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Abstract

We develop a functional learning approach to modelling systems of time series
which preserves the ability of standard linear time-series models (VARs) to un-
cover the Granger-causality links in between the series of the system while al-
lowing for richer functional relationships. We propose a framework for learning
multiple output-kernels associated with multiple input-kernels over a structured
input space and outline an algorithm for simultaneous learning of the kernels with
the model parameters with various forms of regularization including non-smooth
sparsity inducing norms. We present results of synthetic experiments illustrating
the benefits of the described approach.

1 Introduction

We consider the problem of learning m functions f; : X1 x ... x &, — J; for one-step-ahead
predictions of m time series from the past evolution of the m-dimensional time-series system. The
time series are observed at synchronous equidistant time points and the observations are arranged
into T sequential input-output pairs {([x};,...,x}),yj¢) : 5 € Ny, t € Ny}, where yj, € V; =
R is the observation of time series j at time point ¢, and x;; € &; = RP is the vector of p latest
observations of series ¢ preceding the time point ¢.

The m functions share a common input space X = AX] x ... x &,,, = R and therefore we
combine them into a single-vector valued function f : X — ), where J = Ujen,,V; € R™ is the
joint output space. In the input-output pairs {(xt7 yt) : t € Np}, we concatenate the m series so
that x; = [X}4,...,%X,) € X =R%and y; = [y1t, .., Yme) € Y = R™. For linear functions f;
this is the well known vector autoregressive model (VAR), e.g. [1]].

Following the standard function-learning theory ([2]) we propose to learn f in the reproducing kernel
Hilbert space (RKHS) # of Y-valued functions endowed with a norm ||.||7; and associated with a
positive-definite matrix-valued kernel H(.,.) : X x X — R™*"™,

Specifically, we focus on the functional spaces associated with the class of sum of separable ker-
nels [3] used frequently in spatio-temporal modelling as approximations of the more general non-
separable kernels (e.g. [4]])
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where each k* : X x X — R is a positive-definite scalar-valued kernel measuring the similarity
between the inputs (input-kernel), and L € S' is a positive-semidefinite matrix encoding the
relationships between the outputs (output-kernel).

Since specifying the appropriate kernels is far from trivial and may lead to serious performance
degradation if chosen wrongly, we propose to learn the output-kernels L? together with the function
f by solving the joint regularized proble
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While the problem of learning function f together with a single output-kernel L has previously been
addressed (e.g. [51,[6],[7]), we are not aware of any existing method learning the multiple output-
kernel matrices L® in the separable kernels (I). Such simultaneous learning is a contribution of our
paper.

Learning multiple L"’s greatly increases the flexibility of the models as compared to a single output-
kernel L. However, the increased complexity calls for a strong regularization via R(.). In this paper
we explore the problem of learning the output kernels with the search space limited to PSD diagonal
matrices L? € D’ in combination with convex yet possibly non-smooth regularization functions
R(.) such as those inducing sparsity [8].

Further, to preserve the ability of our method to capture the Granger causality [9] within the tine-
series system that exists in the standard linear models, we propose to use the input-kernels in (I)) in
the form

kb(xtaxt/) = ngi(xitaxit/)v |{gl}| :B; (3)
where each k9 : X; x X; — R is a positive-definite scalar-valued kernel with a functional form
g operating on the subspace X; of the input space X related to the past of a single time series .
With this input-kernel structure, sparsity promoting regularization over the diagonal output-kernels
L encourages learning sparse Granger causality graphs of the systems.

The above formulation is also flexible enough to accommodate various combinations of kernels
with varying complexity - from the most straightforward of using a single functional form g for
the kernels of all the input subspaces (such as simple linear kernels) to having multiple kernels for
each X; with possibly different functional forms g across the subspaces. It is thus possible to model
differing functional relationships between the input subspaces (single time series history) and the
individual outputs (single time series future) within a single model. For example, uneven length in
the past dependency can be factored into the model by using decaying input kernels x9¢ with varying
speed of decay (e.g. [10]).

2 Learning strategy

Using the representer theorem [2] and introducing the input-kernel gram matrices K* € RT*7T .
K?; = k"(xi,x;), the output matrix Y € R”>*™ and the parameters matrix C € R”*"™ we can
rewrite problem (2) as an equivalent finite-dimensional problem

Y - YPkeen|z P oKre, L 5
arg min I b s -t < L0 +R(§ L) 4)
CGRTX7n¢Lb€,D1L 2)\ 2 b

Instead of solving for multiple diagonal L"’s we gather the diagonals as columns into a non-negtive
matrix © = [diag(L'), ..., diag(L”)] € R7*" and formulate an equivalent learning problem
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where C;. and C.; indicate respectively the jth row and column of matrix C, and (@) is an
equivalent transformation of R(ZbB L?) from problem (@).

"We simplify the notation here by writing L® instead of the set {Lb :beNg}



In this reformulated objective (3)) the elements of © act as weights on the input kernels K” (which
makes our method closely related to multiple-kernel learning) and therefore sparsity in © translates
into sparsity in the Granger causality graph.

To accommodate various forms of convex though possibly non-smooth regularizers €2 (such as some
sparsity inducing norms - examples in section [3]and some further possibilities in section ) together
with the non-negativty constraint on © we propose to solve problem (5) by the alternating direction
method of multipliers (ADMM), [L1]. The updates for the parameters matrix C are the solutions to
a system of Sylvester’s equations, the update for © is the proximal operator, and the update for the
auxiliary matrix is an NNQP (see section[A]in the Appending for details).

3 Experiments

To assess the performance of our method and to understand its strengths and weaknesses we have
conducted a set of controlled experiments on a synthetic data set. (The section below summarises
the main findings, more details on the experimental set-up and results can be found in appendix [B])

We have generated a random realisation from a stable linear VAR with 5 time series. The Grenger-
causality structure of the system is sparse (only the 3rd and 5th time series serve as leading indicators
for the system), and past dependency varies between 3 to 5 lags. For learning, we set the number
of lags to d; = 5 for all the series and model the system as fully dependent in terms of the Granger
causality (mimicking the real situation when the true dependency is unknown).

We compare the performance of four variants differing by the complexity of the input kernels x9
and the regularizer Q: KVARLIN - for each input subspace i we use a simple linear kernel (x(¢77¢));
KVARDEC - for each subspace we use a linear kernel with a decay (m(d“‘i)); KVARCMB - each sub-
space uses both the kernels (") and k(9¢¢) . The regularizer € for all three is a simple entry-wise
¢1 norm. The fourth model KVARSTR uses the same combination of input kernels as KVARCMB
but we introduce more domain knowledge into the regularizer €2 by using ¢; only for the off-diagonal
elements and applying ¢» on the diagonal (hence self dependency is preserved).

We have followed a standard learning and evaluation procedure: the performance is measured on
the unseen hold-out sample with models trained on a separate training sample on which also the
respective hyper-parameters were tuned by 5-folds cross validation.

Figure [I] summarizes the 1-step-ahead fore-
casting performance of our methods in terms
of the average hold-out root MSE for training

Hold-out rMSE

1.3 VaRos | 1 samplf.:s of different sizes against the baselines
——f— VARL1 of a simple linear VAR model fitted by OLS

1.2 gigfn‘f (VAROLS), linear VAR with standard lasso
1o - KVARDEC penalty [12] (VARL1) and learning with a sin-
@ KVARCMB gle linear input-kernel and a single diagonal
= K KVARSTR output-kernel KVARSNG (i.e. without parti-

tioning the input space).

While for large sample sizes all the meth-
ods predict equally well, there are more dif-
. ferences in the small sample size. Overall,

>0 100Traming size O 500 KVARDEC performs the best closely followed

by the KVARCMB. These two models benefit

. from the decaying kernels to counter the initial

Figure 1: Hold-out forecast root MSE lag-misspecification. While KVARDEC relies

on the prior knowledge of the analyst and works

only over the decaying kernels, the KVARCMB

is less demanding on the initial kernel specification and leverages the multiple kernel selection.
It seems, that adding more structure into the regularizer {2 does not bring much benefit as the

2Other simple baselines such as predicting mean, random walk or fitting simple AR model performing much
worse on this dataset are not included in the graph for clarity of display but are included in the appendix@



KVARSTR performs worse than all the three methods with the simple ¢; norm. All the simpler
linear models oblivious to the input-space structure struggle more in the small sample setting.

Figure 2] compares the Granger-causality structure of the learned models with the true model struc-
ture. The figure shows the heatmaps of the model parameters where a model for each output series is
a column and the parameters associated with the individual input series are the rows. For example,
the dark square at position (3,5) means that there is a strong Granger-causality link from time series
3 to series 5 (the past of series 3 helps in predicting the future of series 5).

Similarly as with the forecasting performance we see that most of the methods manage to recover
the Granger causality fairly well for the largest training sample while this is much less obvious for
the small training size, where KVARDEC and KVARCMB are closest to the true structure. Note
that KVARSNG is not presented in the figure as it by construction does not have the capability to
discover the Granger-causality structure.

Trainin? size = 50 Traininglsize = 500
VAROLS VARL KVARLIN KVARDEC VAROLS  VARL KVARLIN KVARDEC

e | o .ﬂH".". |

KVARCMB KVARSTR True KVARCME KVARSTR True

rll : b | .I : |
|
Figure 2: Granger causality structures illustrated by heatmaps of the learned model parameters. A

column in the matrix is a model for an output series, rows are parameters assoicated with each series
as inputs.

4 Conclusions and future work

We present a new approach to kernel learning for time series forecasting which preserves the input-
space structure and therefore allows for uncovering the Granger-causality links in between the series
in the system together with learning the forecasting model. We achieve this by using the matrix-
valued kernel in the form of a sum of separable kernels and learning multiple output-kernels, one
for each of the input-kernels operating over an input subspace.

In this paper we limit the output-kernel learning to diagonal matrices. We propose an algorithm for
solving the optimisation problem with various forms of convex but possibly non-smooth regulariz-
ers and present results of an experiment on synthetic dataset which confirms the usefulness of our
multiple input&output-kernel approach.

In the presented experiment we’ve tested only very simple regularizers (¢; and /5 norms). It remains
to be explored if using more sophisticated and structured regularization (e.g. along the lines of group
lasso [13]], exclusive lasso or some low rank structures) would benefit the model learning. Also
(and more importantly), we would like to lift the diagonality constraint on the output-kernels (which
essentially breaks the contemporaneous links between the models) and explore methods for learning
a set of non-diagonal output-kernels. Here the regularization R(.) plays obviously a crucial role.
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Appendix

A ADMM

We reformulate the minimisation problem (3)) into an equivalent problem with an auxiliary variable
A and an additional equality constraint

™Y — 5B 0, KO |2 B0y CLKPC.;
argming o 4 Z(H J Zb2fjb ~J\|2+Zb Jb2j- J)+Q(®)
J

s.t. A>0, A-@=0 (6)
with C € R"*™ @, A € R"*B,

The updates at each iteration are (in the scaled-dual-variable version)

cH1 = argminﬁ(C,Ak) @)
C
O = argminQ(O) + §||A’“ + U - 0|2 ®)
(C]
AR = argmin £(CHLA) + 2)|A + UF - @442, )
A>0 2
Uk—‘rl _ Uk +Ak+1 _ @k-’rl (10)

The C-update is best obtained column-wise as solutions to the system of equations

B
(Za?b K"+ AI)C@H =Y,  VjeNy, (11)
b

For © the update is a proximal operator of (.) around (A* 4+ U*). The optimality condition
depends on £2(.) but will in general be

0 € 0Q(@F ) + p(@F ! — AF —U¥) (12)

The algorithm can accommodate various forms of the regularizer €2(.) as long as the associated
proximal operator prox1g(.) is supplied to it.
)

The A-update is obtained row-wise by solving the non-negative quadratic programmes (NNQP)
1
(A¥T) = argmin -aHa + g'a, Vj € Ny, (13)
' a>0 2
where
H = j‘I’/j‘I’ + p)\IB

A
g = -y P+ 57 +pAUL - O
;¢ = [K'C; K’Cy - KPCy|, ;¥,=K;C,
C/ K'C,
ijKQC:j
jz = . ij:C{ijC;j
C KPC,

Finally, the U-updates for the scaled dual variable are
Uk+1 _ Uk + Ak+1 o (_)k+1 (14)

To improve convergence we also use the over-relaxation strategy [11] and replace ®**! with
BOFFTL + (1 — B)A*¥ with B € [1.5,1.8] in the last two update steps and (T4).



B Experiments

B.1 Data and experimental protocol
For the experimental evaluation of our method we’ve generated a 5-dimensional stable linear VAR
Yi =Yi1A1 + Y As + ¥ 3As +yi 4 As Y5 A5 + e, (15)

with an i.i.d. e, ~ MN(0,T) and the parameter matrices

[0.96 0 0 0 0 ]
0 073 0 0 0
A = |-06 —079 1.005 1.26 9.12
0 0 0 —002 0
01 015 —028 —0.24 —1.78]
1016 0 0 0 0
0 038 0 0 0
Ay = |-015 —0.19 091 031 222
0 0 0 071 0
| 008 012 —023 —0.2 —0.65]
—0.27 0 0 0 0
0  —027 0 0 0
A; = |022 028 —08 —045 —3.3
0 0 0 0 0
L0 0 004 015 0.27
o 0 0 0 0
0 05 0 0 0
Ay = [0 0 —03 0 —0.19
o 0 0 0 0
0 0 0 03 012
o 0 0 0 0
005 0 0 0
As = [0 0 =015 0 0.12 (16)
00 0 0 0
00 0 0 0

We have separated the last 50 observations into the hold-out sample for forecast evaluation and used
the previous data-points to create training samples of length 50, 100, 200 and 500 respectively.

In each of the training samples we’ve used 5-folds cross validation to tune the hyperparameter A for
the regularized methods. The grids were unified for all the tested methods to length 20, logarithmi-
cally spaced in 4 x {1076, ... 10}.

B.2 Results

We have evaluated the predictive performance of the methods by measuring the root mean squared
error (rtMSE) of one-step-ahead predictions on the hold-out sample

5 50
rMSE = ZZ||gjt_yjt||%/(5*5O) a7

j=1t=1

and calculated the standard deviation in the rMSE across the holdout samples. Table[I]lists the two
measures for all the compared methods and training samples.

We have based the comparisons of the ability of the methods to uncover the underlying Granger-
causality structure on the learned parameters of the models. Because the parameter matrices of
the linear model (I3) are only directly comparable with the baseline linear models VAROLS and
VARLI, we’ve used a proxy measure summarising and normalising the matrices as follows: for the



Table 1: Summary comparison of experimental results

rMSE Hold-out std(rMSE)
50 100 200 500 50 100 200 500
Mean 8.050 | 8.050 | 8.050 | 8.050 || 3.801 | 3.801 | 3.801 | 3.801
RW 13.77 | 13.77 | 13.77 | 13.77 || 7.192 | 7.192 | 7.192 | 7.192
AR 5.301 | 5.064 | 4783 | 4.799 || 2.477 | 2.410 | 2.384 | 2.411
VAROLS 1.472 | 1.179 | 1.120 | 1.083 || 0.456 | 0.321 | 0.347 | 0.329
VARLIN 1.276 | 1.164 | 1.124 | 1.079 || 0.403 | 0.359 | 0.350 | 0.330

KVARSNG || 1.317 | 1.165 | 1.110 | 1.080 || 0.408 | 0.346 | 0.348 | 0.330
KVARLIN 1.244 | 1.154 | 1.101 | 1.078 || 0.336 | 0.321 | 0.324 | 0.321
KVARDEC || 1.186 | 1.133 | 1.098 | 1.078 || 0.328 | 0.330 | 0.317 | 0.325
KVARCMB || 1.215 | 1.154 | 1.102 | 1.078 || 0.325 | 0.324 | 0.316 | 0.325
KVARSTR 1.269 | 1.156 | 1.099 | 1.076 || 0.345 | 0.321 | 0.335 | 0.322

linear models, we have calculated an overall dependency matrix DV A% as

5

DVAR =3 " |A (18)
i=1
for the kernel models (5 we have calculated the dependency matrix DXV AR a5
A
DEVAR = "0, (19)
g

For both, we have then normalized each column (corresponding to function f;) to sum to 1.
Heatmaps of these dependency matrices for the two sample sizes not included in the main text
are in figure[3]

Traininglsize =100 Training size = 200
VAROLS VARL KVARLIN KVARDEC VAROLS  VARL KVARLIN KVARDEC

_"..".”'.ﬂ fu

KVARCMB KVARSTR True KVARCMB KVARSTR True

Bl

Figure 3: Granger causality structures illustrated by heatmaps of the learned model parameters. A
column in the matrix is a model for an output series, rows are parameters assoicated with each series
as inputs.

The distances (Frobenious norms) between the dependency matrices of the learned models and the
true dependency matrix calculated from the parameters listed in (I6)) are summarised in table 2]



Table 2: Summary of Granger-causality structure distance

Dependency matrices distance
50 100 200 500

VAROLS 0.807 | 0.729 | 0.516 | 0.245
VARLI1 0.773 | 0.579 | 0.409 | 0.227
KVARLIN 0.679 | 0.651 | 0.788 | 0.793
KVARDEC || 0.764 | 0.745 | 0.793 | 0.822
KVARCMB || 0.609 | 0.622 | 0.772 | 0.812
KVARSTR || 0.719 | 0.805 | 0.887 | 0.778
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