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Abstract Let G = (V,E,w) be a graph with vertex and edge sets V and

E, respectively, and w : E → IR+ a function which assigns a positive weight

or length to each edge of G. G is called a realization of a finite metric space

(M,d), with M = {1, ..., n} if and only if {1, ..., n} ⊆ V and d(i, j) is equal

to the length of the shortest chain linking i and j in G ∀i, j = 1, ..., n. A

realization G of (M,d), is said optimal if the sum of its weights is minimal

among all the realizations of (M,d). A cutpoint in a graph G is a vertex

whose removal strictly increases the number of connected components of G.

The Metric Cutpoint Partition Problem is to determine if a finite metric

space (M,d) has an optimal realization containing a cutpoint. We prove

in this paper that this problem is polynomially solvable. We also describe
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an algorithm that constructs an optimal realization of (M,d) from optimal

realizations of subspaces that do not contain any cutpoint.

1 Introduction

A metric space is a couple (M,d) such that M is a set and d is a function

defined on M ×M such that d(x, y) = d(y, x) and is a strictly positive finite

number ∀x 6= y, d(x, x) = 0 ∀x, and d(x, z) ≤ d(x, y)+d(y, z) ∀x, y, z. More-

over, (M,d) is a finite metric space if M has a finite number of elements.

Let G = (V,E,w) be a graph, with vertex and edge sets V and E,

respectively, and w : E → IR+ a function which assigns a strictly positive

weight or length to each edge of G. Furthermore, let dG(i, j) denote the

length of a shortest chain in G linking vertices i and j. We say that G is a

realization of a finite metric space (M,d), with M = {1, ..., n} if and only

if {1, ..., n} ⊆ V and dG(i, j) = d(i, j) ∀i, j = 1, ..., n. The elements in V \M

are called auxiliary vertices. Without loss of generality, we can assume that

every auxiliary vertex has at least three adjacent vertices. A realization G

of (M,d) is called minimal if the removal of an arbitrary edge of G yields

a graph which does not realize (M,d). A realization G of (M,d) is called

optimal if the sum of all edge weights of G is minimal among all realizations

of (M,d). Clearly, every optimal realization is minimal. For illustration, a

metric space together with an optimal realization G are shown in Figure 1.

All edges of the graph have length one, and the black points a, b are two

auxiliary vertices while the white ones are the elements of M .
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Figure 1. A metric space with an optimal realization

The embedding of finite metric spaces in graphs has applications in var-

ied fields such as computational biology [13,15] (e.g., constructing phyloge-

netic trees from genetic distances among living species), electrical networks

[9], coding techniques [8], psychology [5], internet tomography [4], and com-

pression softwares [14].

The problem of finding optimal realizations of metric spaces was first

proposed by Hakimi and Yau [9] in 1964 who also gave a polynomial algo-

rithm for the special case where the metric space has a realization as a tree.

While every finite metric space has an optimal realization [12,11], finding

such realizations is an NP-hard problem [16]. Approximation algorithms for

the embedding of metric spaces in graphs have also been a subject of ex-

tensive mathematical studies. Recent developments and references to earlier

works on this subject can be found in [1,3].

Optimal realizations can be constructed using building blocks. More

precisely, for a graph G, we recall that a cutpoint, respectively a bridge, is

a vertex, respectively an edge, whose removal strictly increases the number



4 Alain Hertz, Sacha Varone

of connected component of G; a block is a maximal two-connected subgraph

or a bridge in G. Imrich et al. [11] have proved the following theorem.

Theorem 1 [11] Let G be a minimal realization of a finite metric space

(M,d), let G1, · · · , Gk be the blocks of G, and let Mr be the union of the

points of M in Gr and the cutpoints of G in Gr. If every Gr is an optimal

realization of the metric space induced by G on Mr, then G is also optimal.

For example an optimal realization of the metric space of Figure 1 can

be obtained by putting together optimal realizations of the metric spaces

induced on {1, 2, 3, 4}, {4, 5, 6, a}, {a, 7}, {7, 8, 9, b}, and {10, 11, 12, b}.

We call Metric Cutpoint Partition Problem (MCPP for short) the prob-

lem of determining whether a given finite metric space (M,d) has an optimal

realization containing a cutpoint. For example, on the basis of the distance

matrix of Figure 1 (and without any knowledge of the optimal realization),

we would like to be able to state that there is an optimal realization contain-

ing the cutpoint 4, 7, a or b. Similarly, the Metric Bridge Partition Problem

(MBPP for short) is to recognize metric spaces (M,d) to which there exists

an optimal realization containing a bridge.

If M contains only two elements, then the unique optimal realization G

of (M,d) is a graph with two vertices linked by an edge. Obviously, such a

graph G has a bridge and no cutpoint. If M has more than two elements,

then at least one endpoint of every bridge is a cutpoint. Hence, the MCPP

is more general than the MBPP.
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We have shown in [10] that the MBPP can be solved in polynomial

time. More precisely, we have presented an algorithm with running time

O(|M |6) that decides whether a given metric space (M,d) has an optimal

realization containing a bridge. We prove in this paper that the MCPP is

also polynomially solvable.

2 Definitions and Known Results

It is well-known that the unique optimal realization of a metric space on

three points i, j, k is a tree T . The hub of i, j, k, denoted hijk, is the point

in T such that:

dT (hijk, i) = 1
2 (d(i, j) + d(i, k) − d(j, k)),

dT (hijk, j) = 1
2 (d(j, i) + d(j, k) − d(i, k)),

dT (hijk, k) = 1
2 (d(k, i) + d(k, j) − d(i, j)).

Assume that the distance d(i, j) is larger than or equal to d(i, k) and

d(j, k). If d(i, j) < d(i, k) + d(j, k), then T has three leaves i, j and k, and

one auxiliary vertex corresponding to the hub hijk, else T is a chain linking

i and j that traverses k = hijk (see Figure 2).

i

d(i,j) = max{d(i,j); d(i,k); d(j,k)}

d(i,j)<d(i,k)+d(j,k)  

hijk

k

j

d(i,j)=d(i,k)+d(j,k)  

i

k=hijk

j

Figure 2. Optimal realizations of three points

Let sijkℓ denote the sum d(i, j) + d(k, ℓ). It is also well-known that the

optimal realization of a metric space on four points i, j, k, ℓ is unique and is a
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tree if and only if two of the sums sijkℓ, sikjℓ, siℓjk are equal and not smaller

than the third [2]. The five possible configurations with sijkℓ ≤ sikjℓ = siℓjk

are represented in Figure 3.

i
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k l
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k l

   sijkl<sikjl=siljk    sijkl=sikjl=siljk

(b) (c) (d) (e)(a)

Figure 3. Optimal realizations of four points

Definition 1 Consider a finite metric space (M,d), a partition of M into

two non-empty subsets K,L and a mapping f : M → IR+. The triplet

(K,L, f) is said nice if

– d(x, y) ≤ f(x)+f(y) for all x, y in M , equality holding whenever x ∈ K

and y ∈ L, and

– f(x) > 0 at least once in K and once in L.

The above definition is motivated by the following result proved in [12]

and [11]

Theorem 2 [12,11] Let (M,d) be a finite metric space to which there exists

a nice triplet (K,L, f). Then every optimal realization G of (M,d) has a

cutpoint c or a bridge with a point c on it such that all chains linking K

with L go through c, and dG(x, c) = f(x) ∀x ∈ M .
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We have proved in [10] that the MBPP is polynomially solvable. In

particular, we have proved the following theorem that provides a sufficient

condition for the existence of a bridge in optimal realizations of a metric

space.

Theorem 3 Let (M,d) be a finite metric space to which there exists a par-

tition of M into two non-empty subsets K,L with |K| > 1 and |L| > 1. If

sijkℓ < sikjℓ = siℓjk ∀i, j ∈ K and k, ℓ ∈ L, then every optimal realization

of (M,d) has a bridge.

Also, we have designed in [10] a polynomial algorithm that produces one

of the two following outputs for every given metric space (M,d):

– the first possible output is a message indicating that no optimal realiza-

tion of (M,d) has a bridge,

– the second possible output is of the form (K, dK), (L, dL), u ∈ K, v ∈ L, ℓ

with the following meaning : an optimal realization of (M,d) can be

obtained by constructing optimal realizations of (K, dK) and (L, dL),

and by linking u and v with an edge of length ℓ.

To show that the MCPP is also polynomially solvable, we can there-

fore restrict our attention to metric spaces (M,d) that have no optimal

realization containing a bridge. Such metric spaces are said bridgeless.

The following definition associates a partition of M with each cutpoint

in an optimal realization of a finite metric space (M,d).
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Definition 2 Let G be an optimal realization of a finite metric space (M,d)

with a cutpoint u, and let H be the graph obtained from G by removing all

edges incident to u (while keeping vertex u in H). Let G1, · · · , Gk denote

the connected components of H that contain at least one element of M , and

let Mr be the union of the elements of M in Gr. We say that {M1, · · · ,Mk}

is a u-partition of M .

For example, the u-partition associated with u = 4 in Figure 1 is {{1, 2, 3},

{4}, {5, · · · , 12}} while it is equal to {{1, · · · , 6}, {7, · · · , 12}} for u = a.

3 New Results

Lemma 1 Let e be any edge in a minimal realization G of a finite metric

space (M,d). Then there are two vertices a and b in M such that all shortest

chains linking a and b traverse e.

Proof Assume that for every two vertices a and b in M there exists a shortest

chain linking a and b that does not traverse e. Then the graph obtained

from G by removing e is still a realization of (M,d), which contradicts the

minimality of G.

Lemma 2 Let (M,d) be a bridgeless finite metric space to which there exists

an optimal realization G with a cutpoint u, and let e be any edge in G that

does not contain u as endpoint Then there is a chain linking two vertices a

and b of M that traverses e, has a total length strictly smaller than dG(a, u)+

dG(b, u), and has no intermediate vertex in M .
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Proof Since optimal realizations are minimal, we know from Lemma 1 that

there are two vertices a and b in M such that all shortest chains linking a and

b traverse e. Among all such chains, let us choose one that minimizes d(a, b).

It follows that no shortest chain linking a and b contains an intermediate

vertex c ∈ M , else the pair (a, c) or (c, b) contradicts the minimality of

(a, b).

If dG(a, b) < dG(a, u)+dG(b, u), then we are done. So let us assume that

dG(a, b) = dG(a, u) + dG(b, u). Without loss of generality, we can assume

that e belongs to all shortest chains linking a and u. So, consider such a

shortest chain (a = v0, v1, · · · , vk = u) with e = (vt, vt+1) for some t < k−1.

Since vk−1 is an auxiliary vertex, there is a vertex w adjacent to vk−1

with w 6= vk−2, u . Now, since (vk−1, w) is an edge in E that does not contain

u as endpoint, we know from Lemma 1 that there are two vertices c and d in

M such that all shortest chains linking c and d traverse (vk−1, w) and have

no intermediate vertex in M . Consider any such chain (c = w0, · · · , wr =

w,wr+1 = vk−1, wr+2, · · · , ws = d). Since d(vk−1, u) > 0, we have

2dG(a, vk−1) +
∑s−1

i=0 dG(wi, wi+1) < 2dG(a, u) + dG(c, u) + dG(d, u).

Hence, we are in at least one of the following two cases :

– dG(a, vk−1)+
∑r

i=0 dG(wi, wi+1) < dG(a, u)+ dG(c, u) : this means that

the chain (a = v0, · · · , vk−1 = wr+1, wr, · · · , w0 = c) traverses e, has no

intermediate vertex in M , and its total length is strictly smaller than

dG(a, u) + dG(c, u),
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– dG(a, vk−1) +
∑s−1

i=r+1 dG(wi, wi+1) < dG(a, u) + dG(d, u) : this means

that the chain (a = v0, · · · , vk−1 = wr+1, wr+2, · · · , ws = d) traverses e,

has no intermediate vertex in M , and its total length is strictly smaller

than < dG(a, u) + dG(d, u). ⊓⊔

Before proving the next theorem, we need to define two additional con-

cepts.

Definition 3 Let (x, y) and (z, t) be two pairs of distinct elements in M

such that sxyzt = sxzyt = sxtyz. The function f(x,y)(z,t) : M → IR+ and the

graph H(x,y)(z,t) are defined as follows :

– f(x,y)(z,t)(v) is the maximum between the distance from v to the hub

hxyv and the distance from v to the hub hztv. Formally, f(x,y)(z,t)(v)=

max{ 1
2 (d(x, v) + d(y, v) − d(x, y)), 1

2 (d(z, v) + d(t, v) − d(z, t))}.

– The vertex set of H(x,y)(z,t) is M , and two vertices v and w are linked by

an edge in H(x,y)(z,t) if and only if f(x,y)(z,t)(v)+f(x,y)(z,t)(w) > d(v, w).
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The above concepts are illustrated in Figure 4 for the two pairs (1,3)

and (5,7) of elements chosen in the metric space of Figure 1.

Theorem 4 Let (M,d) be a bridgeless finite metric space to which there

exists an optimal realization G with a cutpoint u, and let (x, y) and (z, t)

be two pairs of vertices such that f(x,y)(z,t)(v) = dG(v, u) ∀v ∈ M . Then the

blocks of the u-partition of M are the vertex sets of the connected components

of H(x,y)(z,t).

Proof Consider any two elements a and b in M . If a and b belong to two

different subsets of the u-partition, then all chains linking a and b go through

u, which means that a and b are not adjacent in H(x,y)(z,t) since

d(a, b) = dG(a, u) + dG(b, u) = f(x,y)(z,t)(a) + f(x,y)(z,t)(b).

We now prove that if a and b belong to the same subset of the u-partition,

then a and b belong to the same connected component of H(x,y)(z,t). So

consider any chain C = (a = v0, v1, · · · , vk = b) linking a and b in G

that does not go through u. By Lemma 2, we can associate to each edge

(vi, vi+1) (i = 0, . . . , k− 1) on C two vertices ci and di in M and a chain Ci

that traverses (vi, vi+1), has total length strictly smaller than dG(ci, u) +

dG(di, u), and has no intermediate vertex in M . Notice that c0 = v0 = a

and dk−1 = vk = b. Notice also that the graph H(x,y)(z,t) contains all edges

(ci, di) since dG(ci, di) is at most equal to the total length of Ci, which is

strictly smaller than dG(ci, u) + dG(di, u) = f(x,y)(z,t)(ci) + f(x,y)(z,t)(di).

If k = 1 then a and b are adjacent in H(x,y)(z,t). Else, let us denote

Ci = (ci = wi
1, · · · , w

i
ri

= di) for all i = 1, · · · , k − 2, and let p(i) be the
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index such that (wi
p(i), w

i
p(i)+1) = (vi, vi+1). We have

dG(ci, u) + dG(di, u) + dG(ci+1, u) + dG(di+1, u)

>
∑ri−1

j=1 dG(wi
j , w

i
j+1) +

∑ri+1−1
j=1 dG(wi+1

j , wi+1
j+1).

Hence,

dG(ci, u) + dG(di+1, u)

>
∑p(i)

j=1 dG(wi
j , w

i
j+1) +

∑ri+1−1
j=p(i+1) dG(wi+1

j , wi+1
j+1)

≥ dG(ci, vi+1) + dG(vi+1, di+1) ≥ dG(ci, di+1)

or/and

dG(di, u) + dG(ci+1, u)

>
∑ri−1

j=p(i)+1 dG(wi
j , w

i
j+1) +

∑p(i+1)−1
j=1 dG(wi+1

j , wi+1
j+1)

≥ dG(vi+1, di) + dG(ci+1, vi+1) ≥ dG(ci+1, di).

In other words, the graph H(x,y)(z,t) contains the edge (ci, di+1) or/and

(ci+1, di). It follows that all ci’s and di’s belong to the same connected

component of H(x,y)(z,t). This is in particular true for a = c0 and b = dk−1.

⊓⊔

The next theorem gives necessary conditions for the existence of a cut-

point in at least one optimal realization of a bridgeless finite metric space.

Theorem 5 Let (M,d) be a bridgeless finite metric space to which there

exists an optimal realization G with a cutpoint u, and let {M1, · · · ,Mk} be

a u-partition of M . Then

(1) sabcd ≤ sacbd = sadbc ∀a, b ∈ Mr, c, d /∈ Mr, r = 1, · · · , k

(2) there are four elements x, y ∈ Mr and z, t ∈ Ms (r 6= s) such that

– sxyzt = sxzyt = sxtyz

– M1, · · · ,Mk are the vertex sets of the connected components of H(x,y)(z,t)
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Proof Observe first that each Mr different from {u} contains at least two

elements. Indeed, if Mr = {a} with a 6= u, then (a, u) is a bridge in G, a

contradiction. So, consider any Mr with at least two elements, and define

K = Mr and L = ∪k 6=rMk. We have |K| > 1 and |L| > 1. Now choose any

four elements a, b ∈ K and c, d ∈ L. Since u is a cutpoint, we have

sacbd = sadbc = dG(a, u) + dG(b, u) + dG(c, u) + dG(d, u)

≥ d(a, b) + d(c, d) = sabcd

Since (M,d) is bridgeless, we know from Theorem 3 that there are four

elements x, y ∈ K and x′, y′ ∈ L such that sxyx′y′ = sxx′yy′ = sxy′yx′ , which

means that dG(x, y) = dG(x, u)+dG(y, u). Similarly, for every Ms ⊆ L with

at least two elements, there exist z, t ∈ Ms such that dG(z, t) = dG(z, u) +

dG(t, u). Hence,

sxzyt = sxtyz = dG(x, u) + dG(y, u) + dG(z, u) + dG(t, u) = sxyzt.

Consider now any element v /∈ Mr. Since the chain linking v and x

goes through u, we have d(x, v) = dG(x, u) + dG(v, u). By permuting the

roles of x and y, we also have d(y, v) = dG(y, u) + dG(v, u). Now, since

d(x, y) = dG(x, u) + dG(y, u) and d(z, t) = dG(z, u) + dG(t, u), we have

1
2 (d(x, v) + d(y, v) − d(x, y))

= 1
2 (dG(x, u) + dG(y, u) + 2dG(u, v) − dG(x, u) − dG(y, u))

= dG(v, u) = 1
2 (dG(z, u) + dG(t, u) + 2dG(u, v) − dG(z, u) − dG(t, u))

≥ 1
2 (d(z, v) + d(t, v) − d(z, t)).

This means that f(x,y,z,t)(v) = dG(v, u) ∀v /∈ Mr. By symmetry, the same

holds for all v /∈ Ms, which proves that f(x,y,z,t)(v) = dG(v, u) ∀v ∈ M . We
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therefore conclude from Theorem 4 that M1, · · · ,Mk are the vertex sets of

the connected components of H(x,y)(z,t). ⊓⊔

We finally give a sufficient condition for the existence of a cutpoint in

at least one optimal realization of a metric space.

Theorem 6 Let (M,d) be a bridgeless finite metric space, and let M1, · · · ,Mk

be a partition of M into k non-empty subsets. Assume the existence of four

distinct elements x, y ∈ Mr and z, t ∈ Ms (r 6= s) such that

(a) sxyzt = sxzyt = sxtyz,

(b) sabcd ≤ sacbd = sadbc for all a, b, c, d such that a, b ∈ Mq and c, d /∈ Mq

for some q ∈ {1, · · · , k}, and |{a, b, c, d} ∩ {x, y, z, t}| ≥ 2.

Then every optimal realization G of (M,d) has a cutpoint u with dG(v, u) =

f(x,y)(z,t)(v) ∀v ∈ M .

Proof It is sufficient to prove that (Mr,∪j 6=rMj , f(x,y)(z,t)) is a nice triplet.

Indeed, since (M,d) is bridgeless, we know from Theorem 2 that this will

prove that each realization G of (M,d) has a cutpoint u such that all chains

linking Mr with ∪j 6=rMj traverse u, and dG(v, u) = f(x,y)(z,t)(v) ∀v ∈ M .

So let T be an optimal realization of the metric space induced by x, y, z, t.

We know from (a) that T is a tree in which all hubs hxyz, hxyt, hxzt, hyzt

coincide at one point which we call h.

Consider any element v /∈ Mr. If v 6= z then let U denote the optimal

realization of the metric space induced on x, y, z and v. We know from (b)

that U is a tree with hubs hxyz = hxyv = h and hxzv = hyzv (which are



The Metric Cutpoint Partition Problem 15

possibly all equal). We have

d(z, v) − dT (z, h)

= dU (z, hxzv) + dU (hxzv, v) − dU (z, hxzv) − dU (hxzv, h)

= dU (h, v) − 2dU (h, hxzv)

≤ dU (h, v) = d(x, v) − dT (x, h) = 1
2 (d(x, v) + d(y, v) − d(x, y)).

If v = z, then d(z, z) − dT (z, h) ≤ d(x, z) − dT (x, h) = 1
2 (d(x, z) + d(y, z) −

d(x, y)). Hence, we have

d(z, v)−dT (z, h) ≤ d(x, v)−dT (x, h) = 1
2 (d(x, v)+d(y, v)−d(x, y))∀v /∈ Mr,

and by permuting the roles of z and t, we also have

d(t, v)−dT (t, h) ≤ d(x, v)−dT (x, h) = 1
2 (d(x, v)+d(y, v)−d(x, y))∀v /∈ Mr.

Since d(z, t) = dT (z, h) + dT (t, h), we therefore have

1
2 (d(z, v) + d(t, v) − d(z, t))

= 1
2 (d(z, v) − dT (z, h) + d(t, v) − dT (t, h))

≤ d(x, v) − dT (x, h) = 1
2 (d(x, v) + d(y, v) − d(x, y)),

which means that f(x,y)(z,t)(v) = d(x, v) − dT (x, h) for all v /∈ Mr. By

permuting the roles of x, y with those of z, t, we also have f(x,y)(z,t)(v) =

d(z, v)− dT (z, h) for all v /∈ Ms. So, consider any two elements v /∈ Mr and

w /∈ Ms. We have

f(x,y)(z,t)(v) + f(x,y)(z,t)(w) = d(x, v) − dT (x, h) + d(z, w) − dT (z, h)

= d(x, v) + d(z, w) − d(x, z).

It follows that if v = z or/and w = x then f(x,y)(z,t)(v)+ f(x,y)(z,t)(w) =

d(v, w). Otherwise, let U denote the optimal realization of the metric space
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induced by x, z, v and w. We know from (b) that U is a tree with hubs

hxwz = hxwv and hxzv = hwzv (which are possibly all equal). Since d(x, v)+

d(z, w) − d(x, z) = dU (v, w) = d(v, w). We conclude that f(x,y)(z,t)(v) +

f(x,y)(z,t)(w) = d(v, w) for all v /∈ Mr and w ∈ Ms.

Consider now two elements v, w /∈ Mr, and let U denote the optimal

realization of the metric space induced by x, y, v and w. Again, we know

from (b) that U is a tree with hubs hxyv = hxyw = h and hxvw = hyvw

(which are possibly all equal), and we have

f(x,y)(z,t)(v) + f(x,y)(z,t)(w) = d(x, v) + d(x,w) − 2dT (x, h)

= dU (x, v) + dU (x,w) − 2dU (x, hxyv)

= dU (v, w) + 2dU (hxyv, hxvw)

≥ dU (v, w) = d(v, w).

By symmetry, we also know that f(x,y)(z,t)(v) + f(x,y)(z,t)(w) ≥ d(v, w)

for all v, w /∈ Ms. Hence this is true for all v, w ∈ Mr.

Since 0 < d(x, y) ≤ f(x,y)(z,t)(x)+f(x,y)(z,t)(y) we know that f(x,y)(z,t)(x)

or/and f(x,y,z,t)(y) is strictly positive. Similarly, f(x,y)(z,t)(z) or/and f(x,y)(z,t)(t)

is strictly positive. We can therefore conclude that (Mr,∪j 6=rMj , f(x,y,z,t))

is a nice triplet. ⊓⊔

4 Algorithms

The following algorithm determines if a given finite bridgeless metric space

(M,d) has an optimal realization containing a cutpoint u. Moreover, if such

a realization G exists, then the algorithm also provides a u-partition of
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M as well as two pairs (x, y) and (z, t) of elements such that dG(v, u) =

f(x,y)(z,t)(v) ∀v ∈ M .

Algorithm 1 MCPP

Require: A finite bridgeless metric space (M, d);

Ensure: Either a message indicating that no optimal realization of (M, d)

has a cutpoint, or two pairs (x, y) and (z, t) of elements and a u-partition

{M1, · · · , Mk} of M ;

for all couples of pairs (x, y) and (z, t) such that sxyzt = sxzyt = sxtyz do

set M1, · · · , Mk equal to the vertex sets of the connected components of the

graph H(x,y)(z,t)

if there exist r 6= s with x, y ∈ Mr and z, t ∈ Ms then

if sabcd ≤ sacbd = sadbc for all a, b, c, d such that a, b ∈ Mq and c, d /∈ Mq

for some q ∈ {1, · · · , k}, and |{a, b, c, d} ∩ {x, y, z, t}| ≥ 2 then

STOP: return (x, y), (z, t) and {M1, · · · , Mk}.

end if

end if

end for

STOP : return a message indicating that no optimal realization of (M, d) has a

cutpoint.

Theorem 7 The MCPP algorithm works correctly and is polynomial.

Proof Correctness of the algorithm follows from the results of the previous

section. More precisely, if the algorithm stops with two pairs (x, y),(z, t) of

elements and a partition {M1, · · · ,Mk} of M , then properties (a) and (b) of

Theorem 6 are satisfied, and we conclude that every optimal realization G
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of (M,d) has a cutpoint u with dG(v, u) = f(x,y)(z,t)(v) ∀v ∈ M . Moreover,

we know from Theorem 4 that {M1, · · · ,Mk} is a u-partition of M since

the Mi’s correspond to the vertex sets of the connected components of

H(x,y)(z,t).

Now, if (M,d) has an optimal realization G containing a cutpoint u, then

we know from Theorem 5 that such a situation is detected. Indeed, we enu-

merate all couples of pairs (x, y), (z, t) such that sxyzt = sxzyt = sxtyz, and

for each such couple, we build the partition {M1, · · · ,Mk} corresponding to

the vertex sets of the connected components of H(x,y)(z,t). Moreover, we ask

for the existence of two indices r and s such that x, y ∈ Mr and z, t ∈ Ms,

and we require that sabcd ≤ sacbd = sadbc for all a, b, c, d such that a, b ∈ Mq

and c, d /∈ Mq for some q ∈ {1, · · · , k}, and |{a, b, c, d} ∩ {x, y, z, t}| ≥ 2.

This is less restrictive than the necessary conditions of Theorem 5.

Finally, the algorithm is polynomial since it can easily be implemented

with a time complexity in O(|M |6) ⊓⊔.

According to Theorem 1, one can build an optimal realization of (M,d)

from an output (x, y), (z, t), and {M1, · · · ,Mk} of the MCPP algorithm as

follows:

– If the cutpoint u belongs to M (i.e, one of the blocks of the partition

is a singleton), then consider the index r such that Mr = {u}, and

construct for each q 6= r an optimal realization Gq of the metric space

(Mq ∪ {u}, d|Mq∪{u}).
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– If the cutpoint is an auxiliary vertex, then construct for each q = 1, · · · , k

an optimal realization Gq of the metric space (M ′
q, dM ′

q
), where M ′

q =

Mq ∪ {u}, dM ′

q
(v, w) = d(v, w) for all v, w ∈ Mq and dM ′

q
(v, u) =

f(x,y)(z,t)(v) for all v ∈ Mq.

An optimal realization of (M,d) can then simply be obtained by gluing all

Gi’s at their unique common vertex u.

Assume the existence of an algorithm, called Bridge, which either indi-

cates that the given metric space (M,d) is bridgeless, or provides an output

of the form (K, dK), (L, dL), a ∈ K, b ∈ L, ℓ with the following meaning :

an optimal realization of (M,d) can be obtained by constructing optimal

realizations of (K, dK) and (L, dL), and by linking a and b with an edge

of length ℓ. Algorithm Bridge can be implemented in polynomial time, as

shown in [10]. Assume also the existence of an algorithm, called NoCutpoint

that constructs an optimal realization of a bridgeless finite metric space if

such a realization has no cutpoint. No polynomial algorithm is known for

solving this problem.

The following algorithm, called OptimalRealization, uses the MCPP

algorithm recursively, as well as Bridge and NoCutpoint, to build an opti-

mal realization of any given finite metric space (M,d). The use of NoCutpoint

makes it non polynomial.
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Algorithm 2 OptimalRealization

Require: A finite metric space (M, d);

Ensure: An optimal realization G of (M, d);

Apply Bridge on (M, d);

if the output is of the form (K, dK), (L, dL), a, b, ℓ then

Construct optimal realizations GK and GL of (K, dK) and (L, dL) by applying

OptimalRealization;

Add an edge of length ℓ linking a in GK and b in GL;

else

Apply MCPP on (M, d);

if the output indicates that no optimal realization of (M, d) has a cutpoint

then

Apply NoCutpoint on (M, d) to build an optimal realization G of (M, d);

else

Let (x, y)(z, t), {M1, · · · , Mk} be the output of MCPP ;

if one of the sets Mr is a singleton {u} then

for all q 6= r do

Apply OptimalRealization to construct an optimal realization Gq of

(Mq ∪ {u}, d|Mq∪{u}) ;

end for

else

for all q = 1 · · · k do

build M ′
q by adding an auxiliary element u to Mq, and define

dM′

q
(v, q) = d(v, w) for all v, w ∈ Mq and dM′

q
(v, u) = f(x,y)(z,t)(v)

for all v ∈ Mq;

Apply OptimalRealization to construct an optimal realization Gq of

(M ′
q, dM′

q
) ;

end for

an optimal realization G of (M, d) is obtained by gluing all Gi’s at their

unique common vertex u;

end if

end if

end if



The Metric Cutpoint Partition Problem 21

Figure 4 illustrates its use for the example of Figure 1. Since the given

metric space (M,d) has an optimal realization that contains a bridge, algo-

rithm Bridge determines two metric spaces M1 on K = {1, 2, 3, 4, 5, 6, a}

and M2 on L = {b = 7, 8, 9, 10, 11, 12}, these two metric spaces being

linked by a bridge (a, b = 7) of length 1. The Metric M1 is bridgeless but

contains a cutpoint. A possible output of the MCPP algorithm is then

(x = 1, y = 3), (z = 5, t = a) and M1 = {1, 2, 3},M2 = {4},M3 = {5, 6, a}.

For illustration, we represent the function f(1,3)(5,a) as well as the graph

H(1,3)(5,a). We therefore create two metric spaces M3 and M4 on {1, 2, 3, 4}

and {4, 5, 6, a}. Since M3 and M4 have no cutpoint (which is detected by

applying MCPP , an optimal realization of M1 is obtained by making the

union of optimal realizations G3 and G4 of M3 and M4, these being ob-

tained by applying NoCutpoint.

Similarly, the Metric M2 is bridgeless but contains a cutpoint. A pos-

sible output of MCPP is (x = 7, y = 9), (z = 10, t = 12), and M1 =

{7, 8, 9},M2 = {10, 11, 12}. Again, we represent the function f(7,9)(10,12)

and the graph H(7,9)(10,12). We then create two metric spaces M5 and M6

on {7, 8, 9, u} and {10, 11, 12, u}, where u is an auxiliary element at distance

1 from 7, 9, 10, 12, and at distance 2 from 8 and 11. Since M5 and M6 have

no cutpoint (which is detected by using MCPP ), an optimal realization of

M2 is obtained by making the union of optimal realizations G5 and G6 of

M5 and M6, these being obtained by applying NoCutpoint.
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Finally, an optimal realization G of (M,d) is obtained by linking a in

G1 with b = 7 in G2 with a bridge of length 1.

Optimal realization G of  (M,d)
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Figure 4. Construction of an optimal realization
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5 Conclusion

We have proved that the Metric Cutpoint Partition Problem is polynomi-

ally solvable. The proposed algorithm can be used to construct an optimal

realization of a metric space (M,d) using building blocks. More precisely, let

G be a minimal realization of a finite metric space (M,d), let G1, · · · , Gk be

the blocks of G, and let Mr be the union of the points of M in Gr together

with the cutpoints of G in Gr, r = 1, . . . , k. Imrich et al. [11] have proved

that if every Gr is an optimal realization of the metric space induced by G

on Mr, then G is also optimal. We have shown in this paper that the sets

Mr can be constructed in O(|M |6) time. Dress et al. [7] have recently shown

that, using the algorithm described in [6] for the computation of so-called

virtual cutpoints in finite metric spaces, it is possible to construct the above

sets Mr in O(|M |3) time.
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