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10.1	� Introduction

This chapter provides an overview of AI in nuclear 
medicine and hybrid imaging applications. It 
refers to nuclear medicine with its widest defini-
tion, as the medical specialty that uses radioactive 
tracers (radiopharmaceuticals) to assess bodily 
functions and to diagnose and treat disease. 
Hybrid imaging refers to the combination of any 
imaging modality that uses radioactive tracers, 
along with any other imaging modality, often one 
that focuses on anatomy, for simultaneous or 
sequential imaging such as with computed tomog-
raphy (CT) in positron emission tomography 
(PET)/CT, single photon emission computed 
tomography (SPECT)/CT, or magnetic resonance 

imaging (MRI) in PET/MR. Such hybrid imaging 
modalities have been increasingly used to diag-
nose disease with improved accuracy of anatomi-
cal localisation compared to the typically poorer 
spatial resolution in functional diagnostic findings 
revealed by the radiotracer. The widespread use of 
hybrid imaging has significantly empowered the 
role of nuclear medicine imaging in recent years. 
The co-registration of the images from the two 
modalities offers a unique combination of func-
tional and anatomical information with advan-
tages, such as more accurate localisation of focal 
metabolic abnormality, and the potential to use 
the X-ray imaging data for attenuation correction 
of the nuclear medicine imaging data.

Recent developments in radiochemistry have 
led to radiopharmaceuticals where the same 
molecular target can be labelled with either a pre-
dominately gamma photon emitting isotope to 
drive diagnosis, or a predominately particle emit-
ting isotope such as beta or alpha, to drive a ther-
apeutic intervention aiming at a common 
biological target. This combined diagnostic and 
therapeutic approach is often referred to as ther-
anostics, or specifically for radioisotope applica-
tions as radio-theranostics. Radio-theranostics 
are a driving force in modern nuclear medicine 
and examples include 68Ga-DOTATATE and 
177Lu-DOTATATE as a diagnostic (PET/CT) and 
therapeutic (with post-therapy imaging with 
SPECT/CT) complimentary pair. These are, 
respectively, used for the diagnosis and treatment 
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of neuro-endocrine tumours (NET) [1, 2] and 
68Ga-PSMA and 177Lu-PSMA as a diagnostic 
(PET/CT), and therapeutic (with post-therapy 
imaging with SPECT/CT) complementary pair, 
respectively, for the diagnosis and treatment of 
metastatic castration-resistant prostate cancer 
(mCRPC) [3].

Nuclear medicine and hybrid imaging tech-
niques are affected by common challenges and 
limitations as in other medical imaging modalities, 
such as patient motion, variability of contrast-
defining biological parameters, variability of equip-
ment specifications and imaging protocols, data 
size, data handling, and reviewer subjectivity. The 
use of radiotracers often involves additional bur-
dens related to minimising radiation dose, control of 
image noise (often as a result of limiting injected 
activity and/or shortening acquisition times), the 
biological variability of tracer uptake and tracer 
availability. As with all other healthcare applica-
tions and imaging modalities, various computer 
algorithm methodologies have been employed over 
the years in nuclear medicine to mitigate those lim-
iting factors and optimise radiotracer imaging, diag-
nostic outcomes, resource allocation, and 
personalised patient care. These include statistical 
analysis, factor analysis, compartmental modelling, 
image classification techniques, all of which are 
based on pre-defined assumptions or models, and 
applied to numerous tasks in image segmentation, 
noise reduction, tracer kinetic analysis, and data 
corrections, as discussed further in this chapter.

The emergence of artificial intelligence (AI) 
in nuclear medicine has occurred over the last 50 
years [4] and the integration of AI can be a dis-
ruptive addition to offer novel solutions in image 
acquisition, reconstruction, processing, segmen-
tation, and analysis. AI supports specific tasks, 
rather than entire processes, and its use has 
increased rapidly over the past few years. Here 
we refer to AI as a collective term for machine 
learning techniques with a deep learning approach 
based on convolutional neural networks (CNNs) 
as the forefront of development in the field, as 
outlined in Chaps. 1 and 2. The introduction of AI 
approaches in nuclear medicine and hybrid imag-
ing extends to a wide range of applications with 
potential impact to all stages of the diagnostic 

process and the patient’s journey [5, 6]. These 
may range from detector level for image acquisi-
tion to correction for physics-related processes, 
for example, photon attenuation and scatter, to 
image reconstruction, image processing, and 
analysis including denoising, segmentation, and 
hybrid image fusion. In addition, AI can be 
applied in the construction of models to derive 
diagnosis-specific metrics to aid the clinical 
decision-making and to pursue further optimisa-
tion of the diagnostic or therapeutic process, such 
as automated feature (lesion) detection or predic-
tive internal radiation dosimetry for personalised 
therapy. Finally, AI is transforming nuclear medi-
cine by optimising exam planning, reducing costs 
and resource usage, while also enhancing the 
patient experience and contributing to more sus-
tainable waste and energy management [7, 8].

10.2	� Data Acquisition and Image 
Formation

10.2.1	� Data Acquisition

In data acquisition, the introduction of AI 
approaches at detector level includes the use of 
CNNs for sorting PET data into sinograms for 
large, pixelated crystal arrays to mitigate blurred 
coarse sampling and large parallax errors [9], 
thus potentially improving spatial resolution. In 
the context of PET, the position of a positron 
annihilation event can be determined more pre-
cisely along the line of response if the difference 
in the timing of the detection of the two photons 
is used, a methodology referred to as time-of-
flight or TOF PET. AI tools can be used to predict 
the TOF differences from the detector signals 
themselves, resulting in a 23% increase in timing 
resolution in one study [10]. In PET imaging, 
thin-pixelated crystal designs have been pro-
posed to provide higher spatial resolution images, 
but at the cost of sensitivity. One group proposed 
an approach to enhance PET image resolution 
and noise from scanners with large pixelated 
crystals [9], with potential of achieving compa-
rable image resolution with the larger crystals. 
Whilst these approaches have been proposed by 
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research-led teams, such advances have been rap-
idly explored by scanner manufacturers and may 
be seamlessly incorporated into future system 
designs and clinical scanning routine in the new 
generation of scanners. Another area of impact to 
routine scanning aims at ensuring reproducibility 
and standardisation of the image acquisition pro-
cess, involves the introduction of deep learning 
AI algorithms to apply a specific protocol to both 
disease and patient characteristics and enable the 
scanner to define relevant protocol ranges; an 
example in hybrid imaging being the automated 
landmarking technology for setting up a patient 
scan [11]. AI enhances the optimisation of acqui-
sition protocols by selecting the most appropriate 
settings for the patient, considering factors such 
as positioning, CT dose modulation, and contrast 
product injection [12, 13].

10.2.2	� Spatial Alignment

Hybrid imaging relies on the co-registration of 
two datasets from different imaging modalities. 
Usually, a fixed set of spatial transformation 
parameters is defined during installation of a 
hybrid imaging system such as PET/CT or 
SPECT/CT scanner and periodically checked as 
part of a quality control program. Whilst such co-
registration parameters are expected to show 
minimal variation with time, unless significant 
structural changes are introduced in the system, 
voluntary and involuntary patient motion can 
affect the spatial alignment between images of 
the two modalities [14–16]. Furthermore, images 
from separate imaging sessions may often be 
required to be co-registered to assist with feature 
localisation or assessment of progression. 
Machine learning models can be employed to 
address the image registration problem. This can 
be done by estimating the similarities between 
images, for example, through better intensity cor-
respondences between the two imaging datasets, 
by comparing corresponding anatomy in the two 
datasets, by speeding up the optimisation of 
existing image registration algorithms, or by 
learning how to approximate the transformations 
directly [17].

10.2.3	� Attenuation Correction (AC)

The CT dataset in hybrid imaging lends itself to 
attenuation correction of the photons emitted from 
the PET or SPECT radiotracer as they pass through 
tissues, because an X-ray image is an indication of 
how photons are attenuated through different parts 
of the body. Differences in attenuation properties 
between the energies of SPECT or PET imaging 
and the CT X-ray photons are typically addressed 
by (bi-linear) scaling of these values to match the 
appropriate energy. However, MR images cannot 
directly be used for attenuation correction pur-
poses as these are formed by physical processes 
not related to the electron density in tissues, which 
would reflect the probability of photon interaction 
with the matter. Deep learning tools have success-
fully been used to transform MR images into 
pseudo-CT images that can be used for attenuation 
correction [18–20]. Deep learning trained with 
paired CT and PET/MR images was proposed for 
pseudo-CT synthesis for the generation of attenu-
ation maps based on Dixon MRI [21] or multipa-
rametric MRI consisting of Dixon and 
proton-density–weighted zero echo-time (ZTE) 
MRI [22] and applied to whole-body abdominal or 
pelvic PET/MR with only minimal bias compared 
with the CT-based approach, the current standard 
for attenuation correction.

In fact, current research is being done to investi-
gate whether it is possible to create pseudo-CT 
images from PET or SPECT images alone. This can 
potentially be done by using the structural informa-
tion from the non-attenuation corrected images 
themselves, which in turn could also lead to a radia-
tion dose reduction. Additionally, if the CT compo-
nent of a PET/CT is no longer required, it could be 
speculated that such a new generation of PET scan-
ners could potentially be cheaper to acquire [18]. 
However, it is probably worth noting that the ana-
tomical component in hybrid imaging, such as the 
CT in SPECT/CT and PET/CT, typically serves far 
more than the need for data corrections, such as 
attenuation and scatter correction, and the impact of 
anatomical localisation of the radiopharmaceutical 
uptake often is the dominant requirement for hybrid 
imaging. Therefore, a departure from the current 
hybrid imaging model is rather unlikely.
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While the above focus on the generation of 
attenuation maps describes the distribution of the 
photon attenuation properties across the object, 
such attenuation maps are typically used as part 
of iterative image reconstruction in order to apply 
the actual attenuation correction. As we will see 
in a section below, the step of attenuation map 
generation can be incorporated in the image 
reconstruction step, with an AI approach, which 
can be expanded to include other corrections 
such as image registration. As an example of this 
approach, the use of CNNs trained with whole-
body [18] F-FDG PET/CT data has been pro-
posed to simultaneously reconstruct activity and 
attenuation maps as part of a maximum-likelihood 
image reconstruction scheme [23], see Fig. 10.1.

10.2.4	� Scatter Correction

In the context of PET or SPECT imaging, the 
result of photon interactions with the tissues may 
contribute to either photon attenuation, that is, 
the removal of the photons from the line of site to 
the detector, or to erroneous entries of photons 
into the line of site of the detector in the case of 
photon scattering. Scatter correction methodolo-
gies include indirect measurements or modelling 
of a scatter distribution to estimate the amount of 
scatter in an image. Images can be obtained in 
one or several lower energy windows on the 
energy spectrum to measure the scatter compo-

nent, typically applicable to SPECT where detec-
tor energy resolution is appropriate for this 
approach. Monte Carlo models of the estimated 
scatter distribution are often used in both SPECT 
and PET imaging and tend to be computationally 
intensive and time-consuming.

Deep learning models can be used to obtain 
the total scattering distribution. Such models can 
be trained on Monte Carlo simulated data, which 
makes the training process initially quite time-
consuming [19, 25]; however, they may offer 
processing time savings to the end-user. As with 
attenuation correction, scatter correction can lead 
not only to better quantification of the activity 
distribution but also to an overall higher accuracy 
as a result of an improved image reconstruction. 
This is because the inclusion of all the physical 
processes involved from the photon emission to 
its detection will result to a more accurate system 
matrix, which describes the activity-to-image 
relationship within the image reconstruction 
algorithm [26, 27]. 

10.2.5	� Image Reconstruction

Traditional image reconstruction techniques 
include filtered back-projection (FBP) and itera-
tive reconstruction algorithms. In FBP, the pro-
jection data acquired at each imaging angle are 
back-projected into an empty matrix to obtain 
images of the activity distribution which can be 

Fig. 10.1  Example of a patient scanned on both PET/CT 
and PET/MR. Shown from left to right are a sagittal view 
of the CT image, UTE image, Dixon image with atlas-
based bone structure, and an image from a deep learning 
(DL) model [24] trained using 106 patients to predict a CT 

from T1 and T2 images. The current MR-based attenua-
tion correction (MRAC) images provided from the scan-
ner for comparison are the Dixon with a bone atlas and 
UTE. (Data courtesy Dr. Georgios Krokos, The Clinical 
PET Centre, King’s College London) 
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viewed at transverse, coronal, or sagittal orienta-
tion. Inherently, any noise in the projection data 
is also back-projected, and thus amplified into the 
final image. To reduce this, a filter can be applied 
to each projection before the back-projection 
step. The filter can be modified based on the clin-
ical task, for example, to obtain optimal images 
of the myocardium or the skeleton, with the 
applied filter optimised for the specific clinical 
application.

In iterative reconstruction, the acquired pro-
jections of an object or a patient are compared to 
projections of an estimate of the object or the 

patient. Corrections are applied to the estimate 
until the projections of the estimate closely match 
the acquired projections. Iterative reconstruction 
techniques are more computationally intensive 
than FBP, but also much more versatile, as vari-
ous corrections for physical effects such as pho-
ton attenuation, scatter, or spatial resolution can 
be incorporated into the image reconstruction 
algorithm [26, 27].

Several AI approaches to image reconstruc-
tion for emission tomography have been 
described in literature [28, 29], see also Fig. 10.2. 
It is possible that a deep learning algorithm can 

Fig. 10.2  Example of AI-based image reconstruction in 
PET from FBSEM-Net [28, 33, 34], which offers 
improved image quality at shorter acquisition times. The 
images demonstrate this in reconstructing data equivalent 
to just 2 min of scanning time, with image quality com-

petitive to the reference reconstruction from 30  min of 
data. OSEM: ordered subsets expectation maximisation; 
FBSEM: forward backward splitting expectation 
maximisation
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learn the iterative reconstruction process directly, 
without any intermediate steps describing in 
detail the system matrix. This can lead to vastly 
reduced processing times (potentially 100-fold) 
[18] and reduced image noise [30]. AI technol-
ogy cannot solve the inverse problem, which is 
encountered in image reconstruction, but can 
provide a mapping relationship to solve problems 
in reconstruction. One such example is the trans-
formation between the sinogram (projection 
data) domain and the image domain that can be 
achieved through AI technology [19]. While the 
training of a model that does this is very time-
consuming, the direct AI reconstruction after-
wards is very efficient for the end-user.

It should be noted that, independently of the 
exact approach used, the responsibility of perfor-
mance assessment, quality assurance, and opti-
misation remains with the end-user. Consequently, 
AI approaches in data corrections and image 
reconstruction remain subject to the same rigor-
ous quality control and optimisation as defined 
by the latest standards, regulations, or profes-
sional best practices, though approaches specific 
to AI performance may also be pursued [31, 32].

10.3	� AI in Image Processing 
and Analysis

10.3.1	� Radiation Dose Reduction 
and Signal-to-Noise 
Improvements

Reduction of noise, or improvements in signal to 
noise as part of the imaging optimisation process, 

can lead to improvements in image quality, which 
may be translated to reduction of radiation dose 
or image acquisition times. This has been an area 
of development for AI approaches, for example, 
to generate full-dose PET images from low-dose 
data [35] or to directly filter reconstructed PET 
images [36]. Similar AI approaches for noise 
control have been proposed in SPECT imaging 
[29]. It is possible to train a deep learning algo-
rithm on how to create higher-count images from 
lower-count images. Intuitively, this can be 
explained using two matched datasets of the 
same object  – one with lower counts (and thus 
lower image quality) and one with more counts 
(and thus less noise). Once the deep learning 
algorithm is trained on an adequate number of 
matched datasets, this information can then be 
used to create images of higher quality from 
images of lower quality [37]. In real terms, this 
means that one can either (a) reduce image acqui-
sition time, particularly for patients who are 
unable to tolerate the full scanning process due to 
factors such as pain, claustrophobia, or specific 
populations like paediatric patients, individuals 
with dementia, and others who may struggle with 
the procedure or (b) reduce the injected activity, 
since it is possible to obtain good quality images 
from a lower quality acquisition. This has led to 
extreme dose reductions of up to 99% having 
been reported [38]. This approach is particularly 
valuable for paediatric patients, or when there are 
problems with radiotracer availability, as well as 
in terms of economic and environmental sustain-
ability. See Case Study 10.1 and Fig.  10.3 for 
more information and insight.
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Fig. 10.3  Use of AI denoising in PET imaging. (Images 
courtesy Prof John Olivier Prior & Dr. Daphné Faist, 
Department of Nuclear Medicine and Molecular Imaging, 

Lausanne University Hospital and University of Lausanne, 
Lausanne, Switzerland)

10.3.2	� Image Segmentation—
Automated Lesion Detection

Case Study 10.1
Clinical challenge: Use of F-18 FDG PET/
CT for lung cancer screening. In this con-
text, a reduction in the injected activity is 
essential. This reduction will have a negative 
effect on the quality of the PET image, with 
a lower signal-to-noise ratio (SNR) [39].

AI-enabled solution: To address this 
issue, a 3D convolutional neural network 
(CNN) is employed to enhance the quality 
of FDG PET images through denoising 

[40]. A simulation of the reduction in 
injected activity from 100% to 1% was car-
ried out (Fig. 10.3, left). The CNN was then 
used to reconstruct the degraded images (on 
the right side). The ground truth, framed in 
green, represents the PET acquired with 
100% of the injected activity.

Benefits: In this scenario, the detectabil-
ity of pulmonary nodules is maintained 
while simultaneously reducing the dose 
received by the patient. This approach can 
be applied to other clinical situations where 
a reduction in injected activity is necessary, 
such as in paediatric patients or during 

(continued)
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One area where AI has shown to be extremely 
beneficial is in automated organ or lesion detec-
tion and segmentation. Fast and accurate lesion 
identification may be critical for an appropriate 
intervention [42, 43]. Image segmentation and 
automated definition of regions-of-interest 
(ROIs) to specify a volume or for organ delinea-
tion on a single or hybrid modality may have a 
significant impact in efficiency of applications 
such as the calculation of standardised uptake 
value (SUV), lesion evaluation, or radiation 
dosimetry derived from radionuclide imaging 
and therapy.

Numerous medical image segmentation tools 
have been developed for use on nuclear medicine 
and the functional, anatomical, or combined 
modalities of hybrid images [44–47] usually 
developed around the U-NET architecture [48], 
while V-Net, a volumetric network, uses 3D 
slices as input, unlike U-Net, which uses 2D 
slices. AI approaches previously proposed for 
image segmentation are often based on a CNN 
requiring a large amount of input data to be able 
to create an accurate segmentation model. 
U-NET-based algorithms aim to achieve accurate 
segmentation with smaller training datasets. This 

is particularly applicable to medical images 
where there is often limited access to well-
characterised image datasets, and memory, stor-
age, and processing requirements may be 
demanding. U-NET architecture consists of a 
contracting path, as moving through the CNN 
layers, information is lost via down-sampling. A 
symmetric expanding path mirrors the encoding 
part of the algorithm but replaces convolutions 
with up-convolutions resulting to the output seg-
mentation map. The addition of an up-sampling 
path gives information to the decoding part on 
where in the image a feature is extracted from by 
the use of skip connections [49] allowing for fea-
tures present in the contracting path to be passed 
to the expanding path, which recovers the ini-
tially lost spatial information from down-
sampling [48]. This architecture achieves a higher 
resolution output whilst maintaining an accurate 
and robust outcome. In hybrid imaging, the use 
of both modalities improves segmentation per-
formance by using both anatomical (CT) and 
physiological (PET or SPECT) information [50]. 

Automated approaches to image segmentation 
can have a significant efficiency impact to organ 
and lesion delineation for applications related to 
the extraction of clinical image metrics and indi-
ces, such as SUV calculation [51], tumour char-
acterisation, or the derivation of organ time 
activity curves as in internal radiation dosimetry 
applications in theranostics [52], which could 
considerably contribute towards personalised 
therapy [53]. See further information presented 
in Case Study 10.2 and Fig.  10.4. In radiation 
oncology, some of these AI approaches have 
already been commercialised and clinically 
approved for contouring of organs at risk in 
radiotherapy [54, 55]. See Chap. 11 for more 
information.

Further uses of AI-based automated segmen-
tation and classification techniques include the 
clinical evaluation and automated identification 
of Parkinson’s disease from I123-Ioflupane 
(FP-CIT) or DaTSCAN SPECT imaging where 
machine learning approaches have been used to 
train models based on well-characterised data 
[56–58]. In such cases, authors have pointed out 
the use of training datasets that sufficiently reflect 

radiopharmaceutical shortages. Additionally, 
it is possible to shorten the acquisition time, 
which would also require the use of a denois-
ing algorithm. This is particularly beneficial 
for patients with claustrophobia, those suf-
fering from painful conditions, or children 
who have difficulty staying still.

Challenges: In the case of small nodules 
and very noisy images, AI -elated hallucina-
tions may occur, as the nodule fades into the 
noise and is detected as such. As a result, it 
may disappear from the image reconstructed 
by the denoising AI. In the literature, cases of 
reverse hallucinations have been docu-
mented, with the apparition of false lesions 
in the reconstructed images that were not 
present in the original ground truth [41]. 
Additionally, denoised images tend to appear 
smoother compared to the ground truth.
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Fig. 10.4  Examples of manually defined liver and spleen 
regions on CT (blue line) and by AI model (red line) 
trained on 40 patients [51] to predict those regions. 

Regions shown on PET (left), CT (middle), and PET/CT 
(right) modalities. (Data courtesy Dr. Georgios Krokos, 
The Clinical PET Centre, King’s College London)

Case Study 10.2: (Fig. 10.4) Use of Deep 
Learning-Based Image Segmentation in 
PET/CT

Clinical challenge: Organ segmentation is 
often required in order to report quantita-
tive metrics, such as SUV (standardised 
uptake value) in PET and SPECT to express 
the level of radiopharmaceutical uptake 
normalised for the injected activity and 
patient body weight. In hybrid imaging, 
such as PET/CT and SPECT/CT, the avail-
ability of a spatially aligned anatomical 
modality allows the definition of organs 
with good anatomical accuracy; however, 
this manual process can be very time-
consuming due to organs extending over 

many image slices and its accuracy may be 
subject to variability across different users.

AI-enabled solution: Use of deep 
learning-based image segmentation by an 
AI model (red line) trained on 40 patients 
[51] of manually segmented regions (blue 
line) to predict liver and spleen regions. 
Regions shown on PET (left), CT (middle), 
and PET/CT (right) modalities (Fig. 10.4).

Benefits: Organ segmentation can be 
achieved at significantly shorter times com-
pared to manual organ delineation, for 
example, in seconds rather than several min-
utes (>20 min when organs extend to several 
image slices). The automated segmentation 
process is likely to avoid variability of the 
operation across multiple users [59].

Challenges: The accuracy of the results 
can vary depending on the complexity of the 
anatomy presented. Cases which might dif-
fer significantly from those used to train the 

(continued)

the variability of scanning protocols, such as 
gamma cameras, collimators, and reconstruction 
parameters, to achieve robust and accurate 
outcomes. 
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model may lead to unexpected results. 
Cohorts of cases, for example, patient groups 
with differences in pathophysiology, com-
pared to the training dataset, due to disease, 
ethnicity, etc., may lead to biased results 
such as those reported in other modalities 
[46]. These can be mitigated by carefully 
balanced training datasets and careful con-
sideration of the required testing and quality 
assurance for the implementation of AI in the 
context of the application intended. 

10.4	� AI in Theranostics

Internal radiation dosimetry is a key aspect to 
personalised treatments in nuclear medicine ther-
anostics. Individual dose estimates may contrib-
ute to reducing the risk of radiation-related 
toxicities. Whilst Monte Carlo simulations or 
other voxel-based dosimetry methods may be the 
gold standard for internal dosimetry [53] moving 
away from standard geometry pre-calculated 
dosimetric estimates of the MIRD (medical inter-
nal radiation dosimetry) model [60], these tech-
niques are very time-consuming and often not 
clinically feasible. Furthermore, current clinical 
practice with molecular radiotherapy suggests 
that only limited imaging is performed as part of 
patient treatment planning. This imposes restric-

tions on the ability to provide dosimetric esti-
mates, given the typically insufficient imaging 
time points. Therefore, there is a role for machine 
learning approaches that go beyond the automa-
tion of organ segmentation discussed in the previ-
ous section, in order to achieve accurate 
dosimetric estimates under current clinical limi-
tations [52, 53]. Furthermore, a number of steps 
in the dosimetry estimation process can poten-
tially be enhanced by AI methodologies. These 
include multi-modality image registration, mul-
tiple time-point image registration, segmentation 
of organs and tumours, curve fitting of time-
activity curves, and conversion of time-integrated 
activity into absorbed dose. This will lead to 
comprehensive patient dose profiling [53, 61]. 
See Case Study 10.3 and Fig. 10.5 to explore this 
AI application further.

In applications of radio-theranostics outside 
dosimetry, there have been a number of AI 
approaches in focusing on diagnostic ability or 
prediction of therapy outcomes; for example, in 
thyroid cancer where there is a well-established 
use of radionuclides at diagnostic and therapeutic 
stages, data from fine-needle aspiration biopsy 
samples [62], or imaging [63] together with other 
approaches have been used in machine learning 
methodologies to improve diagnosis of thyroid 
cancer [64].
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Case Study 10.3: (Fig. 10.5) Deep Learning-
Based Organ Segmentation for Dosimetry in 
Molecular Radiotherapy
Clinical challenge: Organ segmentation is 
often required as part of internal radiation 
dosimetry to define absorbed radiation 
doses, for example, as part of molecular 
radiotherapy. Various organs should be 
defined in order to determine the radio-
pharmaceutical uptake throughout the 
course of the therapy, based on SPECT/CT 
or PET/CT imaging. Organs may have to 

a

c

b

Fig. 10.5  Example of organ segmentation for dosimetry 
applications in molecular radiotherapy. (a) CT-based seg-
mentation of liver, spleen, and left and right kidney shown 
on a transverse CT slice and (b) as 3D rendered volumes. 
(c) Segmentations applied onto a radiation dose map for 
177Lu-DOTATATE peptide receptor radiotherapy (PRRT) 
to derive personalised organ-level radiation dose metrics. 
Application implemented on the HERMIA (Hermes 

Medical Solutions, Sweden) software platform based on a 
CNN deep learning model, substantially expediting the 
image analysis process (<1 min on a regular current sys-
tem) compared to the manual segmentation which remains 
significantly time-consuming due to its requirement to 
define several regions over a number of slices. Images 
courtesy Hermes Medical Solutions, Sweden 

be defined multiple times, for example, 
when a series of images is acquired at vari-
ous time points. As discussed already, this 
manual process can be very time-
consuming and subject to inter-operator 
variability.

AI-enabled solution: A CNN deep learn-
ing model trained on appropriate datasets 
can substantially expedite the volume of 
interest (VOI) definition part of the data 
analysis process for radiation dosimetry. 
As an example, Fig. 10.5 shows AI-based 

(continued)
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automated segmentation of organs (liver, 
spleen, kidneys) as part of the dosimetry 
workup for 177Lu-DOTATATE peptide 
receptor radiotherapy (PRRT) to derive 
personalised organ-level radiation dose 
metrics. Organ VOIs can be applied to the 
images or directly to dose maps (Fig. 10.5).

Benefits: Organ segmentation in radia-
tion dosimetry is a particularly time-
consuming process, so, expediting this 
stage, from >1 h to <1 min with automated 
segmentation, may allow the implementa-
tion of personalised therapy within clini-
cally relevant time frames and without 
excessive additional requirements in expert 
resources. Furthermore, automated organ 
segmentation may contribute to lower vari-
ability in the dosimetric calculations due to 
reduced intra-operator variability.

Challenges: As stated, the accuracy of 
results can vary depending on the complex-
ity of the anatomy and the presence of ‘out-
liers’ from the datasets used for training the 
model. Careful consideration of the appro-
priate testing and on-going quality assur-
ance of AI in the context of its clinical use 
is crucial for the successful implementation 
of the application. 

10.5	� AI in Other Nuclear Medicine 
Applications

10.5.1	� Radiopharmaceutical 
Development

The prediction of drug-target interactions can 
inform the application of a radiotracer in nuclear 
medicine. Usually, the development of a new 
tracer is a time-consuming and expensive under-
taking, but AI-based methods are being used to 
assist with this process [65–67]. This can be 
done, for example, by predicting the binding 
affinity of a new radiopharmaceutical for its tar-
get, or by predicting its pharmacokinetics [68].

10.5.2	� Workflow Optimisation

One study showed the feasibility of predicting 
non-shows in an imaging department by training 
a model on 16 data elements from the electronic 
medical record system [69]. AI may help in 
patient scheduling and resource use [70], as well 
as device monitoring to detect errors [71]. It 
should be noted that the various AI solutions dis-
cussed above can significantly impact workflow 
optimisation. For instance, the use of denoising 
AI to reduce acquisition time, or AI solutions that 
automate time-consuming tasks, can streamline 
different stages of the process, thereby improving 
overall workflow efficiency.

10.5.3	� Clinical Trials

AI can be used to observe clinical trial pipelines, 
including a wide variety of aspects, ranging from 
reasons for regulatory approval or refusal, safety 
issues, or strategic and financial aspects [72]. The 
potential of human error in data collection can be 
reduced. Data consistency affects the perfor-
mance of machine learning algorithms, and 
therefore hospitals have to be very vigilant to 
ensure consistent data collection, curation and 
safe storage. Clear protocols are especially help-
ful in this regard. Machine learning has also been 
investigated for detecting centre-level irregulari-
ties in randomised controlled trials [73].

10.5.4	� Education and Training

Aspects of the use of artificial neural network 
(ANN)-based tools were proposed early on in 
nuclear medicine and their role in training was 
envisaged as support systems in clinical decision-
making. Examples include early applications in 
myocardial perfusion SPECT [74], where AI 
tools were proposed in clinical decision support 
as part of a semi-supervised training framework 
for reporting.
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10.5.5	� Sustainability

Artificial intelligence offers the potential to 
improve the sustainability of nuclear medicine in 
its various pillars. AI can promote social sustain-
ability by reducing inequality and improving 
patient care. In human terms, it can increase effi-
ciency and reduce practitioner burnout. Economic 
sustainability is addressed by optimising 
resources and reducing costs. In terms of ecologi-
cal and environmental sustainability, AI can help 
to reduce waste and the use of energy in the pro-
duction of radiotracers and the production of 
images [75]. However, the development of AI 
tools should consider actions to reduce the car-
bon footprint, energy consumption, and the use 
of computational resources [76].

10.6	� Considerations for AI 
Implementation

As with other automated techniques, the intro-
duction of machine learning methodologies may 
pose challenges. The clinical implementation of 
AI algorithms requires, similar to other new tech-
nologies introduced into clinical routine, appro-
priate testing and the knowledge of its limitations 
and shortcomings. As examples from AI applica-
tions in nuclear medicine and hybrid imaging 
emerge, some areas of potential concern have 
been reported in the literature. The potential 
introduction of artefacts has been reported in 
AI-based image reconstruction, which might 
cause false-positive and false-negative results 
[77]. AI-based denoising may ‘remove’ lesions 
[78], and AI-based lesion segmentation may 
wrongly identify healthy tissue as a lesion [79]. 
Such examples suggest that there may still be a 
need for further optimisation and refinement of 
the newly developed deep learning methodolo-
gies. Furthermore, AI algorithms trained on one 
dataset and performing well on similar data 
cohorts may perform worse on a new, unseen 
dataset, such as from a different scanner, popula-
tion group, or one that experienced a change in 
patient demographics and imaging protocols 
[80–82].

Strategies should be developed for rigorous 
evaluation of AI algorithms in nuclear medicine 
and hybrid imaging. Key best practices were pub-
lished by the Society of Nuclear Medicine and 
Molecular Imaging AI Task Force Evaluation 
team and are known as the RELAINCE guide-
lines (Recommendations for EvaLuation of AI 
for NuClear medicinE) [83]. The authors propose 
a framework to evaluate AI algorithms for prom-
ise, technical task-specific efficacy, clinical 
decision-making, and post-deployment efficacy. 
These include, amongst others, checking that the 
ground-truth quality is reasonable, that the train-
ing and testing datasets for the algorithm do not 
overlap, that appropriate clinically relevant tasks 
are chosen, that the collected clinical data repre-
sents the target population, and that data drift 
should be regularly monitored (see Chap. 4 for 
more information about post-market 
surveillance).

The generalisation of AI requires large 
amounts of data, which raises ethical questions 
around consent and data anonymisation. 
Regulatory pathways are also lagging behind the 
developments in the field [84]. Some of these 
aspects may particularly affect applications in 
nuclear medicine as an area often endemic to lim-
ited access to clinical trial data and a variability 
of scanners and protocols. For these reasons, 
standardisation of data and protocols and wider 
availability of open access data may be important 
for future developments, both in innovation and 
clinical implementation and testing of AI. More 
generic information on AI implementation con-
siderations in medical imaging can also be found 
in Chap. 4.

It is also essential to consider the impact on 
healthcare professionals, particularly nuclear 
medicine technologists and radiographers. One 
study [85] showed that the implementation of an 
AI denoising algorithm for PET/CT faces barri-
ers such as workflow challenges, professional 
resistance and lack of education. Facilitating fac-
tors include clear explanations and support, such 
as a ‘local AI champion’. Thinking through pro-
cedures, workload, and resources, together with 
appropriate training and support to overcome 
these barriers, is crucial to success.

10  AI Applications in Nuclear Medicine and Hybrid Imaging
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10.7	� Chapter Summary

There is a wide range of AI in nuclear medicine 
to support both imaging-related tasks such as 
acquisition, analysis and therapeutic planning, 
and tasks relating to the optimisation of patient 
care processes. However, regulatory pathways 
are also lagging behind the developments in the 
field and standardisation of data and protocols 
and wider availability of open access data may be 
important for future developments, both in inno-
vation and clinical implementation and testing of 
AI. Additionally, considering the needs and con-
cerns of users during the implementation of these 
AI solutions is crucial to facilitate their 
adoption.
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