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Abstract—Supply Chains have to be designed and managed 
holding simultaneously into account many different performance 
measures. Moreover, modern Supply Chains have to ensure 
satisfying performances despite an increasing degree of complexity 
and market uncertainty as well as be capable to limit the negative 
impacts of disruptive events. A multi-criteria robustness evaluation 
framework is proposed to deal with these challenges. The proposed 
approach allows to separately assessing the impact of various 
performance measures specifying tailor loss functions, being able 
to deal with non-linearity and asymmetric impacts. Moreover, an 
original Robustness Index is defined, in order to provide reliable 
estimations even in the presence of outliers and integrating 
information about kurtosis and skewness in the robustness 
estimation. The proposed framework is applied to a fictive 
industrial case to demonstrate its utilization and show the kind of 
analysis that can be done on the basis of the obtained results. The 
approach, simply requiring the definition of some parameters and 
the description of the characteristics of the Supply Chain 
configurations to be evaluated, is meant to be easily used by 
practitioners. 

Keywords—multi-criteria analysis; robustness; loss-function; 
simulation; Supply Chain 

I.  INTRODUCTION 

Supply Chain (SC) design and management is becoming 
increasingly complex due to, on the one hand, the proliferation 
of Key Performance Indicators (KPIs) required for dealing with 
economic, social and environmental performances to be 
satisfied, and, on the other hand, to the shift towards a more 
comprehensive and long term oriented assessment framework. 
This implies the development of comprehensive evaluation 
frameworks covering multivariate performance measurement 
and allowing to perform various types of analysis, integrating 
scenario analysis and stochastic elements. In fact, efficiency is 
not anymore the only aspect to consider because concepts like 
risk management, resilience and robustness are becoming more 
and more important. Thus, it is necessary evaluate all the 
aspects of the market environment uncertainty and variability, 
going from the inner stochastic nature of customer demand to 
the uneven and occasional occurrence of major disruptions. 
This results into the development and application of various 
concepts such as robustness, flexibility and resilience [1, 2, 3]. 
The different definitions of resilience have a common element. 

Enterprise resilience is a response to expected and unforeseen 
changes, disruptive events and disturbances and it is the ability 
for a company to adapt, respond and recover from these 
changes [4]. Flexibility refers to the capacity of a system to 
adapt itself to a changing environment [3, 5]. Robustness is the 
property of a given system to accommodate for factors 
uncertainty and variability without significant 
degradation/deviation from the initial desired state [6, 7, 8, 9, 
10, 11, 12, 13, 14, 15, 16]. The main difference among these 
concepts is that resilience and flexibility imply that the system 
configuration is not fixed and can evolve in function of the 
changing requirements, while robustness assumes a given 
configuration.  

The aim of this work is providing the tools supporting the 
decision makers during the choice of a robust SC configuration 
that can ensure satisfying performance in many different 
market environment scenarios. For this reason, a new 
robustness index is proposed. First of all, a multi-criteria 
performance measurement system is developed in order to go 
further the typical limitations of cost based performance 
evaluation [17]. This implies to specify for each KPI a 
mathematical expression linking its value with its contribution 
to the overall suitability of a given SC. This is done using 
specifically developed asymmetric loss (respectively utility) 
functions in order to easily handle the inner non linearity of SC 
behaviour. The elaborated overall loss function is used to 
estimate the SC performance in each of the potential scenarios 
and constitutes the main input for the calculation of the 
proposed robustness index. 

The application of the proposed robustness evaluation 
framework is illustrated analyzing the behavior of a fictive 
production system, which behavior is assessed through a 
discrete event simulation model in order to appropriately take 
into account the stochastic nature of SC processes. The 
robustness is evaluated over a long time horizon focusing on 
the evolution of various customer demand scenarios, which 
result from the definition of various sales channels strategies. 
For a comprehensive description of the demand scenarios’ 
characteristics see [18]. In the next section are described the 
selected KPIs and the suitable Loss Functions (LFs). In section 
3 are defined the Robustness Index (RI) and the robustness 
evaluation framework. In section 4 are summarized the results 
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obtained applying the proposed approach to a fictive case, in 
order to determine the most suitable SC configuration among 
15 alternatives considering the trade-off between efficiency and 
robustness. Finally, section 5 provides the conclusions and 
outlines future research perspectives. 

II. KPIS AND LOSS FUNCTION IDENTIFICATION 

The proposed robustness evaluation framework can be 
applied to any number of quantitative KPIs. In this work for 
simplicity the focus is restrained to some economic KPIs 
dealing with well-known production management issues. An 
extension to social and environmental KPIs can be found in 
[19]. The use of quantitative KPIs avoids the problems related 
to the use of qualitative indexes. In fact, the latter implies the 
recourse to subjective evaluations, which can be difficult to 
establish and for their inner nature can be questionable, raising 
validity issues for the definition of suitable LFs and thus for the 
entire framework. 

The considered aspects are customer satisfaction, inventory 
level and equipment utilization. These widely used KPIs have 
been selected in order to facilitate the comparison among 
various industrial sectors and for because of for them are 
available widely known benchmarks, which existence 
simplifies the identification and parameterization of the loss 
functions. The KPIs are used for measuring the performance 
achieved by a given SC configuration for each demand 
scenario. The LFs are computed on the basis of the deviation of 
the actual value of a KPI from a Reference Value, which 
represents a satisfying performance level.   

A. Customer satisfaction 

The Service Level (SL) describes the capacity of a system 
to deliver the required product/services to its customer within a 
previously established lead time. It is thus a measure of 
customer responsiveness and it constitutes one of the drivers of 
customer satisfaction. Various SL definitions are typically 
employed in practice. In this work the SL is defined as the 
percentage of orders that are fulfilled on-time. On-time 
fulfillment means the instantaneous availability of on-hand 
inventory in a Make-To-Stock (MTS) environment, while in a 
Make-To-Order (MTO) or in an Assembly-To-Order (ATO) 
context implies to deliver the goods/services to the customer 
within a pre-specified lead time.  

NO

NO
SL OT=

 
(1) 

where NOOT Number of orders fulfilled on-time 

 NO Number of customer received orders 

Usually the impact of SL on customer satisfaction is 
characterised by a nonlinear relationship [20, 21, 22, 23]. Thus, 
the suitable LF has to be nonlinear and also asymmetric. In the 
case of an asymmetric LF both the sign and the magnitude of 
the SL deviation from the satisfying SL reference value (SLRV) 
influence the resulting loss value. The use of asymmetric LFs, 
for instance Linex and BLinex, has been already recommended 
while evaluating aspects related to the interaction with 
customers and people in general [21, 24, 25, 26, 27, 28] 

A new LF, called the Satisfaction Bounded Linex 
(SBLinex), is proposed in order to overcome the BLinex 
Taguchi “nominal the best” approach, which it is not suitable 
for SL analysis. The parameterisation of the SBLinex LF is 
influenced by the necessity to apply an asymmetric approach, 
where SL degradations are penalised more than are rewarded 
equivalent SL enhancements. The value of the SBLinex LF is 
computed according to (2). 
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where sign(SL-SLRV) 

 

= -1  for SL < SLt 

 = 0  for SL = SLt 

 = 1  for SL > SLt 

 λ>0 bounding parameter (the loss is 
bounded between 0 and 1/ λ 

 b>0 asymmetry parameter 

 a<0 scale parameter (curve flatness) 
and specifying which SL 
deviations are more penalised 

Fig. 1 and Fig. 2 allow to gain an understanding of the 
influence of SBLinex parameters on the resulting loss values 
and its ability to represent correctly the impact of SL 
degradation. 
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Fig. 1. SBLinex (λ=0.2, b=1 and SLRV=90%) 

-5

-4

-3

-2

-1

0

1

2

3

4

5

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Service Level (%)

L
o

ss

b=0.1 b=0.5 b=1 b=5 b=10
 

Fig. 2. SBLinex (λ=0.2, a=-0.4 and SLRV=90%) 



B. Inventory Level 

Inventory related measures are typically applied for 
production system performance analysis [29]. The Inventory 
Turnover Ratio (ITR) is selected as inventory related KPI in 
order to ensure an easy comparison of the results obtained by 
different production systems as well as to facilitate the 
establishment of reliable inventory level thresholds. ITR is a 
suitable inventory KPI because it establishes a relationship 
between the inventory level and the demand level (3). The 
availability of ITR data facilitates the estimation of industrial 
sector benchmarks that can be used as first approximation of 
the inventory level reference value required for the loss 
calculation. 

IL

Demand
ITR =

 
(3) 

where Demand Overall demand over a specific time 
horizon (usually one year) 

 IL Average Inventory Level 

An asymmetric LF is implemented for measuring the loss 
induced by the deviation of the ITR from the established 
reference value. An increase of the ITR is beneficial because it 
is linked to an inventory level decrease and results into a 
negative loss value. On the other hand, an ITR decrease is 
associated with a positive loss, because it implies an inventory 
level increase with the relative additional costs. Thus, in this 
case a “the greater the better” Taguchi approach is followed. 
Making the hypothesis that the modification of ITR values only 
influences the amount of inventory carrying costs, it is possible 
applying the asymmetric linear based LF, called LIN-LIN [24, 
26, 30, 31, 32, 33] The broad applicability of LIN-LIN LF is 
further confirmed by the fact that this LF can be used to 
approximate other asymmetric LF [33]. The proposed LIN-LIN 
LF (4) specifies the loss value on the basis of the deviation 
from a benchmark, called ITR reference value (ITRRV). The 
latter can be fixed looking at the performance of the top class 
companies belonging to the same industrial sector or, if the 
focus is mainly the company under analysis, it can be 
elaborated starting from the current company performance in 
terms of inventory management. 
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where d, e >0  

d > e 

the loss magnitude is greater for ITR 
degradations than for ITR enhancements 

In the framework of the asymmetric LIN-LIN LF the 
choice of penalising more stock increase than rewarding stock 
reduction is justified by the fact that an ITR increase, thus a 
stock decrease, directly implies only a decrease of the financial 
component of the inventory carrying costs. On the other hand, 
the decrease of the ITR, which results into a stock increase, 
provokes an increase of all the variable components of 
inventory carrying costs.  

C. Resource utilisation 

A straightforward measure of resource utilisation is the 
workload, calculated as “the ratio of the direct time charged for 
production activities (setup and processing time) to the clock 
time scheduled to be available for a given period of time” [29]. 
However, the information that can be gathered from workload 
analysis provides a too aggregated vision of the resource 
utilisation. For this reason, this work proposes another KPI 
related to resource utilisation, which clearly assesses the impact 
of setup time and processing time. The Setup Time Percentage 
(SUT%), calculated according to (5), can be correlated with the 
total production cost. Furthermore, given a fixed production 
system infrastructure and a specified constant production 
volume, measuring the SUT% can allow to monitor and to 
explain the workload variations induced by the use of different 
production planning and control strategies. 
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(5) 

where n number of fulfilled order  

 SUTi Setup time for order i  

 OPTi Order Processing Time for order i 

 UPT Unitary Processing Time ( constant) 

 OQi Order Quantity for order i (the pattern of 
the OQ is strongly dependent from 
manufacturing constraints and the 
chosen PP&C strategy) 

 

A simple linear loss function (LIN), defined in (6), is used 
to quantify the impact of the deviations from the SUT% 
reference value (SUT%RV). The use of a linear loss function to 
approximate the influence of SUT% is derived from a “cost-
based” estimation. The SUT%RV mainly reflects the 
specificities of the production system under analysis and can 
thus be fixed equal to the currently achieved SUT%, unless the 
performance of the production system is considered not 
satisfying.      

)%%(%)( RVLIN SUTSUTfSUTL −⋅=  (6) 

where f>0 coefficient controlling the loss 
magnitude  

The coefficient f has to be defined taking into account the 
criticality and the cost associated to the production resources. 
The value of f is also influenced by the workload level, if the 
production resource utilisation is close to saturation the 
negative impact of an increased SUT% is magnified, because it 
can increase the queuing time. 

D. Loss discounting factor 

In this work each scenario is evaluated over a time horizon 
spanning various years. In order to give a greater importance to 
the performance achieved in the periods closer to the present, 



the application of a discounting factor to the loss values is 
proposed (7). The use of discounting factor is common practice 
in multi-period cost evaluation and has been already introduced 
in robustness analysis [34].  
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where Hor number of periods included in the 
considered time horizon 

 Lossj(i,t) loss value of KPI j for scenario i and 
time period t 

 Lossj(i) average loss value of KPI j for scenario 
i considering the entire time horizon 
(Hor) 

  j={SL, ITR, SUT%} 

 r discounting factor 

The choice of a suitable value of r has to be done on the 
basis of the decision maker risk aversion. 

E. Overall loss 

The losses, calculated on the basis of the values actually 
achieved by the various KPIs and of the established reference 
values, provide the foundation for developing a robustness 
evaluation tool, which aims at supporting the decision makers 
for the identification of the critical SC configuration 
parameters. Due to the concurrent recourse to various KPIs, 
two alternatives are available for the performance as well as for 
the robustness evaluation.  

The first alternative relies upon the definition of definition 
of a vector of losses, which allows to manage simultaneously 
the various KPIs and to keep them distinct. These vectors can 
be compared in order to obtain a Pareto frontier [34, 35], 
constituted by the non-dominated solutions, which is 
represented by a hyper plan of cardinality equivalent to the 
number of implemented KPIs. This approach allows to 
compare the scenarios preserving their diversity without being 
obliged to establish from the beginning trade-off among them. 
However, this approach is extremely time consuming and due 
to the difficulty to discriminate many non-dominated solutions 
especially in high dimensional space and to the highly 
subjectivity of this phase, the quality of the final ranking can be 
unsatisfying when dealing with real-world applications.  

The second alternative transforms the multi-criteria KPI 
vector into a unique mono-criteria index establishing trade-off 
among the various KPIs usually relying upon a linear additive 
model, which results in a weighted sum of the various losses 
[13, 36, 37, 38]. This approach allows a fast calculation and 
can be simply integrated in many tools. This approach requires 
the explicit specification of the decision maker preferences and 
the establishment of trade-offs among the various KPIs, which 
are then translated into weighting parameters. The recourse to a 
unique index, implies the risk of losing information about the 
solution diversity, thus about the contribution of each loss for a 
specific case. The strong dependency of the final ranking by 
the weighting results can raise some concerns about the 

validity of the weights’ estimation, the latter has to rely upon 
formalised and structured approaches in order to increase the 
confidence about the obtained results. For instance, the 
Analytical Hierarchical Process (AHP), which is based on 
pairwise comparison among the KPIs, is an interesting tool for 
weight estimation in the framework of robustness analysis [13, 
36] and multi-criteria decision making [37, 39].  

In this work, in order to simplify the decision maker task 
and to automate as much as possible the various steps of the 
robustness evaluation framework, the second approach is 
chosen. Thus a unique index, called Overall Loss (OL), is 
calculated applying a linear additive model as shown in (8). 
The relative importance of the various performances is 
established by the decision maker defining some weighting 
coefficients (wj). The weighting coefficients also play a role in 
scaling the contributions of losses defined over various range 
of values in order to assess that all KPIs are effectively taken 
into account in the performance evaluation. 
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(8) 

where OL(i) overall loss for scenario i considering 
the entire time horizon 

 J number of KPIs included in the multi-
criteria performance measurement  

In the application case described in section IV, in order to 
deal with three KPIs the weighting factors defined in Table II 
have been applied. 

III.  ROBUSTNESS DEFINITION AND ASSESSMENT 

The interest for SC robustness is continuously increasing as 
proven by the results contained in [3], which show how the 
number of publications dealing with the subject is significantly 
increasing from 2001. However, an unambiguous robustness 
definition does not exist yet. Furthermore, some of these 
definitions are at least partially overlapping with other 
concepts, being a merger of robustness, flexibility and 
resilience concepts [2, 3, 5, 13].  

A first classification concerning robustness definitions in 
the context of production management focuses on the way in 
which the insensitivity of a solution with respect to input 
variability is estimated. Quality robustness is analysed focusing 
on the objective function space and thus estimating 
performance variability. A given (fixed) SC configuration is 
considered as “quality robust” if the performance remains at 
satisfying levels while the company environment is varying. 
Quality robustness is widely applied in production 
management [3, 5, 6, 7, 9, 11, 12, 15, 40, 41] and in other 
contexts [10, 14, 42]. On the other hand, solution robustness is 
estimated analysing the solution space. A SC is “solution 
robust” if the configurations achieving the best performance for 



the various market environments scenarios to be considered are 
similar to the baseline configuration. Thus, solution robustness 
is closely related to flexibility.  

In the following the analysis will be concentrated on quality 
robustness. Quality robustness is usually estimated focusing on 
input data that are external to the SC configuration design and 
mainly beyond the control of the SC shareholders. As in this 
work the company environmental factor that is most commonly 
used in robustness estimation is customer demand [6, 7, 11, 
15]. However, internal and external sources of uncertainty can 
be simultaneously considered in robustness evaluation [41, 43]. 

Many robustness definitions exist, these represent different 
interpretations of the robustness concept also influenced by the 
considered specific risk attitude. Moreover, many robustness 
evaluation frameworks and equations are proposed. The latter 
differentiate themselves also with respect to the quantity and 
typology of data required for robustness estimation. The 
robustness definitions (absolute, deviation, relative) proposed 
in [44] are very conservative, thus reflect a strong risk 
aversion, because they focus robustness calculation on the 
worst case performance. The main advantage of the worst case 
based robustness measures is that they do not require an 
explicit computation of the probability of existence of the 
various market environment scenarios. However, not 
considering the scenario probability of existence is also one of 
their main drawbacks, because the robustness estimation can be 
based on a scenario having a little probability of existence and 
thus not reflecting the overall market environment in which the 
SC evolves.  

In order to take into account the information stemming 
from all potential market environment scenarios other types of 
robustness measure have been introduced. For instance, the 
“compromise robustness” proposed in [13] implies that “a 
robust solution is one that is satisfactory to the decision maker 
in as many scenarios as possible without being too 
unsatisfactory to the decision maker in any single scenario” 
[13]. This definition takes into account all the scenarios, even if 
their probability of existence is not required, because the idea is 
having a production system showing satisfying performance in 
as many scenarios as possible without being too unsatisfactory 
in any scenario. Some robustness definitions require that the 
performance is within an acceptability zone, thus within a 
range of deviation from optimality that is considered 
acceptable by the decision maker, for all scenarios or the great 
majority of scenarios [9, 10].  

The availability of the probability of occurrence of all 
scenarios, or in alternative an assumption about this probability 
distribution, allows to apply robustness probabilistic 
approaches [43] or approaches based on weighted average, 
where the importance of the performance degradation obtained 
in a specific scenario is weighted according to its likelihood of 
occurrence [7, 11, 12, 16]. 

A. Robustness index definition 

The characteristics of the robustness index strongly depend 
on the objectives of the established robustness evaluation 
framework and on the nature and quantity of data that can be 
gathered. In this research context the objective is determining 

the quality robustness of a given SC configuration, which is 
supposed to remain unchanged, facing significant potential 
market environment modifications due to the disruptive 
modification of sales channel strategy (outer robustness). For 
each scenario is estimated the demand evolution covering 10 
years as well as the probability of occurrence, see the details in 
[45].  

The availability of the probability of occurrence of each 
scenario allows the use of a wide range of robustness measures. 
In such a context an approach based on weighted average 
measures provides a better representation about the overall 
performance of a solution. However, the risk of 
underestimating the negative effect of an unacceptable poor 
performance for some scenarios has to be minimized, 
especially when dealing with outer robustness.  

A new Robustness Index (RI) is proposed (9) in order to 
combine the strengths of the previous robustness definition 
typologies.  

( ) ( ) ( ) ( )%5%95%5%75%5%50%5%25

1

OLOLOLOLOLOLOLOL
RI

−⋅+−⋅+−⋅+−⋅
=

δγβα

 
(9) 

where OLi% OL for i percentile of cumulated 
scenario probability of occurrence 

 ( )%% ij OLOL −  OL difference between two 
cumulated probability percentile   

 α, β, γ, δ ≥0 

α+β+γ+δ=1 

weights modulating the impact of 
the four OL differences on the RI 

 α ≤ β ≤ γ ≤ δ  Weights for “big losses” are 
greater (risk adverse decisions) 

Fig. 3 illustrates how starting from the OL values achieved 
by a given SC configuration, in the various scenarios, is 
possible computing the RI and thus specifying its relative 
robustness. The probability of occurrence of the various 
scenarios can be not uniform. First of all, the OL are ordered 
following an increasing order. This allows to determine for 
which OL values the cumulated scenario probability of 
occurrence reach some specific percentile. Five percentile 
values (5%, 25%, 50, 75%, 95%) have been chosen in order to 
provide information about the OL cumulated distribution 
function.  

Considering various percentiles allows to better represent 
the entire probability distribution pattern, capturing the 
influence of the third and fourth moments of the probability 
distribution (skewness and kurtosis). The proposed RI is 
calculated discarding the loss values below OL5% and above 
OL95%. In this way, the bias due to potential outlier scenarios 
characterised by extreme loss values is limited. This is done 
making the hypothesis that these scenarios represent only a 
negligible cumulated probability of occurrence.  

All the differences are measured with respect to OL5%, the 
focus on the best performance is quite uncommon in robustness 
literature, where often the reference points are the worst case 
performance or the boundaries of the acceptable zone. 
However, in this way the RI definition well represent the 
objective of ensuring the closeness to the best performance. 
The RI equation also facilitates the tailoring, on the basis of 
decision maker risk aversion, of the weighting coefficients (α, 



β, γ, δ) involved in its estimation. The value of weighting these 
coefficients applied in the specific case of section IV are shown 
in Table 2. The ranking of SC configuration on the basis of the 
proposed RI proves to be quite robust against the choice of the 
weighting parameters. The choice of the weighting coefficients 
do not alter significantly the robustness ranking of the various 
SC, allowing to identify the most robust and the least robust 
configurations. In practice, the choice of a suboptimal 
weighting mainly shrink the differences among the RI values 
[45]. 

 
Fig. 3. Illustrative application of the proposed Robustness Index 

It must be noticed that RI measures only the variability of 
the performances. The evaluation of the SC configuration 
overall suitability requires the use of the proposed RI in 
association with another index, specifying the expected 
performance. The Average Overall Loss (AOL) is used for this 
purpose (10). The OL weighted average is preferred to the OL 
median, because the former takes into account all losses and is 
better suited for dealing with potentially skewed probability 
distributions.  
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where NSCEN overall number of scenarios  
 p(i) probability of existence scenario i 
 OL(i) Overall Loss related to scenario i 
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The proposed RI is characterized by some interesting features: 

• correctly accounting for the impact of performance 
variability, skewness and kurtosis. Basing the RI 
estimation on the OL corresponding to five 
meaningful percentiles allows to capture in a simple 
and computationally parsimonious manner the shape 
of the cumulated probability distribution. 

• efficacy dealing with potential outlier scenarios. The 
RI computation, is based on the OL comprised 
between the 5% and the 95% percentile. The 
considered subset of OL does not contain the most 
critical and least critical values, decreasing the 
influence of potential outliers with not significant 
probability of occurrence. 

• the solution ranking based on robustness values is 
independent from the established values for reference 
values and other parameters. Using RI is always 
possible discriminating the most robust SC 
configurations from the non-robust ones.  

IV.  APPLICATION OF THE ROBUSTNESS EVALUATION 

FRAMEWORK TO A SPECIFIC CASE  

In this section, all the steps of the proposed robustness 
evaluation framework are applied to numerical data in order to 
clarify the followed approach and the kind of analysis that can 
be undertaken. 28 demand scenarios are generated to estimate 
the performance of 15 SC configurations. In this application, 
the number of scenarios and SC configuration is intentionally 
kept low in order to propose an example of manageable size.A 
discrete event simulation model is applied to estimate the 
behaviour of the various configurations accurately taking into 
account the stochastic nature of the market demand and of the 
production processes. The detailed description of the various 
demand scenarios and SC configurations can be found in [45].  

The 15 SC configurations are obtained modifying some 
inventory management parameters of the original SC 
configuration. For doing that Central Composite Design (CCD) 
is selected, it is a well-known Design Of Experiments already 
used in robustness evaluation [41]. The value of the parameters 
of the original SC configuration have been respectively 
decreased and increased of 20%. A modification of 20% is 
chosen because it is expected that can produce significant 
performance modifications without completely changing the 
SC behavior. CCD has also been chosen because it allows to 
estimate quadratic Response Surface Models (RSMs). The 
application of RSM or other meta-modelling techniques, in 
order to gain qualitative and quantitative insight about the 
relationship linking RI and AOL values to those of the SC 
parameters, is the natural following step of robustness 
assessment. The recourse to meta-modelling techniques is 
particularly suitable for real industrial applications, where the 
high number of involved factors makes almost impossible to 
extract valuable information from the direct analysis of 
simulation results.  

In order to apply the robustness evaluation approach, have 
to be specified the parameters related to the specific LFs and 
the weighting factors for OL and RI, which are provided in 
table I and II. The weighting coefficients and the discounting 
factor, which is fixed to r=0.1, are specified according to the 
decision maker attitude and risk aversion and can be directly 
specified by the user or inferred using decision support tools 
like AHP.  
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TABLE I.  LF PARAMETERS FOR SL, ITR AND SUT% 

KPI  SL  ITR  SUT% 
Reference Value 90% 70 42% 

Loss Function SBLINEX LIN-LIN LIN 

LF Parameters a b λ d e f 

Assigned values -0.5 10 0.01 0.25 0.125 0.5 

TABLE II.    WEIGHTING FACTORS FOR OL AND RI ESTIMATION 

Overall Loss weighting 
coefficients 

Robustness Index weighting 
coefficient 

wSL wITR wSU α β γ δ 

0.4 0.3 0.3 0.1 0.2 0.3 0.4 

 

As already specified, the values of these parameters have 
only a relative influence on the obtained results and thus can be 
chosen also making reference to the literature or applying 
simple decision making rules. 

The use of RI and AOL for ranking various production 
system configurations is investigated. In this way, the benefits 
of the proposed robustness evaluation framework can be easily 
assessed. As can be remarked in Fig. 4 the behaviour of the 
various SC configurations differs significantly. In particular, 
the following configurations show completely unsatisfying 
values of AOL: 2, 3, 4, 5, 10 and 14. This is due to a drastic 
degradation of SL, which results into high values of loss due to 
the use of a SBLinex loss function. On the other hand, another 
group of configurations (1, 6, 7, 8, 11 and 12) show satisfying 
results both in terms of AOL and RI (Fig. 5). These 
configurations achieve in comparison with the reference SC 
(configuration 15) better results both in terms of AOL and RI. 
This simple application demonstrates that the proposed 
robustness evaluation framework allows to determine the SC 
critical factors and to support the choice of a suitable 
configuration. It is interesting noticing that the SC 
configurations achieving the best results are not necessarily 
similar. This suggests that the interaction among the various 
parameters plays an important role and thus confirms the 
complex and extreme interrelated nature of the production 
system. 
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Fig. 4. AOL and RI characterisation of the 15 production system 
configurations 
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Fig. 5. AOL and RI characterisation for the most promising production 
system configurations 

 

In this illustrative case, RSM is applied in order to estimate 
the influence of the considered design factors. On the basis of 
the available data, the parameters of various models can be 
estimated: linear, linear with interactions, pure quadratic, and 
full quadratic. The possibility to test various additive models 
allows to better discriminate the importance of the various 
design factors. The estimated parameter of two full quadratic 
models, those using a complete second order polynomial 
regression model, one for RI and the other for AOL, are 
provided in order to determine the impact of the various design 
factors on each performance measure (Table III). It can be 
remarked as for both RI and AOL the only statistically 
significant factor is b1, which describes the constituted by the 
inventory management parameters for a specific subassembly, 
namely subassembly A. Due to the arbitrary selection of the 
parameters and of the levels to be included in the DOE for this 
application, as well as to the fact that not all the parameters 
have been tested, the regression analysis has to be interpreted 
circumspectly and the obtained indications have to be further 
validated with more comprehensive studies. Nevertheless, the 
indications about the statistical significance of b1 and the sign 
of this regression coefficient seem confirmed looking at the 
various SC configurations. Considering RI the four most 
satisfying configurations (number 11, 1, 8 and 12) are 
characterised by the lowest level of the inventory management 
parameter of subassembly A, as suggested in the RSM model 
by the negative value of b1 coefficient. The positive value of 
b1 coefficient for AOL model implies that the most satisfying 
production configurations are also characterised by the lowest 
level of the inventory management parameter of subassembly 
A; this is the case for the four most satisfying configuration in 
terms of AOL (number 7, 11, 1, 8).   

Better regression results can be obtained analyzing more 
SC configuration parameters as well as applying variable 
transformation. However, in this phase these refinements are 
not considered necessary because the primary objective of this 
application is simply providing an explanation of the use of 
meta-modelling techniques for analyisng the data concerning 
RI and AOL and not furnishing the best parameter estimations 
to be subsequently used in a real industrial application. 



V. CONCLUSIONS 

The proposed framework covers the robustness evaluation 
process, starting from the choice of a multi-criteria 
performance metric to arrive to the definition of a new 
robustness index and to the development of the tools required 
for its computation. The simultaneous use of various loss 
functions to describe the impact of KPIs deviations from 
targets as well as the recourse to asymmetric loss functions 
constitute a refinement of the traditional performance 

estimation method and allows to better take into account the 
trade-offs among the various KPIs also during the robustness 
estimation. 

The defined RI has the advantage of fully exploiting the 
information about the probability of occurrence of the various 
scenarios, when they are available, and thus to integrate in the 
robustness calculation a reach description of the scenario 
distribution pattern.  

 

TABLE III.  PARAMETER ESTIMATION OF RSM FULL QUADRATIC MODELS FOR RI AND AOL 

 
RI AOL 

 
coef se tstat pval coef se tstat pval 

b0 0.1153 0.0415 2.7789 0.039 93.0543 37.957 2.4516 0.0578 

b1 -0.0677 0.0244 -2.7734 0.0392 55.781 22.3319 2.4978 0.0546 

b2 0.0395 0.0244 1.6194 0.1663 25.3215 22.3319 1.1339 0.3083 

b3 0.0309 0.0244 1.2662 0.2612 -14.7863 22.3319 -0.6621 0.5372 

b1b2 0.0466 0.0273 1.7084 0.1483 35.9486 24.9679 1.4398 0.2095 

b1b3 -0.0032 0.0273 -0.1172 0.9112 -2.8077 24.9679 -0.1125 0.9148 

b2b3 -0.0102 0.0273 -0.3728 0.7246 2.7659 24.9679 0.1108 0.9161 

b12 0.1379 0.0481 2.8646 0.0352 -28.0301 44.0392 -0.6365 0.5525 

b22 -0.085 0.0481 -1.7647 0.1379 38.5954 44.0392 0.8764 0.4209 

b32 0.0307 0.0481 0.6388 0.5511 -48.8444 44.0392 -1.1091 0.3179 

 

Another advantage of the proposed approach is the 
development of a series of tools that allows the automation of 
the required calculations as well as the integration during the 
estimation process of the information related to decision maker 
attitude and risk aversion.  

Despite the already cited benefits of the proposed RI, the 
latter can be further improved. In particular the possibility to 
create a bounded adimensional index on the basis of the current 
RI can facilitate the understanding of the robustness concept. 
Furthermore, the specific RI value can have a clear “absolute” 
meaning, which specifies how a production system is close to 
the theoretical maximum robustness, widening its use beyond 
the simple ranking of alternatives.  

Due to the wide use of weighting factors and other decision 
maker specified parameters, another interesting perspective is 
constituted by the development and the integration of 
behavioural analysis tools to the robustness evaluation 
framework. In this way the obtained results can be used to 
elicit structured relationships between the behaviour 
characterisation and the specified parameter values.  

In a broader perspective, the suitability of supplementary 
loss functions to be integrated in the multi-criteria performance 
measurement framework can also be studied in order to 
provide a comprehensive evaluation of the impact of a given 
SC configuration, for instance considering environmental and 
social performance measures.   
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