
Machine Learning Journal manuscript No.

(will be inserted by the editor)

Factorizing LambdaMART for cold start

recommendations

Phong Nguyen and Jun Wang and

Alexandros Kalousis

Received: date / Accepted: date

Abstract Recommendation systems often rely on point-wise loss metrics such
as the mean squared error. However, in real recommendation settings only few
items are presented to a user. This observation has recently encouraged the
use of rank-based metrics. LambdaMART is the state-of-the-art algorithm in
learning to rank which relies on such a metric.

Motivated by the fact that very often the users’ and items’ descriptions as
well as the preference behavior can be well summarized by a small number of
hidden factors, we propose a novel algorithm, LambdaMART Matrix Factor-
ization (LambdaMART-MF), that learns latent representations of users and
items using gradient boosted trees. The algorithm factorizes lambdaMART by
defining relevance scores as the inner product of the learned representations of
the users and items. We regularise the learned latent representations so that
they reflect the user and item manifolds as these are defined by their original
feature based descriptors and the preference behavior. Finally we also propose
to use a weighted variant of NDCG to reduce the penalty for similar items
with large rating discrepancy.

P. Nguyen
Expedia, Inc
12, Rue du Lac
Geneva, Switzerland
E-mail: phongnguyen@expedia.com

Jun Wang
Expedia, Inc
12, Rue du Lac
Geneva, Switzerland
E-mail: jwang1@expedia.com

Alexandros Kalousis
Business Informatics Dept
University of Applied Sciences
Western Switzerland
E-mail: Alexandros.Kalousis@hesge.ch

gwenola.dossanto
Texte tapé à la machine
Published in Machine Learning 2016, Vol. 104, no. 2, pp. 223–242 which should be cited to refer to this work

2 Phong Nguyen and Jun Wang and Alexandros Kalousis

We experiment on two very di↵erent recommendation datasets, meta-mining
and movies-users, and evaluate the performance of LambdaMART-MF, with
and without regularization, in the cold start setting as well as in the simpler
matrix completion setting. The experiments show that the factorization of
LambdaMart brings significant performance improvements both in the cold
start and the matrix completion settings. The incorporation of regularisation
seems to have a smaller performance impact.

Keywords recommendation systems · matrix factorization · LambdaMart ·
regularization

1 Introduction

Most recommendation algorithms minimize a point-wise loss function such
as the mean squared error or the mean average error between the predicted
and the true user preferences. For instance in matrix factorization, a learn-
ing paradigm very popular in recommendation problems, state-of-the-art ap-
proaches such as [21,1,2] minimize the squared error between the inner product
of the learned low-rank representations of users and items and the respec-
tive true preference scores. Such cost functions are clearly not appropriate for
recommendation problems since what matters there is the rank order of the
preference scores and not their absolute values, i.e. items that are very often
top ranked should be highly recommended. It is only recently that recom-
mendation methods have started using ranking-based loss functions in their
optimization problems. Cofirank [22], a collaborative ranking algorithm, does
maximum-margin matrix factorization by optimizing an upper bound of the
Normalized Discounted Cumulative Gain measure, NDCG, a ranking-based
loss function [13]. However, like many recommendation algorithms, it cannot
address the cold start problem, i.e. it cannot recommend new items to new
users.

In preference learning [11] we learn the preference order of documents for
a given query. Preference learning algorithm are used extensively in search en-
gines and IR systems and optimize ranking-based loss functions such as NDCG.
Probably the best known example of such algorithms is LambdaMART, [5],
the state-of-the-art learning to rank algorithm. Its success is due to its abil-
ity to model preference order using features describing side-information of the
query-document pairs in a very flexible manner.

In this paper we develop a new recommendation algorithm with an em-
phasis on the cold start problem and the exploitation of user and item side-
information. We take the view that users and items can be described by a small
number of latent factors the inner product of which generates the preference
scores. The new algorithm can be thought of as a variant of LambdaMART in
which instead of directly learning the user-item preferences, as LambdaMART
does, we learn latent factors that describe the users and the items and use
them to compute the user-item preference scores. Essentially our algorithm
does a low-rank matrix factorization of the preferences matrix. On the latent

Factorizing LambdaMART for cold start recommendation 3

representations of the users and items we define data-based regularisers that
reflect the user and item manifolds as these are established from their side-
information and the preference matrix. We evaluate the performance of our
algorithm on two very di↵erent recommendation applications under two sce-
narios: matrix completion and cold start recommendations. We compare its
performance to a number of baselines, amongst which LambdaMART, and
demonstrate significant performance improvements.

2 Preliminaries

We are given a (sparse) preference matrix, Y, of size n ⇥ m. The (i, j) non-
missing entry of Y represents the preference score of the ith user for the jth
item in recommendation problems or the relevance score of the jth document
for the ith query in learning to rank problems; the larger the value of the (i, j)
entry the larger the relevance or preference is. In addition to the preference
matrix, we also have the descriptions of the users and items. We denote by
ci = (ci1, . . . , cid)T 2 Rd, the d-dimensional description of the ith user, and
by C the n ⇥ d user description matrix, the ith row of which is given by
the cTi . Similarly, we denote by dj = (dj1, . . . , djl)T 2 Rl, the l-dimensional
description of the jth item and by D the m ⇥ l item description matrix, the
jth row of which is given by the d

T
j .

As already mentioned when recommending an item to a user we only care
about the rank order of yij and not the actual preference score value yij . Thus
in principle a preference learning algorithm does not need to predict the exact
value of yij but only its rank order as this is induced by the preference vector
y. We will denote by rc

i

the target rank vector of the ith user. We construct
rc

i

by ordering in a decreasing manner the ith user’s non-missing preference
scores over the items; its kth entry, rc

i

k, is the rank of the kth non-missing
preference score, with the highest preference score having a rank of one. In
the inverse problem, i.e. matching users to items, we will denote by rd

j

the
target rank vector of the jth item, given by ordering the jth item’s non-missing
relevance scores for the users.

2.1 Evaluation Metric

In applications of preference learning, such as recommendation, information
retrieval, etc, only a few top-ranked items are finally shown to the users. As
a result appropriate evaluation measures for preference learning focus on the
correctness of the top-ranked items. One such, very often used, metric is the
Discounted Cumulative Gain (DCG)[13], which is defined as follows:

DCG(r,y)@k =
mX

i=1

2yi � 1

log2(ri + 1)
I(ri  k) (1)

4 Phong Nguyen and Jun Wang and Alexandros Kalousis

where k is the truncation level at which DCG is computed and I is the indi-
cator function which returns 1 if its argument holds otherwise 0. y is the m
dimensional ground truth relevance vector and r is a rank vector that we will
learn. The DCG score measures the match between the given rank vector r
and the rank vector of the relevance score vector y. It is easy to check that if
the rank vector r correctly preserves the order induced by y then the DCG
score will achieve its maximum. Due to the log in the denominator the DCG
score will incur larger penalties when misplacing top items compared to low
end items, emphasizing like that the correctness of top items.

Since the DCG score also depends on the length of the relevance vector y,
it is often normalized with respect to its maximum score, resulting to what is
known as the Normalized DCG (NDCG), defined as:

NDCG(y, ŷ)@k =
DCG(r(ŷ),y)@k

DCG(r(y),y)@k
(2)

r(·) is a rank function that outputs the rank vector, in decreasing order, of its
input argument vector. Thus the vector r(y) is the rank vector of the ground
truth relevance vector y and r(ŷ) is the rank vector of the predicted relevance
vector ŷ provided by the learned model. With normalization, the value of
NDCG ranges from 0 to 1, the larger the better. In this paper, we will also
use this metric as our evaluation metric.

2.2 LambdaMART

The main di�culty in learning preferences is that rank functions are not con-
tinuous and have combinatorial complexity. Thus most often instead of the
rank of the preference scores the pairwise order constraints over the items’
preferences are used. LambdaMART is one of the most popular algorithms
for preference learning which follows exactly this idea, [5]. Its optimization
problem relies on a distance distribution measure, cross entropy, between a
learned distribution1 that gives the probability that item j is more relevant
than item k from the true distribution which has a probability mass of one
if item k is really more relevant than item j and zero otherwise. The final
loss function of LambdaMart defined over all users i and overall the respective
pairwise preferences for items j, k, is given by:

L(Y, Ŷ) =
nX

i=1

X

{jk}2Z

|�NDCGi
jk| log(1 + e��(ŷ

ij

�ŷ
ik

)) (3)

where Z is the set of all possible pairwise preference constraints such that in
the ground truth relevance vector holds yij > yik, and �NDCGi

jk is given by:

�NDCGi
jk = NDCG(yi, ŷi)�NDCG(yjk

i , ŷi)

1 This learned distribution is generated by the sigmoid function P i
jk = 1

1+e
�(ŷ

ij

�ŷ

ik

) of

the estimated preferences ŷij , ŷik.

Factorizing LambdaMART for cold start recommendation 5

where yjk
i is the same as the ground truth relevance vector yi except that

the values of yij and yik are swapped. Note that this equal to the NDCG
di↵erence that we get if we swap the ŷij , ŷik, estimates. Thus the overall loss
function of LambdaMART eq 3 is the sum of the logistic losses on all pairwise
preference constraints weighted by the respective NDCG di↵erences. Since the
NDCG measure penalizes heavily the error on the top items, the loss function
of LambdaMART has also the same property. LambdaMART minimizes its
loss function with respect to all ŷij , ŷik, and its optimization problem is:

min
Ŷ

L(Y, Ŷ) (4)

The authors of [23] have shown empiricially that solving this problem also
optimizes the NDCG metric of the learned model. The partial derivative of
LambdaMART’s loss function with respect to the estimated scores ŷij is

@L(Y, Ŷ)

@ŷij
= �i

j =
X

{k|jk}2Z

�i
jk �

X

{k|kj}2Z

�i
kj (5)

and �i
jk is given by:

�i
jk =

��

1 + e�(ŷij

�ŷ
ik

)
|�NDCGi

jk| (6)

With a slight abuse of notation below we will write @L(y
ij

,ŷ
ij

)
@ŷ

ij

instead of
@L(Y,Ŷ)

@ŷ
ij

, to make explicit the dependence of the partial derivative only on

yij , ŷij due to the linearity of L(Y, Ŷ).
LambdaMART uses Multiple Additive Regression Trees (MART) [10] to

solve its optimization problem. It does so through a gradient descent in the
functional space that generates preference scores from item and user descrip-
tions, i.e. ŷij = f(ci,dj), where the update of the preference scores at the t
step of the gradient descent is given by:

ŷ(t)ij = ŷ(t�1)
ij � ⌘

@L(yij , ŷ(t�1)
ij)

@ŷ(t�1)
ij

(7)

or equivalently:

f (t)(ci,dj) = f (t�1)(ci,dj)� ⌘
@L(yij , f (t�1)(ci,dj))

@f (t�1)(ci,dj)
(8)

where ⌘ is the learning rate. We terminate the gradient descent when we reach
a given number of iterations T or when the validation loss NDCG starts to

increase. We approximate the derivative
@L(y

ij

,ŷ(t�1)
ij

)

@ŷ(t�1)
ij

by learning at each step

t a regression tree h(t)(c,d) that fits it by minimizing the sum of squared
errors. Thus at each update step we have

f (t)(ci,dj) = f (t�1)(ci,dj) + ⌘h(t)(ci,dj) (9)

6 Phong Nguyen and Jun Wang and Alexandros Kalousis

which if we denote by �tk the prediction of the kth terminal node of the h(t)

tree and by htk the respective partition of the input space, we can rewrite as:

f (t)(ci,dj) = f (t�1)(ci,dj) + ⌘�tkI((c,d) 2 htk) (10)

we can further optimize over the �tk values to minimize the loss function of
eq 3 over the instances of each htk partition using Newton’s approximation.
The final preference estimation function is given by:

ŷ = f(c,d) =
TX

t=1

⌘h(t)(c,d) (11)

or

ŷ = f(c,d) =
TX

t=1

⌘�tkI((c,d) 2 htk) (12)

LambdaMart is a very e↵ective algorithm for learning to rank problems,
see e.g [6,9]. It learns non-linear relevance scores, ŷij , using gradient boosted
regression trees. The number of the parameters it fits is given by the number
of available preference scores (this is typically some fraction of n⇥m); there is
no regularization on them to prevent overfitting. The only protection against
overfitting can come from rather empirical approaches such as constraining
the size of the regression trees or by selecting learning rate ⌘.

3 Factorized Lambda-MART

Motivated by the fact that very often the users’ and the items’ descriptions
and their preference relations can be well summarized by a small number of
hidden factors we learn a low-dimensional hidden representation of users and
items using gradient boosted trees, MART. We define the relevance score as
the inner product of the new representation of the users and items; this has the
additional advantage of introducing a low rank regularization in the learned
preference matrix.

Concretely, we define the relevance score of the ith user and jth item by
ŷij = uT

i vj , where ui and vj are the r-dimensional user and item latent
descriptors. We denote by U : n ⇥ r and V : m ⇥ r the new representation
matrices of users and items. The dimensionality of r is a small number, r <<
min(n,m). The loss function of eq 3 now becomes:

LMF (Y, Û, V̂) =
nX

i=1

X

{jk}2Z

|�NDCGi
jk| log(1 + e��(û

i

(v̂
j

�v̂
k

))) (13)

Factorizing LambdaMART for cold start recommendation 7

The partial derivatives of this loss function with respect to ûi, v̂j , are given
by:

@LMF (Y, Û, V̂)

@ûi
=

mX

j=1

@LMF (Y, Ŷ)

@ŷij

@ŷij
@ûi

=
mX

j=1

�i
j
@ŷij
@ûi

(14)

@LMF (Y, Û, V̂)

@v̂j
=

nX

i=1

@LMF (Y, Ŷ)

@ŷij

@ŷij
@v̂i

=
nX

i=1

�i
j
@ŷij
@vj

(15)

Note that the formulation we give in equation 13 is very similar to those used in
matrix factorization algorithms. Existing matrix factorization algorithms used
in collaborative filtering recommendation learn the low-rank representation of
users and items in order to complete the sparse preference matrix Y, [21,22,
1,2], however these approaches cannot address the cold start problem.

Similar to LambdaMART we will seek a function f that will optimize the
LMF loss function. To do so we will learn functions of the latent profiles of
the users and items from their side information. We will factorize f(c,d) by

f(c,d) = fu(c)
Tfv(d) = u

T
v = ŷ

where fu : C ! U is a learned user function that gives us the latent factor
representation of user from his/her side information descriptor c; fv : D ! V
is the respective function for the items. We will follow the LambdaMART
approach described previously and learn an ensemble of trees for each one of
the fu and fv functions. Concretely:

ûi = fu(ci) =
TX

t=1

⌘h(t)
u (ci) (16)

v̂j = fv(dj) =
TX

t=1

⌘h(t)
v (dj) (17)

Unlike standard LambdaMART the trees we will learn are multi-output re-
gression trees, predicting the complete latent profile of users or items. Now at

each step t of the gradient descent we learn the h(t)
u (c) and h(t)

v (d) trees that
fit the negative of the partial derivatives given at equations 14, 15. We learn
the trees by greedily optimizing the sum of squared errors over the over the
dimensions of the partial gradients. The t gradient descent step for ui is given
by:

u(t)
i = u

(t�1)
i �

mX

j=1

@LMF (Y, Ŷ)

@ŷij

���
ŷ
ij

=û(t�1)T
i

v̂(t�1)
j

@ûT
i v̂

(t�1)
j

@ûi

and for vj by:

v(t)
j = v(t�1)

j �
nX

i=1

@LMF (Y, Ŷ)

@ŷij

���
ŷ
ij

=û(t�1)T
i

v̂(t�1)
j

@û(t�1)T
i v̂j

@v̂j

8 Phong Nguyen and Jun Wang and Alexandros Kalousis

The functions of each step are now:

f (t)
u (c) = f (t�1)

u (c) + ⌘h(t)
u (c) (18)

f (t)
v (d) = f (t�1)

v (d) + ⌘h(t)
v (d) (19)

which give rise to the final form of the functional estimates that we already
gave in equations 16 and 17 respectively. Optimizing for both ui and vj at
each step of the gradient descent results to a faster convergence, than first
optimizing for one while keeping the other fixed and vice versa. We will call
the resulting algorithm LambdaMART Matrix Factorization and denote it by
LM-MF.

4 Regularization

In this section, we will describe a number of di↵erent regularization methods
to constrain in a meaningful manner the learning of the user and item latent
profiles. We will do so by incorporating di↵erent regularizers in the gradient
boosting tree algorithm to avoid overfitting during the learning of the fu and
fv functions in a manner that will reflect the original user and item manifolds
as well as their relationships as these are described in the preference matrix.

4.1 Input-Output Space Regularization

LambdaMART-MF learns a new representation of users and items. We will reg-
ularize these representations by constraining them by the geometry of the user
and item spaces as this is given by the c and d descriptors respectively. Based
on these descriptors we will define user similarities and item similarities, which
we will call input-space similarities in order to make explicit that they are com-
puted on the side-information vectors describing the users and the items. In
addition to the input-space similarities we will also define what we will call
output space similarity which will reflect the similarities of users(items) ac-
cording to the respective similarities of their preference vectors. We will regu-
larize the learned latent representations by the input/output space similarities
constraining the former to follow the latter.

To define the input space similarities we will use the descriptors of users
and items. Concretely given two users ci and cj we measure their input space
similarity sU

in

(ci, cj) using the heat kernel over their descriptors as follows:

sU
in

(ci, cj ;�) = e��||c
i

�c
j

||2 (20)

where � is the inverse kernel width of the heat kernel; we set its value to the
squared inverse average Euclidean distance of all the users in the C space,
i.e. � = ((1n

P
ij ||ci � cj ||)2)�1. By applying the above equation over all user

pairs, we get the SU
in

: n⇥ n user input similarity matrix. We will do exactly

Factorizing LambdaMART for cold start recommendation 9

the same to compute the SV
in

: m⇥m item input similarity matrix using the
item descriptors D.

To define the output space similarities we will use the preference vectors
of users and items. Given two users i and j and their preference vectors yi·
and yj·, we will measure their output space similarity sU

out

(yi·,yj·) using
NDCG@k since this is the metric that we want to optimize. To define the
similarities, we first compute the NDCG@k on the (yi·,yj·) pair as well as
on the (yj·,yi·), because the NDCG@k is not symmetric, and compute the
distance dNDCG@k(yi·,yj·) between the two preference vectors as the average
of the two previous NDCG@k measures which we have subtracted from one:

dNDCG@k(yi·,yj·) =
1

2
((1�NDCG@k(yi·,yj·)) + (1�NDCG@k(yj·,yi·)))

We define finally the output space similarity sU
out

(yi·,yj·) by the exponential
of the negative distance:

sU
out

(yi·,yj·) = e�dNDCG@k

(y
i·,yj·) (21)

The resulting similarity measure gives high similarity to preference vectors
that are very similar in their top-k elements, while preference vectors which
are less similar in their top-k elements will get much lower similarities. We
apply this measure over all user preference vector pairs to get the SU

out

: n⇥n
user output similarity matrix. We do the same for items using now the y·i and
y·j preference vectors for each ijth item pair to get the SV

out

: m ⇥ m item
output similarity matrix.

To regularize the user and item latent profiles, we will use graph laplacian
regularization and force them to reflect the manifold structure of the users and
items as these are given by the input and outpout space similarity matrices.
Concretely, we define the user and item regularizers RU and RV as follows:

RU = µ1||ÛT
LU

in

Û||2F + µ2||ÛT
LU

out

Û||2F (22)

RV = µ1||V̂T
LV

in

V̂||2F + µ2||V̂T
LV

out

V̂||2F (23)

where the four laplacian matrices LU
in

, LU
out

, LV
in

and LV
out

are defined
as L = D � S where Dii =

P
j Sij and S are the corresponding similarity

matrices. µ1 and µ2 are regularization parameters that control the relative
importance of the input and output space similarities respectively.

4.2 Weighted NDCG Cost

In addition to the graph laplacian regularization over the latent profiles, we
also provide a soft variant of the NDCG loss used in LambdaMART. Recall
that in NDCG the loss is determined by the pairwise di↵erence incurred if
we exchange the position of two items j and k for a given user i. This loss
can be unreasonably large even if the two items are similar to each other with
respect to the similarity measures defined above. A consequence of such large

10 Phong Nguyen and Jun Wang and Alexandros Kalousis

penalties will be a large deviance of the gradient boosted trees under which
similar items will not anymore fall in the same leaf node. To alleviate that
problem we introduce a weighted NDCG di↵erence which takes into account
the items’ input and output similarities, which we define as follows:

SV = µ1SV
in

+ µ2SV
out

(24)

�WNDCGi
jk = �NDCGi

jk(1� sV
jk

) (25)

Under the weighted variant if two items j and k are very similar the incurred
loss will be by construction very low leading to a smaller loss and thus less
deviance of the gradient boosted trees for the two items.

4.3 Regularized LambdaMART-MF

By combing the input-output space regularization and the weighted NDCG
with LM-MF given in equation 13 we obtain the regularised LambdaMART
matrix factorization the objective function of which is

LRMF (Y, Û, V̂) =
nX

i=1

X

{jk}2Z

|�WNDCGi
jk| log(1 + e��(û

i

(v̂
j

�v̂
k

))) +RU +RV

(26)

Its partial derivatives with respect to ûi, v̂j , are now given by:

@LRMF (Y, Û, V̂)

@ûi
=

mX

j=1

�i
j
@ŷij
@ûi

+ 2µ1

X

j2Ni

U

in

sU
in

,ij(ûi � ûj)

+2µ2

X

j2Ni

U

out

sU
out

,ij(ûi � ûj) (27)

@LRMF (Y, Û, V̂)

@v̂j
=

nX

i=1

�i
j
@ŷij
@vj

+ 2µ1

X

i2Nj

V

in

sV
in

,ij(v̂j � v̂i)

+2µ2

X

i2Nj

V

out

sV
out

,ij(v̂j � v̂i) (28)

where Ni
U

in

is the set of the k nearest neighbors of the ith user defined on the
basis of the input similarity.

To optimize our final objective function, equation 26, we learn the latent
profiles of users and items by gradient boosted trees. We will call the resulting
algorithm Regularized LambdaMART Matrix Factorization and denote it by
LM-MF-Reg. The algorithm is described in Algorithm 1. At iteration t, we first
compute the partial derivatives of the objective function at point (Ût�1, V̂t�1).
Then we fit the trees ht

u and ht
v for the user and item descriptions respectively.

Finally, we update the predictions of Û and V̂ according to the output of

Factorizing LambdaMART for cold start recommendation 11

Algorithm 1 Regularized LambdaMART Matrix Factorization

Input: C, D,Y, SU
out

,SU
in

, SV
out

,SV
in

,µ1, µ2, ⌘,r, and T
Output: fu and fv
initialize: f0

u(c) and f0
v (d) with random values

initialize t = 1
repeat

a) compute rtu
i

= � @L
RMF

(Y,Û,V̂)
@û

i

���Û=Ût�1,V̂=V̂t�1 according to equation 27, for

i = 1 to n

b) compute rtv
j

= � @L
RMF

(Y,Û,V̂)
@v̂

j

���Û=Ût�1,V̂=V̂t�1 according to equation 28, for

j = 1 to m
c)fit a multi-output regression tree ht

u for {(ci, rtu
i

)}ni=1

d)fit a multi-output regression tree ht
v for {(di, rtv

i

)}mi=1

e) f t
u(ci) = f t�1

u (ci) + ⌘ht
u(ci)

f) f t
v(dj) = f t�1

v (dj) + ⌘ht
v(dj)

until converges or t=T

regression trees. The learning process is continued until the maximum number
of trees is reached or the early stop criterion is satisfied. In all our experiments,
the maximum number of trees is set by 15000. The early stopping criterion is
no validation set error improvement in 200 iterations.

5 Experiments

We will evaluate the two basic algorithms that we presented above, LM-MF
and LM-MF-Reg, on two recommendation problems, meta-mining and Movie-
Lens, and compare their performance to a number of baselines.

Meta-mining [12] applies the idea of meta-learning or learning to learn to
the whole DM process. Data mining workflows and datasets are extensively
characterised by side information. The goal is to suggest which data min-
ing workflow should be applied on which dataset in view of optimizing some
performance measure, e.g. accuracy in classification problems, by mining past
experiments. Recently [18] have proposed tackling the problem as a hybrid rec-
ommendation problem: dataset-workflow pairs can be seen as user-item pairs
which are related by the relative performance achieved by the workflows ap-
plied on the datasets. Here we go one step further [18] and treat meta-mining
as a learning to rank problem.

MovieLens2 is a well-known benchmark dataset for collaborative filtering.
It provides one to five star ratings of users for movies, where each user has rated
at least twenty movies. The dataset provides also limited side information on
users and items. It has been most often used in non cold start settings, due
to the di�culty in exploiting the side information. It comes in two versions:
the first contains one hundred thousand ratings (100K) and the second one
million (1M). We experiment with both of them.

2 http://grouplens.org/datasets/movielens/

12 Phong Nguyen and Jun Wang and Alexandros Kalousis

users items ratings % comp. Y d l
Meta-Mining 65 35 2275 100.0% 113 214
MovieLens 100K 943 1682 100K 6.3% 4 19
MovieLens 1M 6040 3900 1M 4.2% 4 19

Table 1: Dataset statistics

In Table 1 we give a basic description of the three di↵erent datasets, namely
the numbers of ratings, users, items, the numbers of user and item descriptors,
d and l respectively, and the percentage of available entries in the Y preference
matrix. The meta-mining dataset has a quite extensive set of features giving
the side information and a complete preference matrix, it is also considerably
smaller than the two MovieLens variants. The MovieLens datasets are char-
acterized by a large size, the limited availability of side information, and the
very small percentage of available entries in the preference matrix. Overall we
have two recommendation problems with very di↵erent characteristics.

5.1 Recommendation Tasks

We will evaluate the performance of the algorithms we presented in two dif-
ferent variants of the cold start problem. In the first, that we will call User
Cold Start, we will evaluate the quality of the recommendations generated for
unseen users when the set of items over which we provide recommendations is
fixed. In the second variant, which we will call Full Cold Start, we will provide
suggestions over both unseen users and items. We will also evaluate the perfor-
mance of the algorithms in a Matrix Completion setting; here we will randomly
remove items from the users preference lists and predict the preferences of the
removed items with a model learned on the remaining observed ratings. In
model-based collaborative filtering, matrix completion has been usually ad-
dressed by low-rank matrix factorization algorithms that do not exploit side
information. We want to see whether exploiting the side information can bring
substantial improvements in the matrix completion performance.

Note that provision of recommendations in the cold start setting is much
more di�cult than the matrix completion since in the former we do not have
historical data for the new users and new items over which we need to provide
the recommendations and thus we can only rely on their side information to
infer the latter.

5.2 Comparison Baselines

As first baseline we will use LambdaMART (LM), [5], in both cold start vari-
ants as well as in the matrix completion setting. To ensure a fair comparison
of our methods against LamdaMART we will train all of them using the same
values over the hyperparameters they share, namely learning rate, size of re-
gression trees and number of iterations. In the matrix completion we will also

Factorizing LambdaMART for cold start recommendation 13

add CofiRank (CR) as a baseline, a state-of-the-art matrix factorization algo-
rithm in collaborative ranking [22]. CR minimizes an upper bound of NDCG
and uses the l2 norm to regularize the latent factors. Its objective function is
thus similar to those of our methods and LambdaMART’s but it learns directly
the latent factors by gradient descent without using the side information.

For the two cold start evaluation variants, we will also have as a second
baseline a memory-based approach, one of the most common approaches used
for cold start recommendations [3]. In the user cold start setting we will pro-
vide item recommendations for a new user using its nearest neighbors. This
user memory-based (UB) approach will compute the preference score for the
jth item as: ŷj = 1

|N|
P

i2N yij , where N is the set of the 5-nearest neigh-
bors for the new user for which we want to provide the recommendations.
We compute the nearest neighbors using the Euclidean distance on the user
side information. In the full cold start setting, we will provide recommenda-
tions for a new user-item pair by joining the nearest neighbors of the new
user with the nearest neighbors of the new item. This full memory-based (FB)
approach will compute the preference score for the ith user and jth item as:
ŷij =

1
|N

i

|⇥|N
j

|
P

c2N
i

P
d2N

j

ycd, where Ni is the set of the 5-nearest neighbors

for the new user and Nj is the set of the 5-nearest neighbors for the new item.
Both neighborhoods are computed using the Euclidean distance on the user
and item side-information features respectively.

Finally we will also experiment with the LambdaMART variant in which
we use the weighted NDCG cost that we described in section 4.2 in order to
evaluate the potential benefit it brings over the plain NDCG; we will call this
method LMW.

5.3 Meta-Mining

The meta-mining problem we will consider is the one provided by [18]. It
consists of the application of 35 feature selection plus classification workflows
on 65 real world datasets with genomic microarray or proteomic data related to
cancer diagnosis or prognosis, mostly from National Center for Biotechnology
Information3. The preference score that corresponds to each dataset-workflow
pair is given by a number of significance tests on the performances of the
di↵erent workflows that are applied on a given dataset. More concretely, if a
workflow is significantly better than another one on the given dataset it gets
one point, if there is no significant di↵erence between the two workflows then
each gets half a point, and if it is significantly worse it gets zero points. Thus if
a workflow outperforms in a statistically significant manner all other workflows
on a given dataset it will get m � 1 points, where m is the total number of
workflows (here 35). In the matrix completion and the full cold start settings we
compute the preference scores with respect to the training workflows since for
these two scenarios the total number of workflows is less than 35. In addition,

3 http://www.ncbi.nlm.nih.gov/

14 Phong Nguyen and Jun Wang and Alexandros Kalousis

we rescale the performance measure from the 0-34 interval to the 0-5 interval
to avoid large preference scores from overwhelming the NDCG due to the
exponential nature of the latter with respect to the preference score.

To describe the datasets and the data mining workflows we use the same
characteristics that were used in [18]. Namely 113 dataset characteristics that
give statistical, information-theoretic, geometrical-topological, landmarking and
model-based descriptors of the datasets and 214 workflow characteristics de-
rived from a propositionalization of a set of 214 tree-structured generalized
workflow patterns extracted from the ground specifications of DM workflows.

5.3.1 Evaluation Setting

We fix the parameters that LambdaMART uses to construct the regression
trees to the following values: the maximum number of nodes for the regression
trees is three, the minimum percentage of instances in each leaf node is 10% and
the learning rate, ⌘, of the gradient boosted tree algorithm to 10�2. To build
the ensemble trees of LM-MF and LM-MF-Reg we use the same parameter
settings as the ones we use in LambdaMART. We select their input and output
regularization parameters µ1 and µ2 in the grid [0.1, 1, 5, 7, 10]2, by three-
fold inner cross-validation. We fix the number of nearest neighbors for the
Laplacian matrices to five. To compute the output-space similarities, we used
the NDCG similarity measure defined in Eq. 21 where the truncation level k
is set to the truncation level at which each time we report the results.

To build the di↵erent recommendation scenarios, we have proceeded as
follows. In matrix completion we randomly select N workflows for each dataset
to build the training set. We choose N 2 {5, 10, 15}. For each dataset, we use
ten workflows, di↵erent from the N ones selected in training, for validation
and we use the rest for testing. This scenario emulates a 86%, 71% and 57% of
missing values in the preference matrix. Since in the matrix completion setting
the numbers of users and items are fixed, we fix the number of hidden factors
r to min(n,m) = 35 for all three matrix factorization algorithms, LM-MF,
LM-MF-Reg and CofiRank. For this baseline we used the default parameters
as these are provided in [22]. We report the average NDCG@5 measure on the
test workflows of each dataset.

In the user cold start scenario, we will evaluate the performance in provid-
ing accurate recommendations for new datasets. To do so we do a leave-one-
dataset-out. We train the di↵erent methods on 64 datasets and evaluate their
recommendations on the left-out dataset. Since there are no missing workflows
as previously we also fix the number of hidden factors r to min(n,m) = 35.
In the full cold start scenario on top of the leave-one-dataset-out we also ran-
domly partition the set of workflows in two sets, where we use 70% of the
workflows for training and the remaining 30% as the test workflows for the
left-out dataset. That is the number of workflows in the train set is equal to
b0.7 ⇥ 35c = 24 which defines the number of hidden factors r. We use the
11 remaining workflows as the test set. For the both cold start scenarios, we

Factorizing LambdaMART for cold start recommendation 15

report the average testing NDCG measure. We compute the average NDCG
score at the truncation levels of k = 1, 3, 5

For each of the two algorithms we presented we compute the number of
times we have a performance win or loss compared to the performance of the
baselines. On these win/loss pairs we do a McNemar’s test of statistical sig-
nificance and report its results, we set the significance level at p = 0.05. For
the matrix completion we denote the results of the performance comparisons
against the CofiRank and LambdaMART baselines by �CR and �LM respec-
tively. We give the complete results in table 2. For the user cold start we
denote the results of the performance comparisons against the user-memory
based and the LambdaMART baselines by �UB and �LM respectively, table 3a.
For the full cold start we denote by �FB and �LM the performance comparisons
against the full-memory-based and the LambdaMART baselines respectively,
table 3b.

N = 5 N = 10 N = 15
CR 0.5755 0.6095 0.7391
LM 0.6093 0.6545 0.7448
�CR p=0.4567(=) p=0.0086(+) p=1(=)
LMW 0.5909 0.6593 0.7373
�CR p=1(=) p=0.0131(+) p=0.6985(=)
�LM p=0.2626 p=0.0736(=) p=1(=)
LM-MF 0.6100 0.6556 0.7347
�CR p=0.0824(=) p=0.0255(+) p=0.6985(=)
�LM p=0.7032(=) p=1(=) p=0.7750(=)
LM-MF-Reg 0.61723 0.6473 0.7458
�CR p=0.0471(+) p=0.0824(=) p=0.6985(=)
�LM p=0.9005(=) p=0.8955(=) p=0.2299(=)

Table 2: NDCG@5 results on meta-mining for the Matrix Completion set-
ting. N is the number of workflows we keep in each dataset for training. For
each method, we give the comparison results against the CofiRank and Lamb-
daMart methods in the rows denoted by �CR and �LM respectively. More
precisely we report the p-values of the McNemar’s test on the numbers of
wins/losses and denote by (+) a statistically significant improvement, by (=)
no performance di↵erence and by (-) a significant loss. In bold, the best method
for a given N .

5.3.2 Results

Matrix Completion CR achieves the lowest performance for N = 5 and N =
10, compared to the other methods; for N = 15 the performances of all meth-
ods are very similar, table 2. The strongest performance advantages over the
CR baseline appear at N = 10; there LMW and LM-MF are significantly
better and LM-MF-Reg is close to being significantly better, p-value=0.0824.
At N = 5 only LM-MF-Reg is significantly better than CR. When it comes

16 Phong Nguyen and Jun Wang and Alexandros Kalousis

to LM and its new variants that we propose here, neither its factorised vari-
ant, i.e. LM-MF, nor the regularised version of LM-MF bring any performance
improvement for matrix completion in the meta-mining problem.

User Cold Start Here LM-MF and LM-MF-Reg achieve performance improve-
ments over both the UB and the LM baselines for all values of the k truncation
level, table 3a. At k = 1 both of them beat in a statistically significant manner
the UB baseline, and they are also close to beating in a statistical significant
manner the LM baseline as well, p-value=0.0636. At k = 3 both beat in a
statistically significant manner UB but not LM, at = 5 there are no signifi-
cant di↵erences. Finally, note the LambdaMART variant that makes use of the
weighted NDCG, LMW, does not seem to bring an improvement over the plain
vanilla NDCG, LM. Overall while factorization and regularization using user
and item information bring performance improvements over the plain vanilla
LM these fall short from being statistically significant.

Full Cold Start Here the performance advantage of LM-MF and LM-MF-Reg
is even more pronounced, table 3b. Both of them beat in a statistically signif-
icant manner the LM baseline for all values k. They also beat the FB baseline
in a statistically significant manner at k = 1 with LM-MF beating it also in
a statistical significant manner at k = 3 as well. Overall in the full cold start
problem the introduction of factorization in LM brings statistical significant
performance improvements; the use of user and item side information also
seems to bring performance benefits over the factorised variant of LM.

5.4 MovieLens

The MovieLens recommendation dataset has a quite di↵erent morphology than
that of the meta-mining. The descriptions of the users and the items are much
more limited; users are described only by four features: sex, age, occupation
and location, and movies by their genre which takes 19 di↵erent values, such
as comedy, sci-fi to thriller, etc. We model these descriptors using one-of-N
representation.

In the MovieLens dataset the side information has been mostly used to
regularize the latent profiles and not to predict them, see e.g [1,2]. Solving the
cold start problem in the presence of so limited side information is a rather
di�cult task and typical collaborative filtering approaches make only use of
the preference matrix Y to learn the user and items latent factors.

5.4.1 Evaluation setting

We use the same baseline methods as in the meta-mining problem. We train
LM with the following hyper-parameter setting: we fix the maximum number
of nodes for the regression trees to 100, the minimum percentage of instances
in each leaf node to 1% for the cold start problems and 0% for the matrix

Factorizing LambdaMART for cold start recommendation 17

k=1 k=3 k=5
UB 0.4367 0.4818 0.5109
LM 0.5219 0.5068 0.5135
�UB p=0.0055(+) p=0.1691(=) p=0.9005(=)
LMW 0.5008 0.5232 0.5168
�UB p=0.0233(+) p=0.2605(=) p=0.5319(=)
�LM p=0.4291(=) p=0.1845(=) p=0.8773(=)
LM-MF 0.5532 0.5612 0.5691
�UB p=0.0055(+) p=0.0086(+) p=0.3210(=)
�LM p=0.0636(=) p=0.0714(=) p=0.1271(=)
LM-MF-Reg 0.5577 0.5463 0.5569
�UB p=0.0055(+) p=0.0086(+) p=0.3815(=)
�LM p=0.0636(=) p=0.1056(=) p=0.2206(=)

(a) User Cold Start

k = 1 k = 3 k = 5
FB 0.46013 0.5329 0.5797
LM 0.5192 0.5231 0.5206
�FB p=0.0335(+) p=0.9005(=) p=0.0607(=)
LMW 0.5294 0.5190 0.5168
�FB p=0.0086(+) p=1(=) p=0.0175(-)
�LM p=1(=) p=1(=) p=0.5218(=)
LM-MF 0.5554 0.6156 0.5606
�FB p=0.0175(+) p=0.0175(+) p=0.6142(=)
�LM p=0.0171(+) p=0.0048(+) p=0.0211(+)
LM-MF-Reg 0.5936 0.5801 0.5855
�FB p=0.0007(+) p=0.1041(=) p=1(=)
�LM p=0.0117(+) p=0.0211(+) p=0.0006(+)

(b) Full Cold Start

Table 3: NDCG@k results on meta-mining for the two cold start settings. For
each method, we give the comparison results against the user, respectively
full, memory-based and LambdaMart methods in the rows denoted by �UB ,
respectively �FB , and �LM . The table explanation is as before. In bold, the
best method for a given k.

completion problem, and the learning rate, ⌘, of the gradient boosted tree
algorithm to 10�2. As in the meta-mining problem for the construction of the
ensemble of regression trees in LM-MF and LM-MF-Reg we use the same set-
ting for the hyperparameters they share with LM. We optimize their µ1 and µ2

regularization parameters within the grid [0.1, 1, 5, 10, 15, 20, 25, 50, 80, 100]2

using five-fold inner cross validation for the cold start problems. For the ma-
trix completion problem, we manually set these two parameters to one. We
fix the number of factors r to 50 and the number of nearest neighbors in the
Laplacian matrices to five. As in the meta-mining problem we used the NDCG
similarity measure to define output-space similarities with the truncation level
k set to the same value as the one at which we evaluate the methods.

We will evaluate and compare the di↵erent methods under the matrix com-
pletion scenario in the MovieLens 100k dataset and the two cold start scenarios
in both MovieLens datasets. In the matrix completion problem, we randomly

18 Phong Nguyen and Jun Wang and Alexandros Kalousis

select N movies per user, N 2 {5, 10, 15}, to build the training set, ten di↵er-
ent movies for validation and the rest for testing. This is referred as the weak

generalization procedure defined in [22]. In the 100k MovieLens dataset this
procedure generates 95.28%, 91.78% and 88.84% missing preferences respec-
tively over the 6.3% originally observed preferences. This brings the number
of observed entries to less than 1% for all three values of N. In the user cold
start problem, we randomly select 50% of the users for training and we test
the recommendations that the learned models generate on the remaining 50%.
In the full cold start problem, we use the same separation to training and test-
ing users and in addition we also randomly divide the item set to two equal
size subsets, where we use one for training and the other for testing. Thus the
learned models are evaluated on users and items that have never been seen in
the model training phase. We give the results for the 100k and 1M variants of
the MovieLens dataset for the user cold start scenario in table 5a and for the
full cold start scenario in table 5b.

5.4.2 Results

Matrix Completion In Table 4 we can see that for MovieLense 100k the worst
performance matrix completion performance is achieved by LM for all the three
values of observed preferences per user (N parameter); LM is statistically sig-
nificantly worse when compared against CR, LM-MF and LM-MF-Reg. The
best performance is achieved by LM-MF and LM-MF-Reg; both are statisti-
cally significantly better against the two baselines for N = 5 and N = 10.
For N = 15, LM-MF-Reg is also close to being significantly better than CR
with a p-value of 0.0723. Overall, we see that when we have a very small
number of observed preferences, < 1% of all possible references, LM is per-
forming worse than all matrix factorization algorithms. On the other hand the
introduction of latent variables and factorization in LM, i.e. LM-MF, brings
statistically significant performance improvements; the use of regularization
based on side-information does not seem to bring any improvement over the
factorised variant of LM. The advantage of both LM-MF and LM-MF-Reg is
much more pronounced compared to the baseline comparison methods when
the number of observed preferences per user is very low, N = 5, 10.

User Cold Start In the user cold start scenario, table 5a, we can see first
that both LM-MF and LM-MF-Reg beat in a statistically significant manner
the UB baseline in both MovieLens variants for all values of the truncation
parameter, with the single exception of LM-MF at 100k and k = 5 for which
the performance di↵erence is not statistically significant. LM and its weighted
NDCG variant, LMW, are never able to beat UB; LM is even statistically
significantly worse compared to UB at 1M for k = 5. Moreover both LM-MF
and its regularized variant beat in a statistically significant manner LM in both
MovieLens variants and for all values of k. LM-MF-Reg has a small advantage
over LM-MF for 100K, it achieves a higher average NDCG score, however
this advantage disappears when we move to the 1M dataset, which is rather

Factorizing LambdaMART for cold start recommendation 19

normal since due to the much larger dataset size there is less need for additional
regularization. Moreover since we do a low-rank matrix factorization, we have
r = 50 for the roughly 6000 users. which already is on its own a quite strong
regularization rendering also unnecessary the need for the input/output space
regularizers.

Full Cold Start A similar picture arises in the full cold start scenario, table 5b.
With the exception of MovieLens 100K at k = 10 both LM-MF and LM-MF-
Reg beat always in a statistically significant the FB baseline. Note also that
now LM as well as its weigthed NDCG variant are significantly better than the
FB baseline for the 1M dataset and k = 5, 10. In adition the weigthed NDCG
variant is significantly better than LM for 100k and 1M at k = 5 and k = 10
respectively. Both LM-MF and LM-MF-Reg beat in a statistically significant
manner LM, with the exception of 100k at k = 10 where there is no significant
di↵erence. Unlike the user cold start problem, now it is LM-MF that achieves
the best overall performance.

N = 5 N = 10 N = 15
CR 0.6254 0.6459 0.6555
LM 0.6046 0.6130 0.6229
�CR p=1(-) p=1(-) p=1(-)
LM-MF 0.6755 0.6740 0.6697
�CR p=1e�5(+) p=0.0088(+) p=0.3594(=)
�LM p=2e�16(+) p=2e�16(+) p=7e�11(+)
LM-MF-Reg 0.6738 0.6720 0.6697
�CR p=4e�5(+) p=0.0395(+) p=0.0723(=)
�LM p=2e�16(+) p=2e�16(+) p=2e�11(+)

Table 4: NDCG@10 results on the MovieLens 100K dataset for the Matrix

Completion setting. N is the number of movies we keep per user for training.
The table has the same interpretation as table 2.

5.5 Discussion

We performed a number of experiments with the new variants of LM that we
presented in this paper on three recommendation datasets with very di↵er-
ent characteristics. The Meta-Mining dataset is a very small recommendation
dataset with only 65 ”users” and 35 ”items”, with quite detailed descriptions of
the users and the items and full preference information available. The movie-
lens datasets are traditional recommendation benchmark datasets with few
thousands users and items, limited number of features describing them, and
very low percentages of observed preferences. Not surprisingly the observed
performance patterns di↵er over the two dataset types.

In the Meta-Mining dataset the introduction of factorization to LM does
not bring any significant performance improvement over plain LM for the

20 Phong Nguyen and Jun Wang and Alexandros Kalousis

100K 1M
k = 5 k = 10 k = 5 k = 10

UB 0.6001 0.6159 0.6330 0.6370
LM 0.6227 0.6241 0.6092 0.6453
�UB p=0.2887(=) p=0.8537(=) p=0.0001(-) p=0.1606(=)
LMW 0.6252 0.6241 0.6455 0.6450
�UB p=0.0878(=) p=0.5188(=) p=0.0120(+) p=0.1448(=)
�LM p=0.7345(=) p=0.9029(=) p=0.0000(+) p=0.5219(=)
LM-MF 0.6439 0.6455 0.6694 0.6700
�UB p=0.0036(+) p=0.1171(=) p=0.0000(+) p=0.0000(+)
�LM p=2e�06(+) p=6e�06(+) p=0.0000(+) p=0.0000(+)
LM-MF-Reg 0.6503 0.6581 0.6694 0.6705
�UB p=4e�05(+) p=0.0001(+) p=0.0000(+) p=0.0000(+)
�LM p=3e�06(+) p=0.0000(+) p=0.0000(+) p=0.0000(+)

(a) User Cold Start

100K 1M
k = 5 k = 10 k = 5 k = 10

FB 0.5452 0.5723 0.5339 0.5262
LM 0.5486 0.5641 0.5588 0.5597
�FB p=0.7817(=) p=0.4609(=) p=1e�06(+) p=0.0001(+)
LMW 0.5549 0.5622 0.55737 0.5631
�FB p=0.4058(=) p=0.2129(=) p=9e�06(+) p=1e�06(+)
�LM p=0.0087(+) p=0.8830(=) p=0.1796(=) p=3e�06(+)
LM-MF 0.5893 0.5876 0.5733 0.5750
�FB p=0.0048(+) p=0.2887(=) p=0.0000(+) p=0.0000(+)
�LM p=3e�06(+) p=0.0001(+) p=0.0000(+) p=0.0000(+)
LM-MF-Reg 0.5699 0.57865 0.5736 0.5683
�FB p=0.0142(+) p=0.1810(=) p=0.0000(+) p=4e�07(+)
�LM p=0.0310(+) p=0.0722(=) p=0.0000(+) p=0.0000(+)

(b) Full Cold Start

Table 5: NDCG@k results on the two MovieLens datasets for the two cold
start setting. For each method, we give the comparison results against the
user, respectively full, memory-based and LambdaMART methods in the rows
denoted by �UB , respectively �FB , and �LM . The table explanation is as before.
In bold, the best method for a given k.

matrix completion experiments. In the user cold start experiment while the
factorization brings nominal performance improvements over the performance
of plain LM these fall short from being statistically significant. In the full
cold start the introduction of factorization now brings statistically significant
performance improvements; the incorporation of regularisation, LM-MF-reg,
seems also to bring performance improvements over LM-MF.

In the MovieLens datasets the factorization of LM brings significant per-
formance improvements in all three experiments we performed, i.e. matrix
completion, user and item cold start, over the plain vanilla LM. The addition
of regularization, LM-MF-Reg, does not bring significant performance benefits
over LM-MF with the exception of the user cold start experiment on the small
MovieLens dataset which seems to benefit from the regulariser.

Factorizing LambdaMART for cold start recommendation 21

The limited benefit of LM-MF and LM-MF-Reg in the MetaMining exper-
iments, despite the extensive descriptors of users and items, can be explained
both by the particularities of the MetaMining problem as well as by the dataset
size. It is well known that getting appropriate descriptors for datasets for the
metalearning problem is a quite challenging task which still has not been ad-
dressed in a satisfactory manner [4]. The size of the MetaMining dataset is
also quite small compared to that typically seen in recommendation problems.
This is particularly pronounced in the matrix completion setting where we
have generated very large levels of missing preference scores, between 57%
and 86% of the total number of preference scores, resulting in hardly any
performance di↵erence between the di↵erent methods. In the two cold start
settings we have a considerably larger proportion of available training data,
which allows for a better performance di↵erentiation of the methods, based on
how well they exploit the available training data for learning.

6 Related work

Most of the work related to ours comes from matrix factorization. In [19] we
proposed a hybrid recommendation algorithm for the meta-mining problem,
that was learning metrics (projections) of the user and item spaces to a com-
mon space; the inner product of the projections was the preference score. We
used gradient descent to optimise a squared loss in which we regularised the
projections of users and items to the common space to reflect the output space
similarities generated from the preference matrix. The current paper in a sense
generalises that work by learning non-linear mappings of the user and item fea-
tures to the latent space and optimizing a ranking-based loss. [20] propose an
algorithm for matrix completion in collaborative filtering which uses the same
Laplacian regularisers as we do over the input space and optimises a square
loss using conjugate gradient. [16] do matrix factorization using a squared loss
function and apply Laplacian regularisation on the user side. Similar Lapla-
cian regularisers have been used for matrix completion in [14] with a squared
loss coupled with low rank regularisation on the completed matrix together
and the Laplacian regularisers imposed directly on the columns and rows of
the completed matrix. [7] learn using gradient descent non-negative matrix
factorizations with a divergence or a squared loss function coupled with a
Laplacian regulariser on the user part. All of the above do matrix comple-
tion using squared loss functions and with the exception of [19] do not handle
the cold start recommendation problem. The use of Laplacian regularisers is
rather common and they have been used in very di↵erent settings such as
matrix factorization for transfer learning, [17]. Other relevant works include
[8] where the authors do matrix factorization, with a quadratic loss function
using gradient boosting, and [15] where the authors also do matrix factoriza-
tion using as cost function NDCG which they optimize with lambda gradient
as done in LambdaRank algorithm [5].

22 Phong Nguyen and Jun Wang and Alexandros Kalousis

7 Conclusion

Since only top items are observable by users in real recommendation systems,
we believe that ranking loss functions that focus on the correctness of the
top item predictions are more appropriate for this kind of problem. Lamb-
daMART is a state of the art learning to rank algorithm the loss function of
which does focus on the correctness of the top items predictions. We build on
LambdaMART and we propose two basic variants of it. Motivated by the fact
that in recommendation problems the descriptions of users and items are gov-
erned by a small number of latent factors we cast the learning to rank problem
as the learning of a low-rank matrix factorization of the preference martix; the
learned factors correspond to low dimensional descriptions of users and items
and the user-item preference scores are now computed as inner products of
the latent representations of the users and items. Moreover we regularise the
learning of the latent factors imposing Laplacian regularisers that constrain
them to reflect the user and item manifolds as these are given by their feature
descriptions and the preference matric.

We experimented with the two new LambdaMART variants on a couple
of very di↵erent recommendation datasets, MetaMining and MovieLens, in
three di↵erent recommendation settings, matrix completion, cold start, and
full cold start. In the MetaMining dataset the matrix factorization brings
significant performance improvements only for the full cold start setting; in
the MovieLens dataset the improvements are significant in all three recom-
mendation settings. The incorporation of the regularisation on the factorized
LambdaMART variant seems to improve performance only on a small subset
of the experiments, namely full cold start in the MetaMining dataset and the
user cold start on the small MovieLens dataset.

References

1. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: Low-rank matrix factorization with
attributes. arXiv preprint cs/0611124 (2006)

2. Agarwal, D., Chen, B.C.: flda: matrix factorization through latent dirichlet alloca-
tion. In: Proceedings of the third ACM international conference on Web search and
data mining, WSDM ’10, pp. 91–100. ACM, New York, NY, USA (2010). DOI
10.1145/1718487.1718499

3. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood
interpolation weights. In: Data Mining, 2007. ICDM 2007. Seventh IEEE International
Conference on, pp. 43–52. IEEE (2007)

4. Brazdil, P., Giraud-Carrier, C.G., Soares, C., Vilalta, R.: Metalearning - Applications to
Data Mining. Cognitive Technologies. Springer (2009). DOI 10.1007/978-3-540-73263-1.
URL http://dx.doi.org/10.1007/978-3-540-73263-1

5. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview. Learning 11,
23–581 (2010)

6. Burges, C.J., Svore, K.M., Bennett, P.N., Pastusiak, A., Wu, Q.: Learning to rank
using an ensemble of lambda-gradient models. Journal of Machine Learning Research-
Proceedings Track 14, 25–35 (2011)

7. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factoriza-
tion for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560
(2011)

Factorizing LambdaMART for cold start recommendation 23

8. Chen, T., Li, H., Yang, Q., Yu, Y.: General functional matrix factorization using gradient
boosting. In: Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 436–444 (2013)

9. Donmez, P., Svore, K.M., Burges, C.J.: On the local optimality of lambdarank. In: Pro-
ceedings of the 32nd international ACM SIGIR conference on Research and development
in information retrieval, pp. 460–467. ACM (2009)

10. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals
of Statistics pp. 1189–1232 (2001)

11. Fürnkranz, J., Hüllermeier, E.: Preference learning. Springer (2010)
12. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-based meta-mining

of knowledge discovery workflows. In: N. Jankowski, W. Duch, K. Grabczewski (eds.)
Meta-Learning in Computational Intelligence. Springer (2011)

13. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant doc-
uments. In: Proceedings of the 23rd annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 41–48. ACM (2000)

14. Kalofolias, V., Bresson, X., Bronstein, M.M., Vandergheynst, P.: Matrix completion on
graphs. CoRR abs/1408.1717 (2014)

15. Lee, G., Lin, S.: Lambdamf: Learning nonsmooth ranking functions in matrix factor-
ization using lambda. In: 2015 IEEE International Conference on Data Mining, ICDM
2015, Atlantic City, NJ, USA, November 14-17, 2015, pp. 823–828 (2015)

16. Li, W., Yeung, D.: Relation regularized matrix factorization. In: IJCAI 2009, Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009, pp. 1126–1131 (2009)

17. Long, M., Wang, J., Ding, G., Shen, D., Yang, Q.: Transfer learning
with graph co-regularization. In: J. Ho↵mann, B. Selman (eds.) Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence,
July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press (2012). URL
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4958

18. Nguyen, P., Wang, J., Hilario, M., Kalousis, A.: Learning heterogeneous similarity mea-
sures for hybrid-recommendations in meta-mining. In: IEEE 12th International Con-
ference on Data Mining (ICDM), pp. 1026 –1031 (2012). DOI 10.1109/ICDM.2012.41

19. Nguyen, P., Wang, J., Hilario, M., Kalousis, A.: Learning heterogeneous similarity mea-
sures for hybrid-recommendations in meta-mining. In: 12th IEEE International Con-
ference on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012, pp.
1026–1031 (2012)

20. Rao, N., Yu, H., Ravikumar, P., Dhillon, I.S.: Collaborative filtering with graph informa-
tion: Consistency and scalable methods. In: Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems 2015, De-
cember 7-12, 2015, Montreal, Quebec, Canada, pp. 2107–2115 (2015)

21. Srebro, N., Rennie, J.D.M., Jaakkola, T.S.: Maximum-margin matrix factorization. In:
L.K. Saul, Y. Weiss, L. Bottou (eds.) Advances in Neural Information Processing Sys-
tems 17, pp. 1329–1336. MIT Press, Cambridge, MA (2005)

22. Weimer, M., Karatzoglou, A., Le, Q.V., Smola, A.: Maximum margin matrix factor-
ization for collaborative ranking. Advances in neural information processing systems
(2007)

23. Yue, Y., Burges, C.: On using simultaneous perturbation stochastic approximation for
ir measures, and the empirical optimality of lambdarank. In: NIPS Machine Learning
for Web Search Workshop (2007)

