10.2.3 Attenuation Correction (AC)

The CT dataset in hybrid imaging lends itself to
attenuation correction of the photons emitted from
the PET or SPECT radiotracer as they pass through
tissues, because an X-ray image is an indication of
how photons are attenuated through different parts
of the body. Differences in attenuation properties
between the energies of SPECT or PET imaging
and the CT X-ray photons are typically addressed
by (bi-linear) scaling of these values to match the
appropriate energy. However, MR images cannot
directly be used for attenuation correction pur-
poses as these are formed by physical processes
not related to the electron density in tissues, which
would reflect the probability of photon interaction
with the matter. Deep learning tools have success-
fully been used to transform MR images into
pseudo-CT images that can be used for attenuation
correction [18-20]. Deep learning trained with
paired CT and PET/MR images was proposed for
pseudo-CT synthesis for the generation of attenu-
ation maps based on Dixon MRI [21] or multipa-
rametric MRI consisting of Dixon and
proton-density—weighted zero echo-time (ZTE)
MRI [22] and applied to whole-body abdominal or
pelvic PET/MR with only minimal bias compared
with the CT-based approach, the current standard
for attenuation correction.

In fact, current research is being done to investi-
gate whether it is possible to create pseudo-CT
images from PET or SPECT images alone. This can
potentially be done by using the structural informa-
tion from the non-attenuation corrected images
themselves, which in turn could also lead to a radia-
tion dose reduction. Additionally, if the CT compo-
nent of a PET/CT is no longer required, it could be
speculated that such a new generation of PET scan-
ners could potentially be cheaper to acquire [18].
However, it is probably worth noting that the ana-
tomical component in hybrid imaging, such as the
CT in SPECT/CT and PET/CT, typically serves far
more than the need for data corrections, such as
attenuation and scatter correction, and the impact of
anatomical localisation of the radiopharmaceutical
uptake often is the dominant requirement for hybrid
imaging. Therefore, a departure from the current
hybrid imaging model is rather unlikely.
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While the above focus on the generation of
attenuation maps describes the distribution of the
photon attenuation properties across the object,
such attenuation maps are typically used as part
of iterative image reconstruction in order to apply
the actual attenuation correction. As we will see
in a section below, the step of attenuation map
generation can be incorporated in the image
reconstruction step, with an Al approach, which
can be expanded to include other corrections
such as image registration. As an example of this
approach, the use of CNNs trained with whole-
body [18] F-FDG PET/CT data has been pro-
posed to simultaneously reconstruct activity and
attenuation maps as part of a maximum-likelihood
image reconstruction scheme [23], see Fig. 10.1.

10.2.4 Scatter Correction

In the context of PET or SPECT imaging, the
result of photon interactions with the tissues may
contribute to either photon attenuation, that is,
the removal of the photons from the line of site to
the detector, or to erroneous entries of photons
into the line of site of the detector in the case of
photon scattering. Scatter correction methodolo-
gies include indirect measurements or modelling
of a scatter distribution to estimate the amount of
scatter in an image. Images can be obtained in
one or several lower energy windows on the
energy spectrum to measure the scatter compo-

Fig. 10.1 Example of a patient scanned on both PET/CT
and PET/MR. Shown from left to right are a sagittal view
of the CT image, UTE image, Dixon image with atlas-
based bone structure, and an image from a deep learning
(DL) model [24] trained using 106 patients to predict a CT

Dixon + bone atlas

nent, typically applicable to SPECT where detec-
tor energy resolution is appropriate for this
approach. Monte Carlo models of the estimated
scatter distribution are often used in both SPECT
and PET imaging and tend to be computationally
intensive and time-consuming.

Deep learning models can be used to obtain
the total scattering distribution. Such models can
be trained on Monte Carlo simulated data, which
makes the training process initially quite time-
consuming [19, 25]; however, they may offer
processing time savings to the end-user. As with
attenuation correction, scatter correction can lead
not only to better quantification of the activity
distribution but also to an overall higher accuracy
as a result of an improved image reconstruction.
This is because the inclusion of all the physical
processes involved from the photon emission to
its detection will result to a more accurate system
matrix, which describes the activity-to-image
relationship within the image reconstruction
algorithm [26, 27].

10.2.5 Image Reconstruction

Traditional image reconstruction techniques
include filtered back-projection (FBP) and itera-
tive reconstruction algorithms. In FBP, the pro-
jection data acquired at each imaging angle are
back-projected into an empty matrix to obtain
images of the activity distribution which can be

DL using MR input]

from T1 and T2 images. The current MR-based attenua-
tion correction (MRAC) images provided from the scan-
ner for comparison are the Dixon with a bone atlas and
UTE. (Data courtesy Dr. Georgios Krokos, The Clinical
PET Centre, King’s College London)
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viewed at transverse, coronal, or sagittal orienta-
tion. Inherently, any noise in the projection data
is also back-projected, and thus amplified into the
final image. To reduce this, a filter can be applied
to each projection before the back-projection
step. The filter can be modified based on the clin-
ical task, for example, to obtain optimal images
of the myocardium or the skeleton, with the
applied filter optimised for the specific clinical
application.

In iterative reconstruction, the acquired pro-
jections of an object or a patient are compared to
projections of an estimate of the object or the

Reference

patient. Corrections are applied to the estimate
until the projections of the estimate closely match
the acquired projections. Iterative reconstruction
techniques are more computationally intensive
than FBP, but also much more versatile, as vari-
ous corrections for physical effects such as pho-
ton attenuation, scatter, or spatial resolution can
be incorporated into the image reconstruction
algorithm [26, 27].

Several Al approaches to image reconstruc-
tion for emission tomography have been
described in literature [28, 29], see also Fig. 10.2.
It is possible that a deep learning algorithm can

Uses MRl and Al

OSEM FBSEM-Net

30 min

Fig. 10.2 Example of Al-based image reconstruction in
PET from FBSEM-Net [28, 33, 34], which offers
improved image quality at shorter acquisition times. The
images demonstrate this in reconstructing data equivalent
to just 2 min of scanning time, with image quality com-

2 min

petitive to the reference reconstruction from 30 min of
data. OSEM: ordered subsets expectation maximisation;
FBSEM: forward backward splitting expectation
maximisation
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learn the iterative reconstruction process directly,
without any intermediate steps describing in
detail the system matrix. This can lead to vastly
reduced processing times (potentially 100-fold)
[18] and reduced image noise [30]. Al technol-
ogy cannot solve the inverse problem, which is
encountered in image reconstruction, but can
provide a mapping relationship to solve problems
in reconstruction. One such example is the trans-
formation between the sinogram (projection
data) domain and the image domain that can be
achieved through AI technology [19]. While the
training of a model that does this is very time-
consuming, the direct Al reconstruction after-
wards is very efficient for the end-user.

It should be noted that, independently of the
exact approach used, the responsibility of perfor-
mance assessment, quality assurance, and opti-
misation remains with the end-user. Consequently,
Al approaches in data corrections and image
reconstruction remain subject to the same rigor-
ous quality control and optimisation as defined
by the latest standards, regulations, or profes-
sional best practices, though approaches specific
to Al performance may also be pursued [31, 32].

10.3 AlinImage Processing
and Analysis

10.3.1 Radiation Dose Reduction
and Signal-to-Noise
Improvements

Reduction of noise, or improvements in signal to
noise as part of the imaging optimisation process,

can lead to improvements in image quality, which
may be translated to reduction of radiation dose
or image acquisition times. This has been an area
of development for Al approaches, for example,
to generate full-dose PET images from low-dose
data [35] or to directly filter reconstructed PET
images [36]. Similar Al approaches for noise
control have been proposed in SPECT imaging
[29]. It is possible to train a deep learning algo-
rithm on how to create higher-count images from
lower-count images. Intuitively, this can be
explained using two matched datasets of the
same object — one with lower counts (and thus
lower image quality) and one with more counts
(and thus less noise). Once the deep learning
algorithm is trained on an adequate number of
matched datasets, this information can then be
used to create images of higher quality from
images of lower quality [37]. In real terms, this
means that one can either (a) reduce image acqui-
sition time, particularly for patients who are
unable to tolerate the full scanning process due to
factors such as pain, claustrophobia, or specific
populations like paediatric patients, individuals
with dementia, and others who may struggle with
the procedure or (b) reduce the injected activity,
since it is possible to obtain good quality images
from a lower quality acquisition. This has led to
extreme dose reductions of up to 99% having
been reported [38]. This approach is particularly
valuable for paediatric patients, or when there are
problems with radiotracer availability, as well as
in terms of economic and environmental sustain-
ability. See Case Study 10.1 and Fig. 10.3 for
more information and insight.
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Fig. 10.3 Use of Al denoising in PET imaging. (Images Lausanne University Hospital and University of Lausanne,
courtesy Prof John Olivier Prior & Dr. Daphné Faist, Lausanne, Switzerland)

Department of Nuclear Medicine and Molecular Imaging,

10.3.2 Image Segmentation—
Automated Lesion Detection

Case Study 10.1
Clinical challenge: Use of F-18 FDG PET/
CT for lung cancer screening. In this con-
text, a reduction in the injected activity is
essential. This reduction will have a negative
effect on the quality of the PET image, with
a lower signal-to-noise ratio (SNR) [39].
Al-enabled solution: To address this
issue, a 3D convolutional neural network
(CNN) is employed to enhance the quality
of FDG PET images through denoising

[40]. A simulation of the reduction in
injected activity from 100% to 1% was car-
ried out (Fig. 10.3, left). The CNN was then
used to reconstruct the degraded images (on
the right side). The ground truth, framed in
green, represents the PET acquired with
100% of the injected activity.

Benefits: In this scenario, the detectabil-
ity of pulmonary nodules is maintained
while simultaneously reducing the dose
received by the patient. This approach can
be applied to other clinical situations where
a reduction in injected activity is necessary,
such as in paediatric patients or during

(continued)

eBook Col I ection (EBSCChost) printed on 1/30/2026 1:43:10 PM UTC via HES-SO Al use subject to https://ww. ebsco. coniterns-of-use.



EBSCChost :

218

L. Livieratos et al.

radiopharmaceutical shortages. Additionally,
it is possible to shorten the acquisition time,
which would also require the use of a denois-
ing algorithm. This is particularly beneficial
for patients with claustrophobia, those suf-
fering from painful conditions, or children
who have difficulty staying still.
Challenges: In the case of small nodules
and very noisy images, Al -elated hallucina-
tions may occur, as the nodule fades into the
noise and is detected as such. As a result, it
may disappear from the image reconstructed
by the denoising AL In the literature, cases of
reverse hallucinations have been docu-
mented, with the apparition of false lesions
in the reconstructed images that were not
present in the original ground truth [41].
Additionally, denoised images tend to appear
smoother compared to the ground truth.

One area where Al has shown to be extremely
beneficial is in automated organ or lesion detec-
tion and segmentation. Fast and accurate lesion
identification may be critical for an appropriate
intervention [42, 43]. Image segmentation and
automated definition of regions-of-interest
(ROIs) to specify a volume or for organ delinea-
tion on a single or hybrid modality may have a
significant impact in efficiency of applications
such as the calculation of standardised uptake
value (SUV), lesion evaluation, or radiation
dosimetry derived from radionuclide imaging
and therapy.

Numerous medical image segmentation tools
have been developed for use on nuclear medicine
and the functional, anatomical, or combined
modalities of hybrid images [44—47] usually
developed around the U-NET architecture [48],
while V-Net, a volumetric network, uses 3D
slices as input, unlike U-Net, which uses 2D
slices. Al approaches previously proposed for
image segmentation are often based on a CNN
requiring a large amount of input data to be able
to create an accurate segmentation model.
U-NET-based algorithms aim to achieve accurate
segmentation with smaller training datasets. This

is particularly applicable to medical images
where there is often limited access to well-
characterised image datasets, and memory, stor-
age, and processing requirements may be
demanding. U-NET architecture consists of a
contracting path, as moving through the CNN
layers, information is lost via down-sampling. A
symmetric expanding path mirrors the encoding
part of the algorithm but replaces convolutions
with up-convolutions resulting to the output seg-
mentation map. The addition of an up-sampling
path gives information to the decoding part on
where in the image a feature is extracted from by
the use of skip connections [49] allowing for fea-
tures present in the contracting path to be passed
to the expanding path, which recovers the ini-
tially lost spatial information from down-
sampling [48]. This architecture achieves a higher
resolution output whilst maintaining an accurate
and robust outcome. In hybrid imaging, the use
of both modalities improves segmentation per-
formance by using both anatomical (CT) and
physiological (PET or SPECT) information [50].

Automated approaches to image segmentation
can have a significant efficiency impact to organ
and lesion delineation for applications related to
the extraction of clinical image metrics and indi-
ces, such as SUV calculation [51], tumour char-
acterisation, or the derivation of organ time
activity curves as in internal radiation dosimetry
applications in theranostics [52], which could
considerably contribute towards personalised
therapy [53]. See further information presented
in Case Study 10.2 and Fig. 10.4. In radiation
oncology, some of these AI approaches have
already been commercialised and clinically
approved for contouring of organs at risk in
radiotherapy [54, 55]. See Chap. 11 for more
information.

Further uses of Al-based automated segmen-
tation and classification techniques include the
clinical evaluation and automated identification
of Parkinson’s disease from ['?*-Toflupane
(FP-CIT) or DaTSCAN SPECT imaging where
machine learning approaches have been used to
train models based on well-characterised data
[56-58]. In such cases, authors have pointed out
the use of training datasets that sufficiently reflect
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Fig. 10.4 Examples of manually defined liver and spleen  Regions shown on PET (left), CT (middle), and PET/CT
regions on CT (blue line) and by AI model (red line) (right) modalities. (Data courtesy Dr. Georgios Krokos,
trained on 40 patients [51] to predict those regions. The Clinical PET Centre, King’s College London)

the variability of scanning protocols, such as
gamma cameras, collimators, and reconstruction
parameters, to achieve robust and accurate
outcomes.

Case Study 10.2: (Fig. 10.4) Use of Deep
Learning-Based Image Segmentation in
PET/CT

Clinical challenge: Organ segmentation is
often required in order to report quantita-
tive metrics, such as SUV (standardised
uptake value) in PET and SPECT to express
the level of radiopharmaceutical uptake
normalised for the injected activity and
patient body weight. In hybrid imaging,
such as PET/CT and SPECT/CT, the avail-
ability of a spatially aligned anatomical
modality allows the definition of organs
with good anatomical accuracy; however,
this manual process can be very time-
consuming due to organs extending over

many image slices and its accuracy may be
subject to variability across different users.
Al-enabled solution: Use of deep
learning-based image segmentation by an
Al model (red line) trained on 40 patients
[51] of manually segmented regions (blue
line) to predict liver and spleen regions.
Regions shown on PET (left), CT (middle),
and PET/CT (right) modalities (Fig. 10.4).
Benefits: Organ segmentation can be
achieved at significantly shorter times com-
pared to manual organ delineation, for
example, in seconds rather than several min-
utes (>20 min when organs extend to several
image slices). The automated segmentation
process is likely to avoid variability of the
operation across multiple users [59].
Challenges: The accuracy of the results
can vary depending on the complexity of the
anatomy presented. Cases which might dif-
fer significantly from those used to train the

(continued)
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model may lead to unexpected results.
Cohorts of cases, for example, patient groups
with differences in pathophysiology, com-
pared to the training dataset, due to disease,
ethnicity, etc., may lead to biased results
such as those reported in other modalities
[46]. These can be mitigated by carefully
balanced training datasets and careful con-
sideration of the required testing and quality
assurance for the implementation of Al in the
context of the application intended.

10.4 AlinTheranostics

Internal radiation dosimetry is a key aspect to
personalised treatments in nuclear medicine ther-
anostics. Individual dose estimates may contrib-
ute to reducing the risk of radiation-related
toxicities. Whilst Monte Carlo simulations or
other voxel-based dosimetry methods may be the
gold standard for internal dosimetry [53] moving
away from standard geometry pre-calculated
dosimetric estimates of the MIRD (medical inter-
nal radiation dosimetry) model [60], these tech-
niques are very time-consuming and often not
clinically feasible. Furthermore, current clinical
practice with molecular radiotherapy suggests
that only limited imaging is performed as part of
patient treatment planning. This imposes restric-

tions on the ability to provide dosimetric esti-
mates, given the typically insufficient imaging
time points. Therefore, there is a role for machine
learning approaches that go beyond the automa-
tion of organ segmentation discussed in the previ-
ous section, in order to achieve accurate
dosimetric estimates under current clinical limi-
tations [52, 53]. Furthermore, a number of steps
in the dosimetry estimation process can poten-
tially be enhanced by Al methodologies. These
include multi-modality image registration, mul-
tiple time-point image registration, segmentation
of organs and tumours, curve fitting of time-
activity curves, and conversion of time-integrated
activity into absorbed dose. This will lead to
comprehensive patient dose profiling [53, 61].
See Case Study 10.3 and Fig. 10.5 to explore this
Al application further.

In applications of radio-theranostics outside
dosimetry, there have been a number of Al
approaches in focusing on diagnostic ability or
prediction of therapy outcomes; for example, in
thyroid cancer where there is a well-established
use of radionuclides at diagnostic and therapeutic
stages, data from fine-needle aspiration biopsy
samples [62], or imaging [63] together with other
approaches have been used in machine learning
methodologies to improve diagnosis of thyroid
cancer [64].
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B Left Kidney
Size:

Fig. 10.5 Example of organ segmentation for dosimetry
applications in molecular radiotherapy. (a) CT-based seg-
mentation of liver, spleen, and left and right kidney shown
on a transverse CT slice and (b) as 3D rendered volumes.
(c) Segmentations applied onto a radiation dose map for
7TLu-DOTATATE peptide receptor radiotherapy (PRRT)
to derive personalised organ-level radiation dose metrics.
Application implemented on the HERMIA (Hermes

Case Study 10.3: (Fig. 10.5) Deep Learning-
Based Organ Segmentation for Dosimetry in
Molecular Radiotherapy

Clinical challenge: Organ segmentation is
often required as part of internal radiation
dosimetry to define absorbed radiation
doses, for example, as part of molecular
radiotherapy. Various organs should be
defined in order to determine the radio-
pharmaceutical uptake throughout the
course of the therapy, based on SPECT/CT
or PET/CT imaging. Organs may have to

Medical Solutions, Sweden) software platform based on a
CNN deep learning model, substantially expediting the
image analysis process (<1 min on a regular current sys-
tem) compared to the manual segmentation which remains
significantly time-consuming due to its requirement to
define several regions over a number of slices. Images
courtesy Hermes Medical Solutions, Sweden

be defined multiple times, for example,
when a series of images is acquired at vari-
ous time points. As discussed already, this
manual process can be very time-
consuming and subject to inter-operator
variability.

Al-enabled solution: A CNN deep learn-
ing model trained on appropriate datasets
can substantially expedite the volume of
interest (VOI) definition part of the data
analysis process for radiation dosimetry.
As an example, Fig. 10.5 shows Al-based

(continued)
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automated segmentation of organs (liver,
spleen, kidneys) as part of the dosimetry
workup for '7Lu-DOTATATE peptide
receptor radiotherapy (PRRT) to derive
personalised organ-level radiation dose
metrics. Organ VOIs can be applied to the
images or directly to dose maps (Fig. 10.5).

Benefits: Organ segmentation in radia-
tion dosimetry is a particularly time-
consuming process, so, expediting this
stage, from >1 h to <1 min with automated
segmentation, may allow the implementa-
tion of personalised therapy within clini-
cally relevant time frames and without
excessive additional requirements in expert
resources. Furthermore, automated organ
segmentation may contribute to lower vari-
ability in the dosimetric calculations due to
reduced intra-operator variability.

Challenges: As stated, the accuracy of
results can vary depending on the complex-
ity of the anatomy and the presence of ‘out-
liers’ from the datasets used for training the
model. Careful consideration of the appro-
priate testing and on-going quality assur-
ance of Al in the context of its clinical use
is crucial for the successful implementation
of the application.

10.5 Alin Other Nuclear Medicine
Applications

10.5.1 Radiopharmaceutical
Development

The prediction of drug-target interactions can
inform the application of a radiotracer in nuclear
medicine. Usually, the development of a new
tracer is a time-consuming and expensive under-
taking, but Al-based methods are being used to
assist with this process [65-67]. This can be
done, for example, by predicting the binding
affinity of a new radiopharmaceutical for its tar-
get, or by predicting its pharmacokinetics [68].

10.5.2 Workflow Optimisation

One study showed the feasibility of predicting
non-shows in an imaging department by training
a model on 16 data elements from the electronic
medical record system [69]. Al may help in
patient scheduling and resource use [70], as well
as device monitoring to detect errors [71]. It
should be noted that the various Al solutions dis-
cussed above can significantly impact workflow
optimisation. For instance, the use of denoising
Al to reduce acquisition time, or Al solutions that
automate time-consuming tasks, can streamline
different stages of the process, thereby improving
overall workflow efficiency.

10.5.3 Clinical Trials

Al can be used to observe clinical trial pipelines,
including a wide variety of aspects, ranging from
reasons for regulatory approval or refusal, safety
issues, or strategic and financial aspects [72]. The
potential of human error in data collection can be
reduced. Data consistency affects the perfor-
mance of machine learning algorithms, and
therefore hospitals have to be very vigilant to
ensure consistent data collection, curation and
safe storage. Clear protocols are especially help-
ful in this regard. Machine learning has also been
investigated for detecting centre-level irregulari-
ties in randomised controlled trials [73].

10.5.4 Education and Training

Aspects of the use of artificial neural network
(ANN)-based tools were proposed early on in
nuclear medicine and their role in training was
envisaged as support systems in clinical decision-
making. Examples include early applications in
myocardial perfusion SPECT [74], where Al
tools were proposed in clinical decision support
as part of a semi-supervised training framework
for reporting.
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10.5.5 Sustainability

Artificial intelligence offers the potential to
improve the sustainability of nuclear medicine in
its various pillars. Al can promote social sustain-
ability by reducing inequality and improving
patient care. In human terms, it can increase effi-
ciency and reduce practitioner burnout. Economic
sustainability is addressed by optimising
resources and reducing costs. In terms of ecologi-
cal and environmental sustainability, A can help
to reduce waste and the use of energy in the pro-
duction of radiotracers and the production of
images [75]. However, the development of Al
tools should consider actions to reduce the car-
bon footprint, energy consumption, and the use
of computational resources [76].

10.6 Considerations for Al
Implementation

As with other automated techniques, the intro-
duction of machine learning methodologies may
pose challenges. The clinical implementation of
AT algorithms requires, similar to other new tech-
nologies introduced into clinical routine, appro-
priate testing and the knowledge of its limitations
and shortcomings. As examples from Al applica-
tions in nuclear medicine and hybrid imaging
emerge, some areas of potential concern have
been reported in the literature. The potential
introduction of artefacts has been reported in
Al-based image reconstruction, which might
cause false-positive and false-negative results
[77]. Al-based denoising may ‘remove’ lesions
[78], and Al-based lesion segmentation may
wrongly identify healthy tissue as a lesion [79].
Such examples suggest that there may still be a
need for further optimisation and refinement of
the newly developed deep learning methodolo-
gies. Furthermore, Al algorithms trained on one
dataset and performing well on similar data
cohorts may perform worse on a new, unseen
dataset, such as from a different scanner, popula-
tion group, or one that experienced a change in
patient demographics and imaging protocols
[80-82].

Artificial Intelligence for Radi ographers Account:ehost.

Strategies should be developed for rigorous
evaluation of Al algorithms in nuclear medicine
and hybrid imaging. Key best practices were pub-
lished by the Society of Nuclear Medicine and
Molecular Imaging AI Task Force Evaluation
team and are known as the RELAINCE guide-
lines (Recommendations for EvalLuation of Al
for NuClear medicinE) [83]. The authors propose
a framework to evaluate Al algorithms for prom-
ise, technical task-specific efficacy, clinical
decision-making, and post-deployment efficacy.
These include, amongst others, checking that the
ground-truth quality is reasonable, that the train-
ing and testing datasets for the algorithm do not
overlap, that appropriate clinically relevant tasks
are chosen, that the collected clinical data repre-
sents the target population, and that data drift
should be regularly monitored (see Chap. 4 for
more information about post-market
surveillance).

The generalisation of Al requires large
amounts of data, which raises ethical questions
around consent and data anonymisation.
Regulatory pathways are also lagging behind the
developments in the field [84]. Some of these
aspects may particularly affect applications in
nuclear medicine as an area often endemic to lim-
ited access to clinical trial data and a variability
of scanners and protocols. For these reasons,
standardisation of data and protocols and wider
availability of open access data may be important
for future developments, both in innovation and
clinical implementation and testing of AI. More
generic information on Al implementation con-
siderations in medical imaging can also be found
in Chap. 4.

It is also essential to consider the impact on
healthcare professionals, particularly nuclear
medicine technologists and radiographers. One
study [85] showed that the implementation of an
Al denoising algorithm for PET/CT faces barri-
ers such as workflow challenges, professional
resistance and lack of education. Facilitating fac-
tors include clear explanations and support, such
as a ‘local Al champion’. Thinking through pro-
cedures, workload, and resources, together with
appropriate training and support to overcome
these barriers, is crucial to success.
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10.7 Chapter Summary

There is a wide range of Al in nuclear medicine
to support both imaging-related tasks such as
acquisition, analysis and therapeutic planning,
and tasks relating to the optimisation of patient
care processes. However, regulatory pathways
are also lagging behind the developments in the
field and standardisation of data and protocols
and wider availability of open access data may be
important for future developments, both in inno-
vation and clinical implementation and testing of
Al Additionally, considering the needs and con-
cerns of users during the implementation of these
Al solutions is crucial to facilitate their
adoption.
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