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Abstract 

This work develops a multi-objective, two-stage stochastic, non-linear, and mixed-integer 

mathematical model for relief pre-positioning in disaster management. Improved 

imbalance and efficacy measures incorporated into the model based on a new utility level 

of the delivered relief commodities. Moreover, this model considers the usage possibility 

of a set of alternative routes for each of applied transportation modes and consequently 

improves the network reliability. An integrated separable programming-augmented ε-

constraint approach is proposed to address the problem. The best Pareto-optimal 

solution is selected by PROMETHEE-II. Finally, the theoretical improvements of the 

presented approach are validated by experiments and a real case study. 
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1. Introduction 

In 2013, natural disasters killed 21,610 persons, made 96.5 million victims, and caused 

around US$ 156.7 billion worth of damages (Guha-Sapir et al., 2014). Disaster 

management approaches can help to mitigate the impacts on humans' lives on the basis 

of the development of adapted Humanitarian Relief Logistics (HRL) networks (Galindo 

and Batta, 2013). The Fritz Institute defines HRL as “the process of planning, 

implementing and controlling the effective, cost-efficient flow and storage of goods and 

materials as well as related information, from the point of origin to the point of 

consumption for the purpose of meeting the end beneficiary’s requirements” (Thomas 

and Mizushima, 2005). There are some important tasks that fall under the broad umbrella 

of the HRL operations, e.g. preparedness, planning, procurement, transport, 

warehousing, tracking and tracing, and customs clearance (Thomas and Mizushima, 

2005).  

The HRL research is dedicated to the three planning stages in the disaster lifecycle: 

preparedness/pre-disaster phase, response and recovery phases (Özdamar and Ertem, 

2015). Özdamar and Ertem (2015) presented a comprehensive literature review on the 

models, solutions and enabling technologies at the response and recovery phases. 

At the preparedness phase, which is the domain of this work, various strategic 

decisions and procedures are devised before a disaster really occurs. For instance, the 
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decisions about the number and locations of main Distribution Centers (DCs) to be 

opened and the amount of Relief Commodities (RCs) (e.g., non-perishable foods, medical 

supplies, clothes, blankets and tents) to be pre-positioned (Ahmadi et al., 2015). In fact, 

RCs can be secured or even purchased and pre-positioned at the preparedness phase 

(Altay and Green III, 2006). Humanitarian organizations can improve the agility of the 

HRL operations and appropriately respond to emergency situations if they establish a 

pre-determined network in which the location and required quantity of RCs are decided 

in advance that a disaster occurs (Rawls and Turquist, 2010). The aforementioned 

problem is known as Location with Relief Distribution and Stock Pre-positioning (LRDSP) 

problem in the HRL literature (Caunhye et al., 2012). 

The initial studies that dealt with the relief pre-positioning problem in disaster 

management were about oil spills (e.g., see Psaraftis et al. (1986), Wilhelm and Srinivasa 

(1996), and Iakovou et al. (1997)). Later, Akkihal (2004) addressed the relief pre-

positioning problem in humanitarian and disaster relief management through a facility 

location approach. His work concentrated on determining locations that optimize 

worldwide humanitarian operations. He developed a methodology which applies integer 

programming to minimize the distance from warehouses to people who are likely to 

require humanitarian aid. After Akkihal (2004), many authors dealt with the relief pre-

positioning problem. In this regard, Caunhye et al. (2012) reviewed the literature of 

emergency optimization models. They explored some of the papers that considered the 

LRDSP problem. In addition, Hoyos et al. (2015) surveyed the published papers in the 

LRDSP category dealing with inherent uncertainty of the disaster area by stochastic 

components. These optimization models concurrently determine the optimal decisions 

on facility location, relief distribution and stock pre-positioning.  

Jia et al. (2007) proposed a maximal-covering location model for the LRDSP problem. 

As extension of this work, Balcik and Beaman (2008) determined not only the number 

and locations of DCs, but also the quantity of pre-positioned RCs at each DC. The MILP 

model attempted to maximize the total expected demand covered by the established DCs 

(as a measure of efficacy), while captured budgetary, capacity and response time 

restrictions. They addressed the uncertainty of the demand of DPs by a scenario-based 

approach.  

Rawls and Turquist (2010) coped with the LRDSP problem by a location-allocation 

approach and proposed a two-stage stochastic, mixed-integer program to minimize the 

expected costs over all scenarios while capturing facility capacity restrictions. They 

considered the uncertainties about undamaged amounts of the stocked RCs and capacity 

of the transportation network by a scenario-based approach. The costs were related to 

the selection of locations and sizes of facilities, RC acquisition and stocking, shipment of 

RCs to DPs (as measures of efficiency), unsatisfied demand penalties and holding costs 

for unused RCs (as measures of efficacy). Mete and Zabinsky (2010) developed a two-

stage stochastic program for the storage and distribution problem of Medical Supplies 

(MSs) in disaster management. They incorporated a restriction into the model to assure 

that the amount of unmet demand at each hospital cannot exceed a predefined threshold. 

The objective function of the model was to minimize the total cost of operating 
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warehouses (as a measure of efficiency), and the expected value of total transportation 

duration and the penalty of unfulfilled demand (as measures of efficacy) with respect to 

predetermined disaster scenarios. They handle the uncertainty of required time to 

transport MSs to the hospitals using a scenario-based approach.  

Regarding the consideration of the different kinds of natural disasters (i.e., flood and 

earthquake) and their relief requirements, Duran et al. (2011) developed a model to 

evaluate the effect of pre-positioning RCs on the CARE organization’s average relief-aid 

emergency response time. The proposed MILP model captured the constraints about 

facility capacity, supply, demand and number of warehouses to be opened, and took 

account the uncertainty of number of people affected and their demand under different 

demand instances regarding the different disaster types. They considered the average of 

the weighted response times (as a measure of efficacy) to be minimized over the demand 

instances, while the former studies attempted to design a more cost-efficient network.  

Rawls and Turquist (2011) defined a reliable set of scenarios and added some 

constraints to ensure a certain level of service quality in the selected scenarios as parts 

of the reliability set. Rawls and Turquist (2012) extended their previous papers to 

present a dynamic allocation model for optimizing the preparedness planning. The 

considered uncertainties were related to demands and their locations.  

Döyen et al. (2012) presented a two-echelon, two-stage stochastic programming 

model for the LRDSP problem, where decisions were made to determine the location of 

regional and local rescue centers, the amount of RCs to be kept at the pre-disaster 

regional rescue centers, and the amount of RCs flows at each echelon.  

A robust two-stage stochastic approach was developed by Bozorgi-Amiri et al. (2013) 

for a multi-objective disaster relief logistics network to determine the location of DCs and 

RCs allocation while capturing the facility capacity restrictions. In addition, minimization 

of the sum of maximum shortage at DPs (as a measure of efficacy) was considered as the 

second objective function of their model. Barzinpour and Esmaeili (2014) contributed to 

the literature by using the Proactive damage estimation result of Risk Assessment tool 

for Diagnosis of Urban Areas against Seismic Disaster software as an input to assign the 

affected people to local facilities that should be opened.  

Rezaei-Malek and Tavakkoli-Moghaddam (2014) developed a robust bi-objective 

mixed-integer mathematical model for HRL network planning. They simultaneously 

considered minimization of the average weighted response time (as a measure of 

efficacy) and the total cost (as a measure of efficacy) as the objective functions. In the 

same year, Garrido et al. (2014) assumed there are different RCs that need different types 

of transportation modes to be delivered to DPs. For instance, medications may need 

reefer vehicles while fresh water need tankers. Therefore, they considered different 

vehicles’ classes so that each RC can be transported by capable vehicle. Ahmadi et al. 

(2015) proposed a two-stage stochastic, multi-depot, location-routing model considering 

random travel time, multiple uses of vehicles and standard relief time. Their model 

determines the locations of local depots and routing for last mile distribution after an 

earthquake. Rodriguez-Espindola and Gaytan (2015) contributed to the LRDSP literature 

through a concurrent determination of the location of emergency shelters and DCs along 
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with an allocation of required RCs to DCs. They presented a bi-objective mathematical 

model. The first objective minimized the sum of the acquisition costs, shipping costs and 

facility preparation costs (as a measure of efficiency), and the second one minimized the 

total priority-weighted distance travelled by goods and people (as an efficacy measure). 

They considered a multi-mode transportation system for the HRL network; however, 

they did not tack account the usage possibility of alternative routes for each of the 

employed transportation mode. This feature increases the reliability of the 

transportation system when some routes may be completely or partially destroyed after 

a disaster strikes. Tofighi et al. (2015) developed a two-stage scenario-based 

possibilistic-stochastic programming model to design a HRL network. In the first stage, 

the locations of multiple Central Warehouses (CWs) and local DCs were specified along 

with the quantity of pre-positioned RCs. In the next stage, a RCs distribution plan was 

presented for the different scenarios. In addition, they developed a tailored DE algorithm 

to achieve sufficient and feasible solutions in a reasonable CPU time. The model 

minimized the total operating costs of selected CWs and Local DCs and their inventory 

costs (as a measure of efficiency), the total quantity-weighted distribution times, 

maximum priority-weighted travel time between each pair of CW/Local DC and DP, and 

the total cost of unused inventories and priority-weighted shortage cost (as measures of 

efficacy). Rezaei-Malek et al. (2016) developed a multi-objective programming model to 

design a disaster relief logistics network. They considered the lifetime of perishable 

products (e.g., medical commodities and packed milk) by adjusting certain time windows. 

Distribution of RCs from supply points to Demand Points (DPs) is generally planned 

through pre-determined routes and transportation modes (e.g., considered at Rawls and 

Turquist (2010) and Rezaei-Malek and Tavakkoli-Moghaddam (2014)). The required 

time to transport RCs to DPs by different transportation modes often is estimated 

regarding the disaster scenarios, because a specific disaster, such as an earthquake, may 

devastate the routes partially or completely and affect transportation times. On the other 

side, there is an uncertainty on available transportation modes and vehicles when a 

disaster strikes. Indeed, the usage possibility of different alternative routes for 

transporting RCs, can increase the reliability of a HRL network (e.g. considered at Hamedi 

et al. (2012)). In other words, when a predetermined relief route is completely destroyed, 

the existence of some alternative available routes increases the responsiveness of the 

network. Furthermore, the consideration of different transportation modes improves the 

reliability of the system (e.g. considered at Ruan et al. (2014)). For example, when air 

rescue is impossible because of a bad weather condition, land transportation can be a 

great alternative if the network is enabled in advance.  Therefore, the usage possibility of 

alternative routes for each applied transportation mode definitely increases the 

reliability and responsiveness of the network. This such an integrated feature remains 

unattached in the current literature of the LRDSP problem (see Table 1).        

Gutjahr and Nolz (2016) reviewed the recent literature on the application of multi-

criteria optimization to disaster management. Efficiency, efficacy, equity, and happiness 

(or in its negative form, distress) are four significant criteria that have to be considered 

in HRL network design (Gutjahr and Nolz, 2016). Efficiency means cost-efficiency and is 
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generally measured by logistics cost. The logistics cost includes (i) fixed costs for the 

procurement of equipment (e.g., vehicles), (ii) supply-side traveling costs related to the 

transportation of RCs and people by aid-delivering parties, (iii) facility-related costs such 

as facility opening costs and inventory holding costs, and (iv) costs related to the human 

resources such as wages of employed personnel (Gutjahr and Nolz, 2016). Efficacy of a 

HRL can be expressed by the different measures or a combination of them such as 

response time, travel distance, coverage, reliability, and security (Gutjahr and Nolz, 

2016).  Noteworthy, in a disaster area, the efficacy of a network is more important than 

its efficiency because saving human lives has a higher priority than monetary issues 

(Balcik and Beaman, 2008). On the other side, it is a natural requirement that the 

distribution of RCs (of whatever form) should be fair, which means that it should be no 

privilege for certain groups of individuals. Fair distribution is usually captured by the 

concept of equity (Gutjahr and Nolz, 2016). Indeed, the equity concept is often explored 

in allocation problems. In these problems, resources or commodities should be assigned 

to a set of entities (e.g., organizations, people or groups of individuals at different DPs). 

The consideration of this concept in an allocation problem means servicing a set of 

entities in a “fair” manner (Karsu and Morton, 2015). There are two equity-related 

concepts called equitability and balance. The equitability concept means servicing a set 

of indistinguishable entities while the balance concept means servicing a set of entities 

while they are different from each other regarding their needs, claims, and preferences. 

In the latter concept, an ideal solution may give each entity a different proportion of the 

total assignment. The balance concept must be considered in various real life allocation 

problems (Karsu and Morton, 2015). For an instance, in disaster areas the different DPs 

have different demand amount and priority because of different criteria (e.g., population 

and severity of disaster) (Gralla et al., 2014; Nagurney et al., 2015). Hence, balance should 

be satisfied among DPs in the distribution of RCs for preventing a possible social disaster 

(Rezaei-Malek and Tavakkoli-Moghaddam, 2014). In other word, taking this criterion 

into account is necessary in the distribution plan of a HRL network and people expect to 

observe respecting balance concern among DPs in the distribution plan (Altay and Green 

III, 2006). In this regard, Rezaei-Malek and Tavakkoli-Moghaddam (2014) proposed a set 

of constraints to ensure that the difference of priority-weighted shortage between each 

two DPs does not exceed a threshold defined by experts. On the other side, since the HRL 

networks often face shortage to satisfy all the demands, it is reasonable to use the 

proportion of demand satisfied as a measure of the balance concept (Karsu and Morton, 

2015). In this respect, Davis et al. (2013) presented a new model satisfying a minimum 

fraction of demand at all of the DPs. They introduced a new constraint for distinguishing 

among the DPs with regard to their respective demands. In a similar way, Vitoriano et al. 

(2011) considered the same measure and minimized its deviation from a predetermined 

target for all of the DPs. Tzeng et al. (2007) attempted to maximize the minimum level of 

this measure for all of the RCs. Huang et al. (2012) introduced and then maximized a 

convex disutility function f(w), where w was the fraction of unsatisfied demand, to reflect 

the nonlinear change rate of this disutility.  
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  The distress concept refers to psychological and social costs which are addressed 

only in a minority of the surveyed papers. Indeed, in addition to judging the efficiency of 

a HRL in monetary terms, it should be assessed regarding the extent by which it decreases 

deprivation, hardship, affliction, pain, negative emotions, and social disturbances of the 

affected people (Karsu and Morton, 2015). In this respect, Holguín-Veras et al. (2013) 

introduced the concept of deprivation costs to quantify the suffering of affected people 

lacking vital RCs. They expressed that the deprivation cost of a specific RC is seen as a 

non-decreasing convex function of the time that has passed since the demand for this RC 

has been fulfilled (Holguín-Veras et al., 2013). Indeed, the value of RCs is decreasing while 

delivery time is postponing because the number of victims and people suffering are 

increasing (Edrissi et al., 2013).  

This paper inspired by Huang et al. (2012), Holguín-Veras et al. (2013) and Rezaei-

Malek and Tavakkoli-Moghaddam (2014) develops new efficacy and imbalance 

measures. The new efficacy measure is the expected time-, priority-, and demand-

weighted utility levels of the delivered RCs (MR utility levels) at all the DPs in the HRL 

network. The new imbalance measure (inspired by Rezaei-Malek and Tavakkoli-

Moghaddam (2014)) is the expected maximum difference of the MR utility levels among 

the DPs. We calculated the MR utility level at each specific DP regarding the delivery time, 

priorities of RCs and DP, and fraction of satisfied demand. The utility of delivery time is 

considered as a decreasing convex function of the time (inspired by Holguín-Veras et al. 

(2013) as a deprivation cost), and the utility of fraction of satisfied demand is formulated 

as an increasing convex function of the fraction of fulfilled demand (inspired by Huang et 

al. (2012)). In addition, this new utility level of the delivered RCs (i.e., the MR utility level) 

for each specific DP considers the priorities of different RCs and DP under each disaster 

scenario.          

Table 1 summarizes the LRDSP literature and depicts the features of the different 

developed models for the LRDSP problem. Briefly, the contributions of this paper are as 

follows:  

 Taking into account the usage possibility of a set of alternative routes for each 

applied transportation mode in HRL networks. 

 Introducing a new time-, priority-, and demand-weighted utility level of the 

delivered RCs, called MR utility level.  

 Proposing new efficacy and imbalance measures based on the MR utility level. 

 Presenting an integrated separable programming-augmented ε-constraint 

approach to deal with the presented multi-objective nonlinear model. 

 

Table 1 

LRDSP literature and its features  

Author(s)  Model MOP Uncertainty Solution 
Multi-
mode 

Multi-
route 

Multi-
item 

Case 
study 

Psaraftis et al. 
(1986) 

 MILP  S H   * * 

Wilhelm and 
Srinivasa 

(1996) 
 MILP  S H   * * 
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Iakovou et al. 
(1996) 

 LIP   E   * * 

McCall (2006)  MILP   E   * * 
Chang et al. 

(2007) 
 MILP  S H   * * 

Balcik and 
Beamon 
(2008) 

 MILP  S E   * * 

Mete and 
Zabinsky 

(2010) 
 MILP  S E  * * * 

Rawls and 
Turnquist 

(2010) 
 MILP  S H   * * 

Huang and 
Fan (2011) 

 LIP  S E   * * 

Li et al. (2011)  MILP  S H  *  * 
Rawls and 
Turnquist 

(2011) 
 MILP  S E   * * 

Duran et al. 
(2011) 

 MILP  S E   * * 

Tofighi et al. 
(2011) 

 MILP  F,S E   * * 

Rawls and 
Turnquist 

(2012) 
 DMILP  S E   * * 

Bozorgi-Amiri 
et al. (2012) 

 MILP  S,R MH   *  

Döyen et al. 
(2012) 

 MILP  S H   *  

Bozorgi-Amiri 
et al. (2013) 

 MILP EF,EC S,R E   * * 

Garrido et al. 
(2014) 

 DMILP  S H *  *  

Rezaei-Malek 
and 

Tavakkoli-
Moghaddam 

(2014) 

 MILP EF,EC S,R E   * * 

Barzinpour 
and Esmaeili 

(2014) 
 MILP EF,EC  E   * * 

Lee et al. 
(2014) 

 MILP  S E   * * 

Ahmadi et al. 
(2015) 

 MILP  S H   * * 

Rodriguez-
Espindola and 
Gaytan (2015) 

 MILP EF,EC  E *  * * 

Tofighi et al. 
(2015) 

 MILP EF,EC S,P H   * * 

Rezaei-Malek 
et al. (2016) 

 MILP EF,EC S,R E   * * 

Present work  MINLP EF,EC,IB S A * * * * 
MILP: Mixed-Integer Linear Programming, LIP: Linear Integer Programming, DMILP: Dynamic Mixed-Integer 

Programming, S: Stochastic, F: Fuzzy, R: Robust, P: Possibilistic, H: Heuristics, E: Exact with commercial software, MH: 

Meta-heuristics, EF: Efficiency, EC: Efficacy, EQ: Equitability. IB: Imbalance, A: Approximate.  
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The rest of this paper is organized as follows. In Section 2, the problem and the 

variables are modelled and a multi-objective mathematical model is developed. Section 3 

delineates the solution approach proposed. The computational experiments are provided 

in Section 4. In Section 5, a real case is described with the aim to prove the applicability 

of the approach. Finally, Section 6 draws the conclusions and future research directions. 

 

2. Problem description and mathematical formulation 

We consider a HRL network consisting of warehouses and DPs. There is a set of candidate 

warehouses to be selected for satisfying the demand of DPs. The set of candidate 

warehouses is denoted by I and indexed by 𝑖 ∈ 𝐼. Let 𝑦𝑖 be a binary decision variable 

equals to 1 if warehouse i is selected, and 0 otherwise. Opening warehouse i incurs a fixed 

cost Fi that includes costs of opening, personnel, maintenance, etc.  

The locations of DPs are known. The set of DPs is denoted by J and indexed by 𝑗 ∈ 𝐽. 

The problem is to determine the location, allocation and distribution plan of each RC in 

the network. The set of RCs is denoted by K and indexed by 𝑘 ∈ 𝐾. Selected warehouses 

should store RCs in appropriate quantities with regard to their capacity limitation. The 

capacity of warehouse i for RC k is known through 𝛾𝑖𝑘. Let qik be the amount of RC k that 

should be stored at warehouse i.  

There are different connection routes (i.e., overland routes and the shortest airway 

and waterway) between each pair of warehouse and DP. Let Aijv be a known set of 

alternative routes between warehouse i and DP j that can be passed by vehicle v. 

Noteworthy, the demand of each DP can be satisfied by the different warehouses (i.e., 

multi-allocation) through using different modes of transportation (i.e., aviation, ship, and 

land transport). The densities of RCs are negligible, so the volume capacity of vehicles 

(e.g., aircrafts, ships, trucks, and trains) are considered as a restriction for loading RCs. 

So, let vk be the volume of RC k, and Vv denotes the total capacity of each vehicle v. The 

average transportation cost of a unit RC by vehicle v denotes by 𝑇𝐶𝑣. Indeed, this paper 

considers the related operational costs to the response phase (i.e., the transportation 

cost) and takes account the costs related to the preparedness phase including opening 

the required warehouses, pre-positioning the needed RCs.     

There is a limitation on the available amount of RC k for pre-positioning at the 

warehouses (ξk). The unit acquisition cost of RC k is denoted by ACk, and for preventing a 

RCs congestion in the warehouses after a disaster occurrence, an additional unit holding 

cost of RC k (i.e., hk) is considered for the unused amount of RC k in warehouse i in 

scenario s (i.e., ziks). Uncertainty is modeled through the determination of a set S of 

discrete scenarios indexed by 𝑠 ∈ 𝑆, each with a probability of occurrence ps.  

The demand of DP j for RC k in scenario s is djks. Let 𝑥𝑖𝑗𝑘
𝑣𝑟𝑠 be the quantity of RC k should 

be sent to DP j from warehouse i by vehicle v through route r in scenario s. If the demand 

for a particular RC k cannot be met, wjks is considered as the shortage of RC k in DP j in 

scenario s. The parameter τjs implies the priority of DP j in scenario s, and the parameter 

ξk denotes the importance weight of RC k in a disaster. These parameters will be 

determined according to the experts’ opinion of an HRL organization about the severity 
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and situation of disaster (Sheu, 2010). The delivery time of the required RCs at DPs, 

impacts on the utility level of the delivered RCs. This utility reduces to the lower levels 

when more time passes, because more people lose their lives (Edrissi et al., 2013). Let 

𝑡𝑖𝑗
𝑣𝑟𝑠 be the time taken for the relief team of warehouse i to reach DP j by vehicle v through 

route r in scenario s.  

Assume that variable 𝑡𝑖𝑗
𝑣𝑟𝑠 represents the transportation time between warehouse i 

and DP j reflecting the road and traffic conditions related to the impact of disaster 

scenario s on route r. According to the above discussion, let Ξ(𝑡𝑖𝑗
𝑣𝑟𝑠) be a utility level 

function of the delivery time. A typical shape for this function is depicted in Fig. 1. As 

shown in the figure, any increase in  𝑡𝑖𝑗
𝑣𝑟𝑠 decreases the utility level of the delivered RCs, 

and this effect also becomes more dramatic after 12 hours (i.e., standard relief time) 

(Ahmadi et al., 2015). In other words, the shape addresses this fact that the initial hours 

after a disaster are very important for serving the affected people. Moreover, Ξ(𝑡) 

converges to 0 after 72 h because the required RCs become useless for saving the injured 

people after 72 h in the initial response phase (Edrissi et al., 2013). 

 

 

12 h 72 h

1

Ξ(t)

t (hour)0

 
Fig. 1. Shape of the utility level for the delivery time of RCs 

 

Inspired by the work of Huang et al. (2012), this paper considers a utility function of 

the fraction of satisfied demand, f(o), where o is the fraction of the satisfied demand. This 

function reflects that the increase of the utility level for the delivered RCs is greater when 

the fraction of the satisfied demand is closer to 1 (see Fig. 2). 
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Fig. 2. Shape of the utility function for the fraction of the satisfied demand 

 

Warehouses may be affected by the disaster so that the complete or partial amount of 

stocked RCs may be destroyed. Hence, let ρiks be the percentage of stocked materials of 

RC k at warehouse i that remains usable in scenario s (0≤ ρiks≤1). 

ψjks is the tolerable proportion of shortage in DP j for RC k in scenario s that ensures 

the minimum delivery of RCs to the DPs. We seek to maximize the efficiency and efficacy 

of the HRL network while minimizing the expected maximum difference of the MR utility 

levels among DPs over all the scenarios to prevent a probable social disaster that may 

happen because of not satisfying balance in distribution of RCs among the DPs. 

In our problem setting, a scenario-based modeling is applied to include a number of 

discrete scenarios, which account for abovementioned uncertainties following different 

scenarios. Each scenario is associated with a given likelihood (ps). Accordingly, a multi-

objective, two-stage stochastic, non-linear, and mixed-integer program with recourse is 

developed to formulate the HRL problem.  

Noteworthy, the two-stage stochastic programming is one of the most widely 

employed approaches to cope with two-stage decision problems. In a two-stage model, 

an initial decision is made in the stage one before being informed what scenario will be 

happened and what values the scenario-dependent parameters will take at the stage two. 

Therefore, a recourse action is taken in the stage two to compensate for the decision made 

in the stage one (Falasca and Zobel, 2011).  

In the decision problem under consideration, determining the warehouses that should 

be opened and the amount of RCs that should be prepositioned at the pre-disaster phase 

(stage 1) constitute the first-stage decisions. These decisions must be made before the 

realization of any disaster scenario. Moreover, given the realized scenario at the post-

disaster phase (stage 2), determining the quantity of RCs which must be sent from the 

opened warehouses to the DPs is the main second-stage/recourse decision. 
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Below, we first define the notations, and then present the equivalent model of our 

multi-objective, two-stage stochastic, non-linear, and mixed-integer program. In the next 

section, we discuss how to convert this non-linear model into an approximate-linear one, 

and how to change the multi-objective model into an equivalent single-objective form. 

Notably, the presented counterpart single-objective and approximate-linear model can 

be directly solved by commercial optimization packages like GAMS. 

 

2.1. Indices 

i index of candidate warehouses (𝑖 ∈ 𝐼), 

j index of DPs (𝑗 ∈ 𝐽), 

v index of vehicles (𝑣 ∈ 𝑉), 

r index of routes (𝑟 ∈ 𝐴𝑖𝑗𝑣), 

k index of RCs (𝑘 ∈ 𝐾), 

s index of disaster scenarios (𝑠 ∈ 𝑆). 

 

2.2. Deterministic parameters 

Fi fixed cost of opening warehouse i, 

ACk unit acquisition cost of RC k, 

𝑇𝐶𝑣 average transportation cost of a unit RC by vehicle v per time unit, 

γik capacity of warehouse i for RC k (unit), 

hk additional unit holding cost of RC k, 

ϑk available quantity of RC k (unit), 

ξk priority of RC k when a disaster strikes; (0≤ ξk ≤1; ∑ 𝜉𝑘 = 1𝑘 ), 

Aijv  a set of the known routes between warehouse i and DP j that can be used by vehicle 

v), 

M a sufficient big number. 

  

2.3. Uncertain parameters 

ps probability of occurrence of disaster scenario s; (0 ≤ ps ≤ 1; ∑ 𝑝𝑠 = 1𝑠 ), 

𝑡𝑖𝑗
𝑣𝑟𝑠 transportation time between warehouse i and DP j by vehicle v through route r in 

scenario s (hour), 

ρiks proportion of stocked materials of RC k at warehouse i that remains usable in 

scenario s; (0 ≤ ρiks ≤ 1), 

τjs priority of DP j in scenario s; (0≤ τjs ≤1; ∑ 𝜏𝑗𝑠 = 1𝑗𝑠 ), 

djks demand of DP j for RC k in scenario s (unit), 

ψjks tolerable proportion of shortage RC k in DP j in scenario s; (0 ≤ ψjks ≤ 1), 

 

2.4. Scenario-independent (i.e., first-stage’s) variables  

qik amount of RC k pre-positioned at warehouse i, 

yi  1; if the warehouse i is opened, 0; otherwise.   
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2.5. Scenario-based (i.e., second-stage’s) variables  

𝑥𝑖𝑗𝑘
𝑣𝑟𝑠 quantity of RC k sent to DP j from warehouse i by vehicle v through route r in 

scenario s, 

ziks amount of RC k in warehouse i that is not used in scenario s, 

wjks shortage of RC k in DP j in scenario s, 

φjs amount of the MR utility level at DP j in scenario s, 

δs maximum difference of the MR utility levels among DPs in scenario s. 

 

Fig. 3 depicts the two different stages and their related variables.  

 

Variables:

Pre-disaster phase
(first stage)

Post-disaster phase
(second stage)

Scenario 1

Scenario 2

Scenario |S| 

 

Fig. 3. Representation of two different stages and related variables. 

 

2.6. Proposed non-linear mathematical model (Model 1)  

Based on the above-mentioned definitions, we develop the following multi-objective, 

two-stage, mixed-integer nonlinear mathematical model. First, the set of the objective 

functions are described, and then the constraints sets are elaborated. 

 

2.6.1. Objective functions 

The formulation of the multiple objectives is presented as follows: 
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Min OF1   ( )  
ijv

kv vrs

i i s ijk k iks

i

k ik

kI sK S i I k K j J v V r A

F AC qy p TC x h z
      

 
   

 
 

        (1) 

Max OF2 s js

s S j J

p 
 

  (2) 

Min OF3 s s

s S

p 


  (3) 

 

The objective function OF1 (1) considers the efficiency concern and minimizes the 

total cost at the pre-disaster phase consisting of the sum of the fixed cost of establishing 

warehouses (i.e., term 1), the fixed cost of pre-positioning RCs (i.e., term 2), and the total 

cost at the post-disaster phase including the transportation cost (i.e., term 3) and the 

additional holding penalty cost for unused RCs (i.e., term 4). The objective function OF2 

(2) maximizes the expected time-, demand-, and priority-weighted utility level of the 

delivered RCs (i.e., the MR utility level) at the DPs over all the scenarios (i.e., the efficacy 

measure).The MR utility level at each DP, φjs, is calculated by Equation (10). The objective 

function (3) considers the imbalance measure and minimizes the expected maximum 

difference of the MR utility levels among DPs over all the scenarios. The maximum 

difference of the MR utility levels among DPs in scenario s, δs, is obtained using the 

constraint (11).  

 

2.6.2. Constraints sets 

(I) RCs flow at the stage two 

, , , , ,vrs vrs

ijk ij ijvx Mt i I j J v V r A k K s S         (4) 

      , ,
ijv

vrs

ijk iks iks ik

j J v V r A

x z q i I k K s S
  

        (5) 

      , ,
ijv

vrs

jks ijk jks

i I v V r A

w x d j J k K s S
  

        (6) 

, ,jks jksjksw d j J k K s S      (7) 

 

Constraint (4) assures that the shipped RCs are delivered by vehicle v through 

available routes (if a route is not available, its duration time is considered equal to zero). 

Equation (5) guarantees that the sum of the shipped RC k and unused RC k at warehouse 

i is equal to the amount of undamaged stocked materials at warehouse i. Equation (6) 

ensures the sum of RCs sent to each DP and the amount of the unmet demand is equal to 

the demand of that DP. The model restricts the allowable amount of shortage for each DP 

by Constraint (7). 
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(II) Open facilities and facility capacity   

     ik k

i I

q k K


    (8) 

     ,ik i ikq y i I k K     (9) 

 

The restriction on the available amount of RC k for pre-positioning in the selected 

warehouses is imposed by Constraint (8). Constraint (9) guarantees that if warehouse i 

is opened, the corresponding amount of RC k does not exceed the capacity of warehouse 

i. 

 

(III) Imbalance among PDs 

( ) ( ) ( )

vrs

ijk vrs

js js k ij

i I v V r R k K jks

x
f t

d
  

   

 
    

 
 

  (10) 

    ,s ps qs s s p q J            (11) 

 

Equation (10) is introduced for the first time in the literature. This equation calculates 

the priority-, demand-, and time-weighted utility level of the delivered RCs (i.e., the MR 

utility level) at DP j. Constraints (11) calculate the maximum difference of the MR utility 

levels among all the DPs following scenario s.  

 

(IV) Non-negativity and binary constraints 

0 , , , , ,vrs

ijk ijvx i I j J v V r A k K s S         (12) 

0 ,ikq i I k K     (13) 

  0 , ,iksz i I k K s S      (14) 

0 , ,jksw j J k K s S      (15) 

0s s S     (16) 

 0,1iy i I    (17) 

 

Equations (12) to (16) are non-negativity limitations, and Equation (17) indicates that 

opening a warehouse location is a binary decision. 

 

3. Methodology  

The term 𝑓(𝑥𝑖𝑗𝑘
𝑣𝑟𝑠/𝑑𝑗𝑘𝑠) introduces a non-linearity into the objective functions (2) and (3) 

of Model 1. Generally, non-linear programming models are more difficult to solve than 

the linear ones. Hence, we convert the presented non-linear model to a linear 

approximation form through separable programming. Employing the separable 

programming approach or its extended version depends upon a significant classification 

of non-linear models into convex and non-convex problems. In the case of non-convex 

programming, the original separable programming cannot guarantee a global optimal 
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solution. However, in a convex programming model, any optimum found must be a global 

optimal solution (Williams, 2013). Obtaining a guaranteed global optimum to a non-

convex programming model requires a more complex algorithm than the original 

separable programming algorithm. A satisfactory, though often computationally 

expensive, way of dealing with the problem is to add binary variables and logical 

constraints into the original separable programming approach (see Williams (2013); p. 

177-182).  

After obtaining a linear approximation for Model 1 by applying the separable 

programming (see Section 3.1), the problem is converted to a multi-objective mixed 

integer linear mathematical model. Several methods have been developed in the logistics 

literature to tackle the multi-objective mathematical models such as the weighted sum, 

ε-constraint, Tchebycheff-based methods or the fuzzy programming (cf. for instance 

Rezaei-Malek and Tavakkoli-Moghaddam, 2012; Torabi et al., 2015; Salehi Sadghiani et 

al., , 2015; Sedighy et al., 2015; Zhalechian et al., 2016). We develop in this work an 

improved version of the ε-constraint method, namely augmented ε-constraint method, by 

which the multi-objective model is converted to a single objective counterpart. This 

method is an appropriate approach for our problem because it can handle non-convexity 

and assures the efficiency of the achieved solutions (i.e., Pareto optimal solutions). In 

order to select the most preferable solution among the Pareto optimal solutions, the 

PROMETHEE-II method is adopted because it is among the most efficient approaches 

when one faces a huge number of alternatives and criteria (Tzeng and Huang, 2011). The 

next sections elaborate the applied methods in the proposed methodology (see Fig. 4). 

 

Start

Linear 
approximation 

by 
Separable 

programming 

Model 1

Single objective 
counterpart 

by 
Augmented ε-

constraint 
method 

Model 2

Best Pareto 
optimal 
solution 

by 
PROMETHEE-II 

Pareto 
optimal 

solutions
End

 

Fig. 4. Proposed methodology 

         

3.1. Separable programming 

In a separable programming approach, there is no difference between the required 

procedure to tackle a non-linear objective function, a constraint or both. Following, the 

manner to deal with a non-linear function is described. 

First, the non-linear function should be separable. A separable function is a function 

that can be presented as the sum of functions of a single variable. Accordingly, the 

objective functions (2) and (3) are separable. In a mathematical programming model, the 

separable functions can be approximated to piecewise linear functions (Williams, 2013).  

As it is obvious in the formulation, the only non-linear term occurring in Model 1 is 

𝑓(𝑥𝑖𝑗𝑘
𝑣𝑟𝑠/𝑑𝑗𝑘𝑠) (we call it (𝑜𝑖𝑗𝑘

𝑣𝑟𝑠) from now on). A piecewise linear approximation to this 

function (see Fig. 2) is depicted in Fig. 5. The curve in Fig. 2 is divided into four straight 

line portions.  

 



16 

 

0 0.25 0.5 0.75 1

1

0

f(o)

o

 
Fig. 5. Piecewise linear utility function for the satisfied demand  

 

The curve in Fig. 5 can be formulated as follows. 

 

𝑓(𝑜) =

{
 
 
 

 
 
 
4𝑜

13
,                      𝑜 < 0.25

8𝑜 − 1

13
,    0.25 ≤ 𝑜 < 0.5

16𝑜 − 5
13 , 0.5 ≤ 𝑜 < 0.75

24𝑜 − 11
13 ,           𝑜 ≥ 0.75

 (18) 

 

Our purpose is to eliminate the non-linear term 𝑓(𝑜𝑖𝑗𝑘
𝑣𝑟𝑠) from Model 1. This can be done 

by replacing it by the single linear term 𝜔𝑖𝑗𝑘
𝑣𝑟𝑠. Now, it is possible to relate 𝜔𝑖𝑗𝑘

𝑣𝑟𝑠 to 𝑜𝑖𝑗𝑘
𝑣𝑟𝑠  by 

the following relationships. 

 

1 1 3
0 1 2 3 4 1 5 , , , , ,

4 2 4

vrs vrs vrs vrs vrs vrs

ijk ijk ijk ijk ijk ijko i j k v r s                (19) 

1 3 7
0 1 2 3 4 1 5 0 , , , , ,

13 13 13

vrs vrs vrs vrs vrs vrs

ijk ijk ijk ijk ijk ijk i j k v r s                  (20) 

1 2 3 4 5 1 , , , , ,vrs vrs vrs vrs vrs

ijk ijk ijk ijk ijk i j k v r s           (21) 

 

λi are new variables introduced into Model 1. They can be interpreted as ‘weights’ to 

be attached to the vertices of the curve in Fig. 5. However, it is necessary to add another 

stipulation regarding λi. 

 

At most two adjacent λi can be non-zero (22) 
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The stipulation (22) assures that corresponding values of 𝑜𝑖𝑗𝑘
𝑣𝑟𝑠 and 𝜔𝑖𝑗𝑘

𝑣𝑟𝑠 lie on one of 

the straight line segments. For instance, if λ2 = 0.5 and λ3 = 0.5 (other λi are zero), we can 

get o = 0.375 and ω = 0.154. Obviously, ignoring stipulation (22) will incorrectly allow 

the possibility of values o and ω off the piecewise straight lines. 

Equations (19) to (21) generates the constraints (34) to (36) that should be added to 

the original presented model. The term 𝑓(𝑥𝑖𝑗𝑘
𝑣𝑟𝑠/𝑑𝑗𝑘𝑠) or 𝑓(𝑜𝑖𝑗𝑘

𝑣𝑟𝑠) is replaced by 𝜔𝑖𝑗𝑘
𝑣𝑟𝑠. This 

results in the following Model 2.  

 

1Min   ( )  
ijv

v vrs

i i s ijkk k iks

i I s S

ik

k i I k K j J v V r AK

ACz f y p TC x h zq
      

 
   

 
 

      (23) 

2Max s js

s S j J

z p 
 

  (24) 

3Min s s

s

z p   (25) 

s.t.  

, , , , ,vrs vrs

ijk ij ijvx Mt i I j J v V r A k K s S         (26) 

      , ,
ijv

vrs

ijk iks iks ik

j J v V r A

x z q i I k K s S
  

        (27) 

      , ,
ijv

vrs

jks ijk jks

i I v V r A

w x d j J k K s S
  

        (28) 

, ,jks jksjksw d j J k K s S      (29) 

     ik k

i I

q k K


    (30) 

     ,ik i ikq y i I k K     (31) 

 ( )vrs vrs

js js k ijk ij

i I v V r R k K

t   
   

     (32) 

    ,s ps qs s s p q J            (33) 

1 1 3
0 1 2 3 4 1 5 0 , , , , ,

4 2 4

vrs vrs vrs vrs vrs vrs

ijk ijk ijk ijk ijk ijko i j k v r s                  (34) 

1 3 7
0 1 2 3 4 1 5 0 , , , , ,

13 13 13

vrs vrs vrs vrs vrs vrs

ijk ijk ijk ijk ijk ijk i j k v r s                   (35) 

1 2 3 4 5 1 , , , , ,vrs vrs vrs vrs vrs

ijk ijk ijk ijk ijk i j k v r s           (36) 

, , , , , , , 1 ,..., 0 , , ,, , ,5vrs vrs vrs vrs

js s ijk ijk ijk ij

vrs

ijk ik iks jks kx q z w i j v r k so        (37) 

 0,1iy i I    (38) 

  

Stipulation (22) is employed for the set of variables λi. In a convex problem, Stipulation 

(22) will be satisfied automatically (i.e. original separable programming is sufficient). 

However, in a non-convex problem, as our problem is, this stipulation cannot be modeled 
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without adding new binary variables and logical constraints. According to Williams 

(2013), this restriction does not need to be modeled explicitly. Instead, it can be said that 

the set of variables (λ1, λ2, ..., λn) is a Specially Ordered Set variables of type 2 (SOS2).  At 

most two variables within the SOS2 can take on non-zero values.  The two non-zero 

values have to be for adjacent variables in that set (cf. Williams (2013); p. 177-182). 

Hence, this type of variable definition is used in our case and coded in General Algebraic 

Modeling System (GAMS) software.  

Noteworthy, the applied formulation method in our case is usually known as the λ-

form for separable programming where variables λi denote as weights attached to the 

vertices in the piecewise straight line.  

 

3.2. Augmented ε-constraint method 

In the traditional ε-constraint method, the most important objective function (i.e., the 

second objective in this paper that is selected with regard to the decision-maker opinion) 

is optimized while the other objectives (i.e., the first and third objective functions) are 

transformed into constraints as follows. 

 

Max OF2 (39) 

s.t.  

OF1 ≤ ε1  

OF3 ≤ ε3  

Constraints (26) to (38)  

 

Then, the Pareto-optimal (i.e. efficient) solutions of the model are achieved by 

parametrical variation in the right hand side (i.e. ε1 and ε3) of the constrained objective 

functions (Mavrotas, 2009; Azadeh et al., 2015). The range of ε1 and ε3 can be calculated 

by optimizing the constrained objective functions OF1 and OF3 separately subject to the 

constraints and constructing the pay-off table. After that, different values for ε2 and ε3 can 

be calculated by dividing the range of constrained objectives OF1 and OF3 (i.e. r1 and r3) 

to q equal intervals as follows. 

 

𝑟1 = OF1max − OF1min;      𝜀1
𝑙 = OF1max −

𝑟1
𝑞
× 𝑙     𝑙 = 0,… , 𝑞 − 1 (40) 

𝑟3 = OF3max − OF3min;      𝜀3
𝑙 = OF3max −

𝑟3
𝑞
× 𝑙     𝑙 = 0,… , 𝑞 − 1 (41) 

 

However, the general form of the ε-constraint method has some disadvantages. For 

instance, this method does not assure efficiency of the achieved solutions (i.e. obtaining 

weakly efficient solutions) (Mavrotas, 2009). Mavrotas (2009) expressed some of these 

disadvantages and developed an improved version of the ε-constraint method, namely 

"augmented ε-constraint method". The formulation of the augmented ε-constraint 

method for our problem is as follows. 
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Max OF2 + (𝜑1 × 𝑠1) + (𝜑3 × 𝑠3) (42) 

s.t.  

OF1 − 𝑠1 = 𝜀1  

OF3 − 𝑠3 = 𝜀3  

Constraints (26)-(38) 

 𝑠1, 𝑠3 > 0 

 

 

where φ1 and φ3 are sufficient small numbers (usually between 10-3 and 10-6) and 

augmented terms φ1 × s1 and φ3 × s3 assure obtaining just an efficient solution for each 

epsilon vector. This method is then applied to solve the multi-objective model in order to 

achieve efficient solutions. 

 

3.3. PROMETHEE-II  

PROMETHEE is one of the most appropriate Multi-Criteria Decision-Making (MCDM) 

techniques that can yield full ranking of alternatives (i.e. Pareto optimal solutions). 

Solutions are first evaluated by different evaluation criteria (i.e. values of objective 

functions), and then a definite preference function, pj(a,b), is selected with regard to each 

evaluation criteria j to calculate the relative preference of each solution over other ones. 

The preference function is defined by Equation (43), where Gj is a non-decreasing 

function of the obtained deviation (d) between the performances of the solutions a and b 

(𝑓𝑗(𝑎) − 𝑓𝑗(𝑏)) using the considered evaluation criteria j.  

 

Pj(a,b) = Gj{fj(a) - fj(b)}  (43) 

 

There are six general shapes for such non-decreasing functions, among them a specific 

function is selected for each criterion, according to their nature and characteristics. Type 

V preference function is selected for our problem. It is defined by Equation (44), where q 

is a difference threshold and p is a strict preference threshold (Tzeng and Huang, 2011):  

𝑃(𝑎, 𝑏) = 0   for 𝑑 ≤ 𝑞 

(44) 

𝑃(𝑎, 𝑏) =
𝑑 − 𝑞

𝑝 − 𝑞
   for 𝑞 ≤ 𝑑 ≤ 𝑝 

𝑃(𝑎, 𝑏) = 1   otherwise 

 

The overall preference index, 𝜋(𝑎, 𝑏), is computed by Equation (45), where wj denotes 

the importance weight of criterion j obtained based on the opinion of the decision-maker 

(DM). Positive 𝜑+(𝑎) and negative 𝜑−(𝑎) preference flows, which measure how an 

solution (a) outranks or is outranked by the other solutions, are calculated by Equations 

(46) and (47), respectively. The difference between these preference flows is represented 

as the net preference flow 𝜑(𝑎) (see Equation (48)). A higher value of 𝜑(𝑎) reflects a 

higher attractiveness of solution a (Turcksina et al., 2011). 
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𝜋(𝑎, 𝑏) =∑𝑤𝑗𝑃𝑗(𝑎, 𝑏)

𝑘

𝑗=1

 (45) 

𝜑+(𝑎) =∑𝜋(𝑎, 𝑏)

𝑏

 (46) 

𝜑−(𝑎) =∑𝜋(𝑏, 𝑎)

𝑏

 (47) 

𝜑(𝑎) = 𝜑+(𝑎) − 𝜑−(𝑎) (48) 

 

Finally, solutions are ranked from the best to the worst one by using the net flow vector 

(φ) in PROMETHEE-II to find a complete ranking of solutions. 

The augmented ε-constraint method presents some Pareto-optimal solutions. 

However, the DM of the considered case study needs a single solution to construct the 

HRL network. Therefore, the DM is requested to state his/her preference about the 

objective functions regarding the managerial policy of this case study (see the weights, w, 

in Table 4). Regarding the DM’s preference, the best Pareto-optimal solution can be 

determined by the PROMETHEE-II method (see the highlighted row in Table 4).  

As can be derived, the best Pareto-optimal solution is changed by considering different 

preferences. So, the best solution highly depends on the DM’s opinion. 

 

4. Computational experiments 

In order to display the applicability of the presented model and methods, the augmented 

ε-constraint method is coded in the GAMS software and integrated into Model 2 to solve 

a randomly generated test problem (i.e., |𝐼| × |𝐽| × |𝐾| × |𝑉| × |𝑅| × |𝑆| = 5 × 3 × 2 ×

2 × 2 × 8). The values of the parameters are generated from the probability distributions 

listed in Table 2. GAMS (ver. 24.1.2) using the CPLEX solver (ver. 12.5.1.0) is able to solve 

MILP models. The PC with Intel® CoreTM i5-760 processor, 2.8 GHz, 12 GB of RAM, and 

the Windows 7 operating system is used as a technical platform.  

 

Table 2  

Data of the test problems 

fi ACk γik 

~U(10E + 8, 105E + 10) ~U(0.9E + 2,1.1E + 2) ~U(2.1E + 8,2.1E + 10) 

hk ϑk ps, ρiks, τjs, ξk, ψjks 
~U(10E + 2,10E + 4) ~U(2.1E + 10, 2.1E + 14) ~U(0,1) 

𝑡𝑖𝑗
𝑣𝑟𝑠

 𝑇𝐶𝑖𝑗𝑘
𝑣𝑟𝑠 djks 

~U(1,100) ~U(10E + 3,10E + 5) ~U(10E + 5,10E + 7) 

 

The obtained configuration of the network for the test problem using different 

objective functions are shown in Figs. 6 to 8. When we consider OF1 to be minimized (see 

Fig. 6), Warehouses #1 and #2 are opened to distribute RCs to all the five DPs through 

airways.  Fig. 7 also shows that the DPs are served by Warehouses #1-#3 through a 

mixture of airways and overland route when OF2 is maximized. When OF3 is selected to 
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be minimized, a complex transportation system of airways and overland routes is 

employed for the distribution of RCs (see Fig. 8). These imply the effect of the different 

objective functions on the configuration of the network. In addition, Fig. 9a-b depict the 

values of the objective functions of the Pareto-optimal solutions. It can be concluded that 

the results from employing different objective functions are not necessarily consistent, 

and therefore the objective functions should be considered separately. 
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Fig. 6. Obtained network configuration by considering OF1 to be minimized 
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Fig. 7. Obtained network configuration by considering OF2 to be maximized 
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Fig. 8. Obtained network configuration by considering OF3 to be minimized 

 

 
(a) 

 
(b) 

Fig. 9. Pareto frontier; (a) Surface plot, (b) Contour plot 

 

4.1. Sensitivity analysis 

To show the sensitivity of the model with respect to the important parameters used in 

the MR utility level (i.e., τjs and ξk), we introduce four indices (see Equations (49)-(52)). 

Equation (49) measures the Expected Time-Weighted Demand Satisfaction for DP j 

(ETWDSj) and reflects the time-dependent attention of the network to DP j. Equation (50) 

measures the Expected Satisfied Demand Ratio for DP j (ESDRj) and shows the demand-

dependent attention of the network to DP j. The Expected Time-Weighted Delivered 

Amount of RC k (ETWDAk) is measured by Equation (51). This index represents the 

importance of RC k for a timely distribution in the network. Equation (52) addresses the 

Expected Delivered Amount of RC k (EDAk). This index helps investigate the expected 

delivered amount of RC k with regard to its priority in the network. 
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Fig. 10a-b are some examples to show the influence of the increase in the priority of 

DP 4 on ETWDS4 and ESDR4, respectively. Fig. 10a shows that an increase in the priority 

of DP 4 decreases ETWDS4 when OF2 is maximized; however, it does not influence the 

value of ETWDS4 because the priority parameter is not included in OF1. Any absolute 

trend is not seen in ETWDS4 when OF3 is minimized, because this objective just attempts 

to establish a balance among DPs and the model may be forced to satisfy demand amount 

of DP 4 in longer or shorter duration times. Indeed, when OF2 is maximized, ETWDS4 

decreases because the model attempts to satisfy the demand of the high-prioritized DPs 

in less time.  

In a similar way, the evolution of ESDR4 when different objective functions are 

considered is viewed in Fig. 10b. The increase in ESDR4 is due to the increase of demand 

satisfaction for the high-prioritized DPs. Although we note a constant value after the 

second point (i.e., follow the red line in Fig. 10b), the demand of DP 4 is completely 

satisfied and the model continuously decreases ETWDS4 (i.e., follow the red line in Fig. 

10a). The model is continuously increasing the utility of the delivered RCs to DP 4, while 

its priority is increasing.      
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(b) 

Fig. 10. (a) Behavior of the ETWDS4 amount vs. the changes of the priority of DP 4 (τ4s) and 

(b) Behavior of the ESDR 4 amount vs. the changes of τ4s 

 

Fig. 11a-b illustrate the impact of the increase in the priority of RC 1 on ETWDA1 and 

EDA1, respectively. Fig. 11a shows that an increase in the priority of RC 1 does not 

influence ETWDA1 when OF1 is minimized, because the priority parameter is not included 

in this objective function. In addition, it can be concluded that ETWDA1 is impressible by 

variation of ξ1 when OF3 is minimized; however, there is no any absolute trend in its 

changes. ETWDA1 decreases because the model tries to satisfy the high-prioritized RC 1 

in less time when OF2 is maximized. In the similar way, Fig. 11b can be analysed. Because 

the priority parameter is not included in OF1, EDA1 is not impressible by the variation of 

ξ1 when this objective function is minimized. Since OF3 just tries to establish a balance 

among DPs, the model may be forced to satisfy lower or higher amount of demand in the 

different cases and therefore EDA1 is impressible by the variation of ξ1. EDA1 is improved 

by an increase of ξ1 when OF2 is maximized. This happens because the model tries to 

deliver the high-prioritized RC 1 in a larger amount. Although, we see a constant 

behaviour after the second point (i.e., follow the red line in Fig. 11a), the model 

continuously tries to increase EDA1 (i.e., follow the red line in Fig. 11b). This means that 

the model is continuously trying to increase the utility of delivered RC 1 when its priority 

is increasing.  
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(a) 

 
(b) 

Fig. 11. (a) Behavior of the ETWDA1 amount vs. the changes of priority of RC 1 (ξ1) and (b) 

Behavior of the EDA1 amount vs. the changes of ξ1 

 

4.2. A benchmark study 

To be more confident about the presented solution approach (i.e. the integrated 

separable programming-augmented ε-constraint method), a comparison with the NSGA-

II algorithm, that is well-known and efficient for solving the MINLP models, is provided 

in this section. The NSGA-II algorithm is coded in the MATLAB software (ver. R2011a) 

and integrated into Model 1. Eight test problems are considered in the different sizes (see 

Table 3). The values of the parameters are generated from the probability distributions 

listed in Table 2. Table 4 provides the considered values of the parameters of NSGA-II. 

 

Table 3  

Considered sizes for the test problems 
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Problem number  |I|×|J|×|K|×|V||×|R||×|S| 
1  2 × 6 × 2 × 1 × 1 × 2 
2  3 × 8 × 2 × 1 × 1 × 2 
3  3 × 10 × 2 × 2 × 1 × 3 
4  4 × 12 × 3 × 2 × 1 × 4 
5  4 × 14 × 3 × 1 × 2 × 5 
6  5 × 16 × 3 × 2 × 2 × 5 
7  5 × 18 × 4 × 2 × 2 × 6 
8  6 × 22 × 5 × 2 × 2 × 8 

 

Table 4  

Parameters setting for NSGA-II 

Parameter  Value 

Number of iterations  250 

Pop size  100 

Maximum number of non-dominated solutions  100 

Cross over probability  0.3 

Mutation probability  0.2 

 

NSGA-II and the integrated separable programming-augmented ε-constraint (ISPAE) 

method are compared with each other by some well-known metrics. The metrics used for 

measurement of the performance of the algorithms are as follows: the number of Pareto-

optimal solutions, CPU time, quality of Pareto-optimal solutions, and the diversity of 

them. The readers can refer to Rezaei-Malek et al. (2016) for more information about 

these metrics.  

Table 5 represents the differences of NSGA-II and ISPAE with regard to the required 

CPU time and the obtained number of Pareto solutions. Although NSGA-II obtained more 

solutions than the ISPAE method, it is not capable to solve the large-sized problems in a 

reasonable time. Table 6 shows the differences of the two methods with regard to the 

diversity and standard deviation of the obtained Pareto solutions. As can be derived, none 

of the algorithms has an absolute advantage over the other. Moreover, there is no 

difference between the qualities of the obtained Pareto-optimal solutions by both of the 

algorithms.  

 

Table 5 

Solution properties 

Test problem 
 CPU time (seconds)  Number of Pareto solutions 

 NSGA-II ISPAE  NSGA-II ISPAE 

1  1059.161 29.8283*  99 35 

2  1678.089 31.4671  99 45 

3  5.13E+03 65.3281  92 37 

4  15035.58 99.2159  70 42 

5  21618.59 179.166  92 20 

6  >50000 217.682  NA 12 

7  >50000 1861.07  NA 17 

8  >50000 16770.8  NA 27 

* The bold numbers are the better results 



27 

 

 

 

Table 6 

Diversity and standard deviation of Pareto solutions 

Test problem 
 Diversity  Standard deviation 

 NSGA-II ISPAE  NSGA-II ISPAE 

1  5.9561E+14 2.9578E+14  1.99578E+12 3.23181E+12 

2  5.2292E+14 3.2909E+14  1.9291E+13 3.96666E+12 

3  6.4554E+14 4.6547E+14  8.3192E+12 6.11238E+12 

4  3.033E+14 5.7834E+14  3.2749E+12 6.07203E+12 

5  1.0264E+15 1.2863E+15  7.34145E+12 2.67452E+13 

6  NA 1.3731E+15  NA 7.5548E+13 

7  NA 1.7517E+15  NA 3.73126E+13 

8  NA 2.2261E+15  NA 4.02436E+13 

* The bold numbers are the better results 

 

To investigate the differences of the obtained Pareto-optimal solutions by these two 

algorithms, we randomly selected some more similar solutions and explored their 

differences. We noticed that although there are some minor differences with regard to 

the amount of shipped RCs by the different mode-route pairs, there is no major difference 

between solutions, e.g. the decisions about the warehouses and the amount of RCs that 

should be prepositioned.  

According to the above discussion, we can conclude that the obtained solutions by 

ISPAE are reliable, and also this method is strongly recommended for the large-sized 

problems.  

 

5. A real case study: Potential earthquake in Tehran 

Tehran city is the capital of Iran with around 10 million people are daily living or 

commuting. The history of the region shows the strong earthquakes (i.e. 7.0 Richter and 

higher) over the 158 last years (Tofighi, 2011). Tehran has been built over the several 

faults (see Fig. 12). According to the report of Japan International Cooperation Agency 

(JICA), three faults namely Mosha-Fasham Fault (MFF) and North Tehran Fault (NTF), in 

the north of Tehran, and Rey Fault (RF) in the south of Tehran are the active ones (JICA, 

2010). The JICA also proposed a Hybrid Model (HM) that is a combination of all the faults’ 

activities. 
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Fig. 12. Fault traces in the Tehran region adopted from www.atlas.tehran.ir 

 

RF can cause a 9.0 Richter earthquake in the southern part and a 7.0-8.0 Richter in the 

northern part of Tehran. Also, NTF causes an earthquake in the northern part (i.e., almost 

9.0 Richter) stronger than in the southern part (i.e., almost 7.0 Richter). MFF can result 

in at most a 7.0 Richter earthquake. Moreover, it is assumed that HM causes an 8.0-9.0 

Richter earthquake throughout Tehran (JICA, 2010).  

Tehran city includes 22 sub-divisions that their centres are assumed as DPs (see Fig. 

13). The demand of each DP is a population-dependent parameter and is varying during 

a day. For instance, the demand/population of the sub-division #12 in non-working hours 

(NW) (4 PM to 8 AM) is lower than that of working hours (W) (8 AM to 4 PM) because 

this district is a working area. 

 We need to be able for serving the DPs with respect to 8 different scenarios in terms 

of the causative faults (MFF, NTF, RF and HM) and the time periods (W and NW). Table 7 

shows these different scenarios and their occurrence probabilities as they are estimated 

in (JICA, 2010).  

 

Table 7 

Eight different scenarios of a plausible earthquake in Tehran adapted from JICA (2010) 

  RF NTF MFF HM 

  W NW W NW W NW W NW 

Scenario number  #1 #2 #3 #4 #5 #6 #7 #8 

Probability  0.125 0.125 0.125 0.125 0.1 0.1 0.15 0.15 
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Fig. 13. Map of the Tehran city and the positions of the candidate warehouses 

 

This case study includes six candidate warehouses as shown by the black balloons in 

Fig. 13, 22 DPs, and the five different types of RC (i.e., non-perishable food package, bottle 

water, medical kit, blanket, and tent). The mentioned candidate set is determined by the 

HRL organization with regard to five the criteria, i.e. cost, technical, risk, availability and 

coverage, as discussed in (Bozorgi-Amiri and Asvadi, 2015). 

The priority of the DPs (i.e., 22 sub-divisions) is calculated regarding to 14 

vulnerability criteria, i.e. the distance from causative faults, landslide, liquefaction, 

amplification, downfall, structural behavior of buildings, electricity network, gas 

network, transportation network, water network, medical emergency services, fire 

stations, income level of people, search and rescue capability) as proposed by Nateghi 

(2001). Moreover, according to experts' opinions about an earthquake condition, the 

priorities of the five different RCs can be determined. The priority of the non-perishable 

food package, bottle water, medical kit, blanket, and tent are respectively considered as 

follows: 0.1, 0.3, 0.5, 0.05 and 0.05. These weights are adopted from the work of Gralla et 

al. (2014). 

The establishment cost of each warehouse in the six candidate locations is estimated 

1.25e+10 Rials, where each one is capable to stock the five types of RC required for 50000 

families. The effect of an earthquake, according to the different scenarios, on the 

warehouses is included in the estimation of JICA (2010) about the proportion of the pre-

positioned RCs remaining usable at each warehouse with regard to the different criteria 

(e.g., structure type of surrounding buildings and warehouse, risk of utilities, etc.) (see 

Supplementary Material).   

The demand of the DPs depends on the population size and on the intensity of the 

earthquake. The demand of the 22 DPs regarding the considered scenarios (see Table 7) 
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is estimated based on the population information of the DPs in the different times of a 

day and the destruction intensity of the earthquake (see Supplementary Material).  

Two different types of vehicle (i.e., truck and helicopter) are available. For a truck, two 

possible overland routes are determined between each warehouse-DP pair. For a 

helicopter, the shortest airway is considered. Table 8 illustrates the characteristics of the 

vehicles. 

  
Table 8  

Characteristics of the employed vehicles 

 Speed (km/h) Cost per hour (Rial) 

Helicopter CH-147D Chinook 220 2.4E+6 

Truck HLVW-Cargo 85 0.7E+6 

 

According to the different scenarios, the required time to deliver the RCs to the DPs is 

estimated by JICA (2010) while considering the different criteria, i.e. the routes’ width, 

structure type of surrounding buildings, traffic, etc. (e.g., considered by Mete and 

Zabinsky (2010)).  

The required budget of the HRL organization, funded by the municipality of Tehran, 

needs to be minimized along with maximization of the network efficacy and balance.  

Table 9 shows the obtained Pareto-optimal solutions by the ISPAE method. The best 

values of φ1 and φ2 are obtained experimentally where these values result in the high 

quality Pareto optimal solutions.  The decision maker (DM) of the case study must select 

one of these solutions to construct the network. Hence, the PROMETHEE-II method is 

employed to assist the DM in selecting. Table 9 shows 13 alternatives (i.e., the obtained 

Pareto-optimal solutions) and three criteria (i.e., values of OF1, OF2 and OF3). The values 

of p, q, and w are determined for each criterion j with regard to the DM’s opinion (see 

Table 10). Table 11 also shows the ranking of the alternatives. The DM selects the first 

ranked alternative, where all the six warehouses are opened and a mixture of different 

modes and routes are employed for the distribution of the RCs. Table 12 also shows the 

quantity of the prepositioned RCs in the selected warehouses.  

 

Table 9  

Pareto-optimal solutions  

No. ε1 ε3 OF1 OF2 OF3 Solution time (Sec) 

1 3.71E+16 0.787429 2.24E+17 0.890433233 0.229070281 168.7005529 

2 7.43E+16 0.984287 3.41E+17 0.635568113 0.036337852 904.080983 

3 1.11E+17 0.787429 2.16E+17 0.881304983 0.229070281 269.9242233 

4 1.49E+17 0.885858 2.99E+17 0.579483842 0.132704066 155.3078006 

5 1.49E+17 0.984287 2.99E+17 0.524796561 0.036337852 329.8028742 

6 1.86E+17 0.689001 2.05E+17 0.895627968 0.325436496 2599.804964 

7 1.86E+17 0.885858 2.61E+17 0.570003038 0.132704066 162.4728741 

8 2.23E+17 0.295286 2.01E+17 0.889858993 0.710901355 1675.444653 

9 2.23E+17 0.689001 2.11E+17 0.897816086 0.325436496 296.0558163 

10 2.23E+17 0.885858 2.24E+17 0.558221378 0.132704066 248.3415905 
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No. ε1 ε3 OF1 OF2 OF3 Solution time (Sec) 

11 2.6E+17 0.984287 1.87E+17 0.51015033 0.036337852 805.3396263 

12 2.97E+17 0.787429 1.50E+17 0.438424787 0.229070281 595.6295521 

13 3.34E+17 0.984287 1.13E+17 0.380959727 0.036337852 463.2417609 

 

Table 10  

Parameters setting of PROMETHEE-II 

Criteria 
 

Criteria type Preference/Weight 
Thresholds 

 q p 
OF1  Min 0.3 1.14E+17 2.28E+16 
OF2  Max 0.5 0.025842818 0.103371272 
OF3  Min 0.2 0.101184525 0.202369051 

 

 

Table 11  

Obtained ranking of the Pareto-optimal solutions  

Pareto Solution 
  Criteria  

φ (a) Ranking 
 OF1 OF2 OF3 

1  2.24E+17 0.890433233 0.229070281 2.47619 2 

2  3.41E+17 0.635568113 0.036337852 -0.67377 7 

3  2.16E+17 0.881304983 0.229070281 2.47619 3 

4  2.99E+17 0.579483842 0.132704066 -1.19996 9 

5  2.99E+17 0.524796561 0.036337852 -1.94435 11 

6  2.05E+17 0.895627968 0.325436496 2.057143 4 

7  2.61E+17 0.570003038 0.132704066 -1.08339 8 

8  2.01E+17 0.889858993 0.710901355 1.40000 6 

9  2.11E+17 0.897816086 0.325436496 2.057143 5 

10  2.24E+17 0.558221378 0.132704066 4.181088 1 

11  1.87E+17 0.51015033 0.036337852 -1.32772 10 

12  1.50E+17 0.438424787 0.229070281 -5.57281 13 

13  1.13E+17 0.380959727 0.036337852 -2.84576 12 

 

Table 12  

The opened warehouses and the corresponding amount of the RCs 

RC 
 Warehouse 
 1 2 3 4 5 6 

1  2.1000E+8 1.1527E+8 1.7618E+8 2.1000E+8 2.1000E+8 1.3564E+8 
2  2.1000E+8 1.8590E+8 1.0683E+8 2.1000E+8 2.1000E+8 8.3325E+7 
3  2.1000E+9 2.1000E+9 1.5306E+9 2.1000E+9 2.1000E+9 1.1846E+9 
4  4.2000E+8 4.2000E+8 1.0103E+8 4.2000E+8 4.2000E+8 1.7334E+8 
5  2.1000E+8 2.1000E+8 1.4706E+8 2.1000E+8 2.1000E+8 5.9524E+7 

 

 To show the differences of the obtained Pareto-optimal solutions, we investigate the 

situations of DP #14 (as the high-prioritized DP) and DP #22 (as the less-prioritized DP), 

as two instances, in the first and second ranked Pareto-optimal solutions. Fig. 14 depicts 

the situations of these DPs in Scenario #8 with regard to RC 3 (i.e., medical kit). It should 

be considered that the priorities of RC 3 in Scenario #8 for DP #14 and DP #22 are 0.0622 

× 0.5 and 0.0167 × 0.5, respectively. As can be seen in Fig. 14, when the efficacy is 
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increased (i.e., OF2), the MR utility level at the high-prioritized DP (i.e., DP #14) is 

improved while the MR utility level at the less-prioritized DP (i.e., DP #22) is got worse. 

Moreover, the imbalance measure is got worse from the first ranked Pareto solution to 

the second one. Therefore, if the DM seeks to balance, he/she should select the first 

ranked solution, but if he/she prefers efficacy, the second ranked Pareto solution is better 

than the first one. Similar insights can be provided by comparing the different Pareto-

optimal solutions, but the DM should pick one of them regarding to his/her preferences 

to the different objectives.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Situation of DP #14 vs. DP #22 with regard to the first and second ranked Pareto 

solutions 

 

To analyze the sensitivity of PROMETHEE-II, we investigate 36 different combinations 
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a low weight, 0.1, to the most important objective (regarding the DM’s point of view) is 

such a strategic mistake, even in the situation of a huge cost saving 49.5%.  Moreover, for 

two combinations of weights (w1=0.1, w2=0.2, w3=0.7) and (w1=0.1, w2=0.1, w3=0.8), the 

first ranked solution is Solution #2 and Solution #11, respectively. Solution #11 can be 

chosen by someone that prefers efficiency and balance to efficacy. Because the total cost 

of this solution is almost 16.52% lower than Solution #10, but its balance is better than 

Solution #10 around 72% while the both solutions almost have same amount of efficacy.  

The total cost of Solution #2 is higher than Solution #10 around 34.31%; however, this 

solution presents a higher amount of efficacy (i.e., 12.17%) and balance (i.e., 72.62%). 

Therefore, this solution will be a great one if someone does not care of the network cost.  

In conclusion, Solution #10 is a reliable decision with regard to different preferences 

of the DM unless when the lowest preference (i.e., 0.1) is assigned to OF2 (i.e., efficacy), 

while that is the most important objective function. 

 

Table 13. Ranking of the Pareto optimal solutions by considering different weights for the 

objectives  

Weight  Rank 

1w 2w 3w  1 2 3 4 5 6 7 8 9 10 11 12 13 
0.8 0.1 0.1  S13 S10 S11 S1 S3 S12 S6 S9 S8 S7 S5 S4 S2 
0.7 0.2 0.1  S10 S1 S3 S13 S6 S9 S8 S11 S12 S7 S4 S5 S2 
0.7 0.1 0.2  S13 S10 S11 S1 S3 S7 S12 S5 S6 S9 S4 S8 S2 
0.6 0.2 0.2  S10 S13 S11 S1 S3 S6 S9 S7 S8 S5 S4 S12 S2 
0.6 0.3 0.1  S10 S1 S3 S6 S9 S8 S13 S11 S7 S4 S12 S5 S2 
0.6 0.1 0.3  S13 S10 S11 S5 S7 S4 S1 S3 S12 S6 S9 S8 S2 
0.5 0.4 0.1  S10 S1 S3 S6 S9 S8 S11 S7 S13 S4 S5 S12 S2 
0.5 0.3 0.2  S10 S1 S3 S6 S9 S13 S11 S8 S7 S4 S5 S2 S12 
0.5 0.2 0.3  S10 S13 S11 S5 S7 S1 S3 S4 S6 S9 S8 S2 S12 
0.5 0.1 0.4  S13 S11 S10 S5 S7 S4 S2 S1 S36 S12 S6 S9 S8 
0.4 0.5 0.1  S10 S1 S3 S6 S9 S8 S7 S4 S11 S2 S5 S13 S12 
0.4 0.4 0.2  S10 S1 S3 S6 S9 S8 S11 S7 S4 S13 S5 S2 S12 
0.4 0.3 0.3  S10 S11 S13 S1 S3 S7 S5 S6 S9 S4 S2 S8 S12 
0.4 0.2 0.4  S10 S13 S11 S5 S7 S4 S2 S1 S3 S6 S9 S8 S12 
0.4 0.1 0.5  S13 S11 S10 S5 S7 S4 S2 S1 S3 S12 S6 S9 S8 
0.3 0.6 0.1  S10 S1 S3 S6 S9 S8 S2 S7 S4 S11 S5 S13 S12 
0.3 0.5 0.2  S10 S1 S3 S6 S9 S8 S2 S7 S4 S11 S5 S13 S12 
0.3 0.4 0.3  S10 S1 S3 S6 S9 S11 S2 S7 S4 S5 S8 S13 S12 
0.3 0.3 0.4  S10 S11 S13 S5 S2 S7 S4 S1 S3 S6 S9 S8 S12 
0.3 0.2 0.5  S10 S11 S13 S5 S2 S7 S4 S1 S3 S6 S9 S8 S12 
0.3 0.1 0.6  S13 S11 S5 S10 S2 S7 S4 S1 S3 S12 S6 S9 S8 
0.2 0.7 0.1  S10 S1 S3 S6 S9 S8 S2 S4 S7 S11 S5 S13 S12 
0.2 0.6 0.2  S10 S1 S3 S6 S9 S8 S2 S4 S7 S11 S5 S13 S12 
0.2 0.5 0.3  S10 S1 S3 S2 S6 S9 S8 S7 S4 S11 S5 S13 S12 
0.2 0.4 0.4  S10 S2 S11 S5 S1 S3 S7 S4 S13 S6 S9 S8 S12 
0.2 0.3 0.5  S10 S2 S11 S5 S13 S7 S4 S1 S3 S6 S9 S8 S12 
0.2 0.2 0.6  S10 S11 S13 S5 S2 S7 S4 S1 S3 S6 S9 S12 S8 
0.2 0.1 0.7  S13 S11 S5 S2 S10 S7 S4 S1 S3 S12 S6 S9 S8 
0.1 0.8 0.1  S10 S1 S3 S6 S9 S8 S2 S4 S7 S5 S11 S13 S12 
0.1 0.7 0.2  S10 S1 S3 S6 S9 S8 S2 S4 S7 S5 S11 S13 S12 
0.1 0.6 0.3  S10 S1 S3 S2 S6 S9 S8 S4 S7 S5 S11 S13 S12 
0.1 0.5 0.4  S10 S2 S1 S3 S11 S5 S4 S6 S9 S7 S8 S13 S12 
0.1 0.4 0.5  S10 S2 S11 S5 S4 S7 S13 S1 S3 S6 S9 S8 S12 
0.1 0.3 0.6  S10 S2 S11 S5 S13 S4 S7 S1 S3 S6 S9 S8 S12 
0.1 0.2 0.7  S2 S11 S5 S10 S13 S7 S4 S1 S3 S6 S9 S12 S8 
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0.1 0.1 0.8  S11 S13 S5 S2 S10 S7 S4 S1 S3 S12 S6 S9 S8 

 

To show the impact of the usage possibility of a set of alternative routes for each of the 

applied transportation modes (i.e. multi-mode-route feature) on the efficiency, efficacy, 

and imbalance measures, three states are defined for the case study as follows:  

State (i): Multi-mode: There are two vehicle types, i.e. truck and helicopter, to be applied 

in the disaster area. Each of them can just use one specific route between each 

warehouse-DP pair. 

State (ii): Multi-route: There are two overland alternative routes that can be passed by 

the trucks between each warehouse-DP pair. 

State (iii): Multi-mode-route: Integration of States (i) and (ii).   

Fig. 15 illustrates the differences of the considered measures among the tree defined 

states. As can be seen, State (iii) achieved the best values for all the measures. Indeed, 

employing a transportation system with the multi-route-mode feature improved the 

efficiency, efficacy, and imbalance measures around 51%, 55%, and 89% on average, 

respectively. As can be derived, we could design a more effective and balanced network 

while spending a lower amount of money. The efficacy and imbalance measures were 

improved because of increasing the transportation capacity. Noteworthy, although using 

the helicopters had more cost than trucks per unit of time, the total cost decreased 

because of a huge improvement in the average of delivery time.      

 

 
Fig. 15. Differences of the measures regarding the different employed states 

 

6. Conclusion and future research direction 

This work has proposed a multi-objective, two-stage stochastic, non-linear, and mixed-

integer mathematical model to design a humanitarian relief logistics network considering 

the three objectives, i.e. efficiency, efficacy, and imbalance, to be optimized.   

A new utility level of delivered relief commodities, called MR utility level, has been 

developed to measure the benefit level of each demand point at disaster area. The MR 

utility level simultaneously takes account the importance of the delivery time, the 
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priorities of the different relief commodities and demand point, and the fraction of the 

satisfied demand at each specific demand point. Improved versions of the efficacy and 

imbalance measures have been presented based on the MR utility level.  An integrated 

feature of the usage possibility of alternative routes for each applied transportation mode 

(i.e. the multi-mode-route feature) has been incorporated into the presented 

mathematical model to increase the responsiveness and reliability of the humanitarian 

relief logistics network. The developed multi-objective and non-linear mathematical 

model has been solved by employing an integrated separable programming-augmented 

ε-constraint (ISPAE) approach. 

The impacts of the MR utility level and the efficacy and imbalance measures on the 

network design, have been investigated through a random experiment. In this regard, 

four new indices have been defined and their improvements through applying the new 

measures and utility level has been proved. In addition, to be more confident to the ISPAE 

approach, this method and the NSGA-II algorithm have been compared through some 

random experiments. The results showed that the ISPAE method has a better time-

performance than NSGA-II, while producing solutions of similar high quality. 

Furthermore, NSGA-II is incapable to solve the large-sized problems.       

To show the applicability of the developed model and solution approach, a real case 

study on earthquake preparedness for Tehran, has been investigated. The achieved 

improvement by employing the new utility level and measures has been justified through 

analyzing the set of Pareto-optimal solutions. Moreover, our investigations showed that 

if the network uses the multi-mode-route feature, it can improve the efficiency, efficacy, 

and imbalance measure around 51%, 55%, and 89% on average, respectively. In other 

words, a more effective and balanced network is designed with a lower amount of money. 

Although this work approaches the real disaster situations and problems, there are 

many practical issues that should be handled in future research directions. For instance, 

taking into account the availability of the needed personnel for relief operations (e.g., the 

shipment of relief commodities, and treating injured individuals in the hospitals) in the 

network when a disaster occurs, could be a way to improve the realistic features of the 

humanitarian relief logistics problem.  
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