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Abstract

We consider a complex recyclable waste collection problem that extends the class of vehicle
routing problems with intermediate facilities by integrating a heterogeneous fixed fleet and a flexible
assignment of destination depots. Several additional side constraints, such as a mandated break
period contingent on tour start time, multiple vehicle capacities and site dependencies are also
included. This specific problem was inspired by a real-world application and does not appear
in the literature. It is modeled as an MILP which is enhanced with several valid inequalities.
Due to the rich nature of the problem, state-of-the-art commercial solvers are only able to tackle
instances of small to medium size. To solve realistic instances, we propose a local search heuristic
capable of systematically treating all problem features and general enough to respond to the varying
characteristics of the case study regions for which it is intended. The results show that the heuristic
achieves optimality on small random instances, exhibits competitive performance in comparison to
state-of-the-art solution methods for special cases of our problem, and leads to important savings
in the state of practice. Moreover, it highlights and quantifies the savings from allowing a flexible
assignment of destination depots. The data from the state of practice comes from a recyclable waste
collection company in Geneva, Switzerland.

Keywords: vehicle routing; intermediate facilities; heterogeneous fixed fleet; flexible assignment
of destination depots; local search; waste collection

1 Introduction

This article proposes a solution to a complex waste collection problem, in which recyclable waste is
collected and transported using a heterogeneous fixed fleet of vehicles with different volume and weight
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Figure 1: Tour Example Illustration
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capacities, fixed costs, unit-distance running costs and unit-time wage rates. As both waste containers
and collection vehicles are flow-specific, the problem can be decomposed and solved separately for each
waste flow.

As shown in Figure 1[in the final version ensure tables/figures/algorithms appear after they have been
introduced in the text], each vehicle tour starts and ends at one of several depots, not necessarily the
same, and is a sequence of collections followed by disposals at the available dumps. All collections
are of the same waste flow and all visited dumps accept the latter. There is a mandatory visit to a
dump just before the end of a tour, i.e. a tour terminates with an empty vehicle. Dumps are recycling
plants. There could be multiple dumps for the collected waste flow and they can be used when and
as needed during a tour. We consider time windows for the depots, collection points and dumps. A
tour is limited only by the legal duration of the working day, which is roughly divided into two parts
by a mandated break. Moreover, due to the specificities of the collection regions, we consider site
dependencies. Mountainous terrain and narrow streets, for example, are inaccessible with big collector
trucks.

Waste collection problems are often represented as VRPs with intermediate facilities (VRP-IF), with
the latter representing the dumps where vehicles can stop to empty whenever needed during a tour.
However, despite the wide practical application of these problems, many important realistic features
are often omitted. For example, the literature on waste collection VRP assumes homogeneous fleets,
while, on the other hand, heterogeneous fleet VRP problems omit other important features present
in waste collection, such as intermediate facilities and complex temporal constraints. In addition,
different collection regions often have peculiarities that make the direct application of existing solutions
impractical.

The contribution of this work is the integration of a heterogeneous fixed fleet and a flexible assignment
of destination depots in the vehicle routing problem with intermediate facilities. The former reflects
the fact that, in industry, fleets either start as heterogeneous or become such as new vehicles are added
or old ones are replaced, which introduces another level of complexity for the solution algorithms. The
latter mimics situations that occur in our case study collection regions, some of which are dense city
centers, while others cover large rural areas with long tours that do not necessarily terminate at the
origin depot. According to the current state of practice, a driver who starts a tour from their “home”
depot may occasionally have to terminate their tour and sleep over at another depot, from which they
start on the next day. Given the relative inconvenience of such policies for the driver, we introduce
a relocation term in the objective function, which incentivizes through a cost component, rather than
enforcing, the vehicle to return to the origin depot. We thus keep the possibility of such policies, but
minimize their occurrence.

We model the problem as a mixed binary linear program which is enhanced with several valid inequal-
ities. Due to the rich nature of the problem, state-of-the-art commercial solvers are only able to tackle
instances of small to medium size. For solving instances of realistic size, we propose a local search
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heuristic[name the heuristic] which is capable of systematically treating all problem features and is
general enough to be deployed to case studies with very different instance topologies. The heuristic
achieves optimality on small random instances and exhibits competitive performance in comparison
to state-of-the-art solution methods for special cases of our problem. It highlights and quantifies the
benefits of the flexible assignment of destination depots, and leads to important financial savings in
the current state of industry practice in the canton of Geneva, Switzerland, for which detailed data for
comparison is available.

The remainder of this article is organized as follows. Section 2 is a brief analysis of the related litera-
ture. Sections 3 and 4 present our exact and heuristic approaches to solving the problem, respectively.
Section 5 discusses the results from the numerical experiments, and Section 6 concludes and outlines
directions for future research.

2 Related Literature

Although research on waste collection VRP spans several decades, the problem has been less studied
than other VRP variants. One of the first applications is that of Beltrami and Bodin (1974) who solve
a periodic VRP-IF (PVRP-IF) applied to a waste collection problem in New York. Bard et al. (1998a)
and Bard et al. (1998b) consider a distribution context with replenishment facilities, in the latter case
integrated in an inventory management framework. Angelelli and Speranza (2002b) apply a modification
of Cordeau et al.’s (1997) unified tabu search (TS) algorithm to a PVRP-IF with features such as service
durations and a maximum tour duration. In Angelelli and Speranza (2002a), this framework is used
to analyze the operational cost benefits of different waste collection policies in Val Trompia, Italy and
Antwerp, Belgium.

Kim et al. (2006) include time windows and a driver break in the waste collection VRP-IF, explicitly
considering also features such as tour compactness and workload balancing. Their solution approach, an
extension of Solomon’s (1987) insertion algorithm followed by simulated annealing, leads to a significant
reduction in the number of tours and substantial financial savings at a major US waste collection
company (see Sahoo et al., 2005). Kim et al. (2006) are also the first to propose a set of 10 benchmark
instances for the VRP-IF, involving up to 2092 stops and 19 intermediate disposal facilities. The multi-
objective genetic algorithm of Ombuki-Berman et al. (2007), the variable neighborhood tabu search
of Benjamin (2011) and the adaptive large neighborhood search (ALNS) of Buhrkal et al. (2012) are
also applied on these instances, leading to distance improvements of 10-15% and using fewer vehicles.
Buhrkal et al.’s (2012) approach also leads to a distance improvement of 30-45% at a Danish waste
collection company.

Crevier et al. (2007) propose the multi-depot VRP with inter-depot routes (MDVRPI). Although the
setup is closely related, it was originally applied in a distribution context. The MDVRPI is non-periodic,
no time windows or driver breaks are considered and, in the general case, depots and intermediate
facilities coincide. Crevier et al. (2007) use the adaptive memory (AM) principle of Rochat and Taillard
(1995) and decompose the problem into multi-depot, single-depot and inter-depot subproblems which
are solved using Cordeau et al.’s (1997) TS. A solution to the MDVRPI is obtained through a set
covering formulation and improved by a modified version of the TS.

Crevier et al. (2007) create two sets of MDVRPI instances with 48 to 288 customers and a fixed
homogeneous fleet stationed at one depot, with the rest of the depots acting only as intermediate
facilities. These instances are used by Tarantilis et al. (2008) and Hemmelmayr et al. (2013) who
propose, respectively, a hybrid guided local search and a variable neighborhood search (VNS) with
a dynamic programming procedure for the insertion of the intermediate facilities in the tours. Both
articles report improvements over the results of Crevier et al. (2007) with computation times close
to one hour for the largest instances. Muter et al. (2014) develop a branch-and-price algorithm for
the MDVRPI and solve several sets of instances derived from Crevier et al.’s (2007) benchmarks to
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optimality. Only Hemmelmayr et al. (2013) apply their methodology to a PVRP-IF faced by a waste
collection company and achieve a 25% reduction in the routing cost. Hemmelmayr et al. (2014) combine
this problem with the bin allocation problem and study the cost trade-off between less frequent visits
and larger bin sizes. They use a matheuristic with a VNS for the routing problem and a mathematical
model for the bin allocation problem, and compare a hierarchical and an integrated approach.

Another related problem class is the routing of electric or alternative fuel vehicles, where we have
recharging or refueling decisions in lieu of emptying decisions. Conrad and Figliozzi (2011) consider
the recharging VRP (RVRP), where electric vehicles can recharge at customer locations with time
windows. Erdoğan and Miller-Hooks (2012) consider the green VRP (G-VRP), where vehicles use
a sparse alternative fuel infrastructure. Results on medium-size random instances show that spatial
characteristics have significant impact on the optimality gap, which appears to be related to the number
of facilities. Larger instances are used to analyze the effects of increasing the number of customers,
facility availability and driving range limits.

Schneider et al. (2014a) solve the electric VRP with time windows and recharging stations (E-VRPTW).
The problem features variable recharging times based on remaining battery charge and a hierarchical
objective function minimizing number of vehicles first and travel distance second. The proposed hybrid
VNS/TS improves the results of Erdoğan and Miller-Hooks (2012) by 8-15% and obtains competitive
results on the MDVRPI sets of Crevier et al. (2007) and Tarantilis et al. (2008). Schneider et al. (2014b)
combine recharging and reloading facilities in the VRP with intermediate stops (VRPIS). Contrary to
the E-VRPTW, here the objective function is weighted rather than hierarchical. The authors propose
an ALNS, which is able to match or improve the results of Schneider et al. (2014a) on the G-VRP
instances at a fraction of the computation time. Convincing results are also obtained for the MDVRPI
instances of Crevier et al. (2007) and Tarantilis et al. (2008).

Regarding the vehicle fleets, Kim et al. (2006) and the related papers on the VRP-IF assume an
unlimited homogeneous fleet. The PVRP-IF of Angelelli and Speranza (2002b), the MDVRPI, RVRP,
G-VRP, E-VRPTW and VRPIS also assume a homogeneous fleet, albeit limited. However, in industry
vehicle fleets are rarely homogeneous. Few studies consider intermediate facilities in a more sophisticated
context, notably Coene et al. (2010) and Prescott-Gagnon et al. (2014), both of which are case studies.
The former treats a heterogeneous fixed fleet in a single-depot periodic VRP applied to a Belgian
bio-waste collection company. The latter consider multiple depots but with no comparison against
benchmark instances or the state of practice.

Taillard (1999) was the first to formally define the heterogeneous fixed fleet VRP (HFFVRP). Being a
generalization of the vehicle fleet mix problem (VFMP), the HFFVRP is NP-hard and more difficult
than the classical VRP or the VFMP. Taillard’s (1999) solution approach relies on heuristic column
generation with AM, and vehicle assignment costs are calculated at each iteration. He adapts the eight
largest VFMP instances of Golden et al. (1984) to the HFFVRP by specifying the number of vehicles
of each type and their variable costs. The best heuristic approaches on these benchmarks are due to
Penna et al. (2013) and Subramanian et al. (2012), the latter also being the fastest. The only fully
exact method is that of Baldacci and Mingozzi (2009). They prove the optimality of seven of the best
known solutions to the instances with variable costs only, and six in the case where both fixed and
variable costs are considered.

To our knowledge, Kek et al. (2008) is the only study to consider the flexible assignment of depots—a
situation that appears in our problem, and would allow for vehicles to start and end at different depots,
while being able to freely visit any dump for emptying. Kek et al.’s (2008) solution approach is based
on a network model and a branch-and-bound algorithm, branching on the node with the best bound.
On small randomly generated instances, the authors demonstrate that the flexible strategy outperforms
a fixed one by almost 50%.

The originality of our problem is thus reinforced by the general lack of literature treating the heteroge-
neous fixed fleet VRP-IF despite its wide practical application. The flexible assignment of destination
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depots is a characteristic that appears less frequently in practice and has therefore been largely ignored
in the literature. Yet, the intelligent choice of destination depots can lead to important financial sav-
ings. Some of the waste collectors in our case study regions need such flexibility but are unable to assess
its benefits. This article will therefore highlight and quantify the value of such strategies through a
systematic solution approach.

3 Exact Approach

The formulation we propose introduces several extensions to the model of Sahoo et al. (2005), including
multiple origins and destinations, multiple capacities, site dependencies, a maximum tour duration,
a richer objective function capturing the costs faced by a realistic firm, and the elimination of the
constraints calculating the necessary number of disposal trips for each vehicle. The break is modeled
in a way similar to Buhrkal et al. (2012) but without imposing a hard time window. In what follows
we present the model formulation as well as several problem-specific valid inequalities with a significant
impact on computation time. [impact to be measured with new experiments]

3.1 Mathematical Formulation

Formally, we define the problem on a directed multigraph G(N,A), with N = O′ ∪O′′ ∪D ∪ P , where
O′ is the set of origin depots, O′′ is the set of destination depots, D is the set of dumps, P is the set of
containers, and A = {(i, j) | ∀i, j ∈ N} is the set of arcs. Each dump in the set D is replicated as many
times as the maximum number of dump visits by any vehicle k, with an upper bound given by ceiling
of the ratio of total demand over the capacity of the smallest vehicle [this has to be thought out more
carefully].

The arcs are associated with an asymmetric distance matrix Π, where πij is the length of arc (i, j).
Each vehicle may have a different average speed, which results in a vehicle specific travel time matrix
Tk, where τijk is the travel time of vehicle k on arc (i, j). Each point has a single time window [λi, µi],
where λi and µi stand for the earliest and latest possible start-of-service time. Start of service after
µi is not allowed and if the vehicle arrives before λi it has to wait. Service duration for each point is
denoted by εi, and the pickup volume and weight by ρvi and ρwi , respectively. The service duration for
containers is mostly influenced by the type of container, e.g. underground or overground, and at dumps
by factors such as weighting and billing, hence it is only indexed over the set N . Service duration at
depots is zero.

There is a heterogeneous fixed fleet K, with each vehicle defined by its capacity in terms of maximum
volume Ωv

k and weight Ωw
k , a fixed deployment cost φk, a unit-distance running cost βk, and a unit-time

wage rate θk. We assume the driver-to-vehicle assignment as given and thus associate, for an instance
that is being solved, the wage rate directly to the vehicle. There is a maximum tour duration of H, and
a break of duration δ must be taken after η hours of continuous work, which divides the working day
into two roughly equal halves. Site dependencies are described by a binary flag αijk whose value is 1 if
arc (i, j) is accessible for vehicle k, and 0 otherwise.

We introduce the following binary decision variables: xijk = 1 if vehicle k traverses arc (i, j), 0 otherwise;
zijk = 1 if i and j are, respectively, the origin and destination of vehicle k, 0 otherwise; bijk = 1 if
vehicle k takes a break on arc (i, j), 0 otherwise; yk = 1 if vehicle k is used, 0 otherwise. Three groups
of continuous variables, Qv

ik, Qw
ik and Sik, are defined to track the cumulative volume and weight and

the start-of-service time at point i for vehicle k. Table 1 is a summary of the used notations.

The objective function (1) minimizes two terms. The first one is the sum of fixed cost, unit-distance
running cost and unit time wage rates for all used vehicles. The second one is the total cost of relocation
multiplied by the weight factor Ψ. Obviously, if i and j in the second term do not refer to the same
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Table 1: Mathematical Model Notations

Sets
O′ set of origins O′′ set of destinations
D set of dumps P set of containers
N = O′ ∪O′′ ∪D ∪ P K set of vehicles
Parameters
πij length of arc (i, j)
αijk = 1 if arc (i, j) is accessible for vehicle k, 0 otherwise
τijk travel time of vehicle k on arc (i, j)
εi service duration at point i
[λi, µi] lower and upper time window bound at point i
H maximum tour duration
η maximum continuous work limit after which a break is due
δ break duration
ρvi , ρ

w
i pickup volume and weight at point i

Ωv
k,Ω

w
k volume and weight capacity of vehicle k

φk fixed cost of vehicle k
βk unit-distance running cost of vehicle k
θk unit-time wage rate of vehicle k
Ψ weight of relocation cost term
Decision Variables

xijk =

{
1 if vehicle k traverses arc (i, j)
0 otherwise

zijk =

{
1 if i and j are, respectively, the origin and destination of vehicle k
0 otherwise

bijk =

{
1 if vehicle k takes a break on arc (i, j)
0 otherwise

yk =

{
1 if vehicle k is used
0 otherwise

Qv
ik cumulative volume on vehicle k at point i (continuous)

Qw
ik cumulative weight on vehicle k at point i (continuous)

Sik start-of-service time of vehicle k at point i (continuous)

physical depot, there will be a positive distance and travel time between them, which is thus explicitly
integrated into the total cost. This particular formulation reflects fact that our case study includes a
wide service area with several waste collection companies and a mix of urban and rural regions and it
is not always optimal, especially in rural areas, for a vehicle to return to its origin depot. If the driver
terminates their tour at a depot different from their “home” depot, they can sleep over and start a
new tour from there on the next day. The relocation cost term is a disincentive to such practices, and
ensures that they will occur only if there is a sufficient financial benefit. The weight factor Ψ can be
determined by the company.

Min f =
∑
k∈K

φkyk + βk
∑
i∈N

∑
j∈N

πijxijk + θk

∑
j∈O′′

Sjk −
∑
i∈O′

Sik


+Ψ

∑
k∈K

∑
i∈O′

∑
j∈O′′

(βkπji + θkτjik) zijk

(1)

The constraints can be split into several categories with the first category consisting of basic vehicle
routing constraints. Equalities (2) impose that each point should be served by exactly one vehicle.
Equalities (3) and (4) ensure that if a vehicle is used, its tour starts at an origin and ends at a
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destination with a visit to a dump immediately before that[THERE SHOULD BE SOME FIXING
HERE WITH RESPECT TO WHERE THE VEHICLE IS AND IF IT SHOULD BE FORCED TO
RETURN TO A SPECIFIC DEPOT]. Constraints (5) and (6) forbid returning to an origin or leaving
a destination. Flow conservation is represented by constraints (7). The link between the variables xijk
and zijk is achieved through constraints (8).∑

k∈K

∑
j∈D∪P

xijk = 1, ∀i ∈ P (2)

∑
i∈O′

∑
j∈P

xijk = yk, ∀k ∈ K (3)

∑
i∈D

∑
j∈O′′

xijk = yk, ∀k ∈ K (4)

∑
i∈N

xijk = 0, ∀k ∈ K, j ∈ O′ (5)∑
j∈N

xijk = 0, ∀k ∈ K, i ∈ O′′ (6)

∑
i∈N\O′′

xijk =
∑

i∈N\O′

xjik, ∀k ∈ K, j ∈ D ∪ P (7)

∑
m∈P

ximk +
∑
m∈D

xmjk − 1 6 zijk, ∀k ∈ K, i ∈ O′, j ∈ O′′ (8)

Site dependencies are enforced by constraints (9).

xijk 6 αijk, ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (9)

In the context of vehicle capacities, inequalities (10) and (11) limit, respectively, the cumulative volume
and weight on the vehicle at each point, while equalities (12) and (13) reset them to zero at the dumps,
origins and destinations. Keeping track of the cumulative volume and weight on the vehicle is achieved
by constraints (14) and (15).

ρvi 6 Qv
ik 6 Ωv

k, ∀k ∈ K, i ∈ P (10)

ρwi 6 Qw
ik 6 Ωw

k , ∀k ∈ K, i ∈ P (11)

Qv
ik = 0, ∀k ∈ K, i ∈ N \ P (12)

Qw
ik = 0, ∀k ∈ K, i ∈ N \ P (13)

Qv
ik + ρvj 6 Qv

jk + Ωv
k (1− xijk) , ∀k ∈ K, i ∈ N \O′′, j ∈ P (14)

Qw
ik + ρwj 6 Qw

jk + Ωw
k (1− xijk) , ∀k ∈ K, i ∈ N \O′′, j ∈ P (15)

The next four constraints express the temporal characteristics of the problem. Inequalities (16) calculate
the start-of-service time at each point, including service duration and a possible break duration. In
addition, these constraints eliminate the possibility of subtours and ensure that a point will not be
visited more than once by the same vehicle. Constraints (17), (18) and (19) enforce the time windows
and maximum tour duration. We assume that the lower time window bound is restrictive at the origins
and the upper one at the destinations.

Sik + εi + δbijk + τijk 6 Sjk +

(
max
m∈O′′

µm

)
(1− xijk) , ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (16)

λi
∑

j∈N\O′

xijk 6 Sik, ∀k ∈ K, i ∈ N \O′′ (17)

Sjk 6 µj

∑
i∈N\O′′

xijk, ∀k ∈ K, j ∈ N \O′ (18)
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∑
j∈O′′

Sjk −
∑
i∈O′

Sik 6 H, ∀k ∈ K (19)

The next block of constraints determines the arc on which a break is due. Breaks are modeled on
the arcs as in much of the vehicle routing literature and can in practice be taken on the arcs’ tails.
Constraints (20) and (21) limit the arcs on which the break can be taken so as it is taken as late
as possible. Inequalities (22) impose that the vehicle can only take a break on the arcs it traverses.
Finally, inequalities (23) ensure that the break is actually taken if the vehicle tour is longer than the
maximum continuous work limit η. The motivation to model the break as late as possible is two-fold.
First, few containers have very restrictive time windows (e.g. near schools or during market days) and
there would always be other containers in the area that can be served with little or no waiting time.
Therefore, it can be safely assumed that waiting time will never be sufficient to accommodate a break,
which is typically an hour long. Secondly, this approach allows the working day to be divided into two
periods of an approximate length η, thus avoiding the requirement for a second long break [big M and
tau related].(

Sik −
∑

m∈O′

Smk

)
+ εi − η 6 (H− η − ξ) (1− bijk) , ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (20)

η −

(
Sjk −

∑
m∈O′

Smk

)
6

(
max
m∈O′

µm + η

)
(1− bijk) , ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ (21)

bijk 6 xijk, ∀k ∈ K, i, j ∈ N (22)∑
j∈O′′

Sjk −
∑
i∈O′

Sik

− η 6 (H− η)
∑

i∈N\O′′

∑
j∈N\O′

bijk, ∀k ∈ K (23)

In constraints (20, the value of ξ can be set to the fastest travel time on accessible arcs from i to a
destination that passes through a dump. Finally, (24) to (26) establish the variable domains.

xijk, yk, bijk ∈ {0, 1}, ∀k ∈ K, i, j ∈ N (24)

zijk ∈ {0, 1}, ∀k ∈ K, i ∈ O′, j ∈ O′′ (25)

Qv
ik, Q

w
ik, Sik > 0, ∀k ∈ K, i ∈ N (26)

3.2 Variable Fixing and Valid Inequalities

We can exploit the special structure of our problem by fixing some of the binary variables and defining
several valid inequalities that restrict the search space of some of the binary and continuous variables
without eliminating any feasible solutions. We first set to zero binary variables linked to impossible
traversals. Constraints (27) eliminate the possibility of loops. In a similar fashion, constraints (28), (29)
and (30) forbid traveling from an origin to a dump or destination, from a container to a destination,
and from a dump to another dump, respectively.

xiik = 0, ∀k ∈ K, i ∈ N (27)

xijk = 0, ∀k ∈ K, i ∈ O′, j ∈ D ∪O′′ (28)

xijk = 0, ∀k ∈ K, i ∈ P, j ∈ O′′ (29)

xijk = 0, ∀k ∈ K, i ∈ D, j ∈ D : i 6= j (30)

The presence of time windows allows us to fix time-window infeasible traversals. Constraints (31)
express the fact that if by visiting point i as early as possible vehicle k cannot visit point j within its
time window, then points i and j cannot be visited by the same vehicle k, i.e. arc (i, j) is not traversed
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by vehicle k. These first two sets of rules can also be used to eliminate all the big M constraints (14,
15, 16, 20, 21, 23) for such variables as they become trivial.

xijk = 0, ∀k ∈ K, i ∈ N \O′′, j ∈ N \O′ : λi + εi + τijk > µj (31)

The first set of valid inequalities is used to restrict the start-of-service time search space. Inequalities
(32) impose a lower bound, short of waiting times, on the difference between the start-of-service time
at the origin and destination for each used vehicle. Then inequalities (33) and (34) calculate the latest
possible start and earliest possible finish of each tour.[33 and 34, bigM and tau related]∑

j∈O′′

Sjk −
∑
i∈O′

Sik >
∑

i∈N\O′′

∑
j∈N\O′

xijk(εi + τijk), ∀k ∈ K (32)

Sik 6 max
m∈P?

(µm − τimk) yk, ∀k ∈ K, i ∈ O′ (33)

Sjk > min
m∈D?

(λm + εm + τmjk)
∑

m∈D?

xmjk, ∀k ∈ K, j ∈ O′′ (34)

In constraints (33) P ∗ ⊂ P , where αimk = 1, and in constraints (33) D∗ ⊂ D, where αmjk = 1. If
the problem involves subsets of identical vehicles, the presence of symmetry can substantially reduce
the effectiveness of the model. Let K ′ ⊂ K represent a subset of identical vehicles and let k′g ∈ K ′,
where g ∈ 1, . . . , |K ′| introduces a simple ordering of the elements of K ′. Then for each subset K ′ we
apply constraints (35) or (36). These symmetry-breaking constraints specify that the first vehicle in
K ′ executes the tour with the highest waste volume (weight), the second vehicle executes the tour with
the second highest waste volume (weight), etc.∑

i∈P

∑
j∈P∪D

ρvi xijk′
g
>
∑
i∈P

∑
j∈P∪D

ρvi xijk′
g+1

, ∀g ∈ 1, . . . , (|K ′| − 1) (35)

∑
i∈P

∑
j∈P∪D

ρwi xijk′
g
>
∑
i∈P

∑
j∈P∪D

ρwi xijk′
g+1

, ∀g ∈ 1, . . . , (|K ′| − 1) (36)

Symmetries will also result from the fact that dumps are replicated. In a similar way, we define D′ ⊂ D
as a subset of replications of the same physical dump and let i′g ∈ D′, where g ∈ 1, . . . , |D′| introduces
a simple ordering of the elements of D′. Then for each subset D′ we apply the lexicographical ordering
constraints (37), which stipulate that a dump with a higher index should be preceded by a container
with a higher index.∑

j∈P
jxji′gk 6

∑
j∈P

jxji′g+1k
, ∀k ∈ K, g ∈ 1, . . . , (|D′| − 1) (37)

The last set of valid inequalities concerns the dump visits. With (38) we impose that a dump may be
visited at most once by a vehicle. With (39), on the other hand, we set for every vehicle the maximum
number of trips from dumps to containers, which is one less the total number of dumps. A dump visit
is thus reserved for the final trip in each tour.∑

i∈P
xijk 6 1, ∀k ∈ K, j ∈ D (38)∑

i∈D

∑
j∈P

xijk 6 |D| − 1, ∀k ∈ K (39)

With the addition of the valid inequalities, a state-of-the-art commercial solver like Gurobi can handle
instances with 10-15 containers, a depot, 4-5 dumps and 5 vehicles with the only critical resource being
computation time. Computation times are influenced both by the instance sizes and by their spatial
and temporal characteristics. We return to this question in Section 5.
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4 Local Search Heuristic

The vehicle routing problem is well known to be NP-hard (see e.g. Garey and Johnson, 1979). Being a
generalization thereof, our waste collection problem is even harder to solve. Moreover, realistic instances
involving 50 or more containers and several depots, dumps and vehicles will translate into thousands
of binary variables and tens of thousands of constraints. Therefore, for such cases, we develop a local
search heuristic capable of systematically treating all problem features. It starts off by constructing an
initial solution and then applies an iterative improvement procedure accepting infeasible intermediate
solutions. The heuristic contains components that specifically tackle each feature of our problem and
has been designed to be as independent as possible from the underlying instance topologies in order
to be applicable to the wide array of geographies present in the waste collection regions of interest.
It relies on conventional search operators and techniques. Therefore, the originality of the approach
resides in their combined use to achieve efficiency on a new problem.

4.1 Feasibility

A solution to our problem is a set of tours. It is considered feasible if all tours that comprise it satisfy
four criteria. First, start-of-service times should respect time windows. Secondly, tour duration should
be shorter than or equal to the maximum tour duration. These two criteria may be thought of as
expressing temporal feasibility. Thirdly, the volume and weight capacities of the vehicles may not be
violated at any point. This can be ensured by inserting appropriate visits to the available dumps. We
attach to this last criterion the condition that a tour should start from a specific depot, finish at one of
the available [or a specific] depots and visit a dump before the end. Finally, site dependencies should
be respected.

Every insertion or removal of a point from a tour, and every application of a neighborhood operator
requires the recalculation of start-of-service and waiting times for all or part of the points in the tour.
As shown in Algorithm 1, we consider a tour served by vehicle k ∈ K, for brevity tour k, represented as
an ordered sequence of points 1, 2, . . . , n−1, n indexed by i. The calculation begins by setting the start-
of-service time at the origin, S1k, as early as possible. For each subsequent point i, Sik is tentatively
calculated as the sum of the start-of-service time at point i − 1, the service duration at point i − 1,
and the travel time from i − 1 to i, i.e. Sik = S(i−1)k + εi−1 + τ(i−1)ik. If the maximum continuous
working time limit η expires between the start-of-service time at i− 1 and the end-of-service time at i,
in other words if S(i−1)k < S1k + η and Sik + εi > S1k + η , we need to insert the required break before
serving point i, which is achieved by incrementing Sik by the break duration δ. Finally, if Sik violates
the lower time window bound λi, i.e. if Sik < λi, we introduce waiting time wik at point i, equal to the
difference λi − Sik, and update Sik to λi. Once all Sik have been determined, we check if upper time
window bounds µi are respected for all i. If this is the case, we apply forward time slack reduction on
the tour, otherwise we declare the tour time-window infeasible.

Forward time slack, as described by Savelsbergh (1992), keeps track of the maximum amount each
start-of-service time can be delayed without violating time windows on the tour. We will examine
points sequentially in reverse order. If there is waiting at point i, there could be a non-zero slack at
point i− 1, because pushing S(i−1)k forward may eliminate or reduce waiting at i. We can push S(i−1)k
forward by the amount of waiting at i, or until we reach the upper time window bound at i − 1. The
last operation is expressed as S(i−1)k = min (S(i−1)k + wik, µi−1), and it entails an update of w(i−1)k
and wik to factor in the potential increase of waiting at i− 1 and decrease of waiting at i. Let S′(i−1)k
denote the original start-of-service time at point i − 1 before slack reduction. Then, waiting at i − 1
will be increased by the difference between S(i−1)k and S′(i−1)k, and waiting at i will be reduced by the
same difference. Finally, we need to artificially put w1k = 0. Forward time slack reduction preserves
time-window feasibility. Therefore, after the procedure it only remains to check if the tour’s duration
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Algorithm 1 Temporal feasibility algorithm

Input tour k as a sequence of points 1, 2, . . . , n− 1, n
Output start-of-service times, waiting times and temporal feasibility of tour k

1: S1k := λ1
2: for i = 2, 3, . . . , n− 1, n in tour k do
3: Sik := S(i−1)k + εi−1 + τ(i−1)ik
4: if S(i−1)k < S1k + η and Sik + εi > S1k + η then
5: Sik := Sik + δ
6: end if
7: if Sik < λi then
8: wik := λi − Sik

9: Sik := λi
10: else
11: wik := 0;
12: end if
13: end for
14: if Sik 6 µi,∀i then
15: for i = n, n− 1, . . . , 3, 2 in tour k do
16: S′(i−1)k := S(i−1)k
17: S(i−1)k := min (S(i−1)k + wik, µi−1)
18: w(i−1)k := w(i−1)k + (S(i−1)k − S′(i−1)k)

19: wik := wik − (S(i−1)k − S′(i−1)k)
20: end for
21: w1k := 0
22: if Snk − S1k 6 H then
23: tour k is temporally feasible
24: else
25: tour k is duration infeasible
26: end if
27: else
28: tour k is time-window infeasible
29: end if

is feasible. If it is the case, we accept the tour as temporally feasible, otherwise we declare it duration
infeasible. [note on break]

Verifying capacity feasibility is much more straightforward. At each point of the tour, we calculate the
cumulative volume and weight loads, Qv

ik and Qw
ik, on the vehicle, resetting both to zero if the point

is a dump. If, for any point i, Qv
ik > Ωv

k or Qw
ik > Ωw

k or a dump is not visited immediately before
the destination, we declare the tour capacity infeasible. The logic behind site dependency feasibility is
trivial. Implementation-wise, we construct vehicle tours only using accessible points. Inaccessibilities
may occur with the application of inter-tour operators and a simple count of the number of inaccessible
points is updated with the application of an operator. The latter is much more efficient than inspecting
all tour points when accessibility feasibility needs to be verified. [note on accessibility]

4.2 Initial Solution Construction

Tour construction is performed sequentially. Initially, all containers belong to the pool of unassigned
containers P , and all vehicles to the pool of unassigned vehicles K. A seed tour is created by assigning
the cheapest feasible sequence of origin, container, dump and destination to the cheapest available
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vehicle. All assigned vehicles and containers are removed from their respective unassigned pools. Once
a seed tour k has been created, it is expanded using a simple feasibility preserving greedy insertion
heuristic. At each iteration, we insert container i ∈ P at the position j in the tour that would yield
the smallest cost increase. The point at position j, as well as all subsequent points, are shifted to the
right.

If no more feasible container insertions are possible and if infeasibility would result from capacity
violation, we insert a dump using the same logic, otherwise we terminate the tour. In addition, we
require that the dump cannot be inserted as an immediate predecessor or successor of another dump on
the tour or just after the origin depot. Finally, to avoid a meaningless increase in the objective function,
we require that after a dump insertion there should be at least one feasible container insertion. If this
condition does not hold, the last inserted dump is removed and the tour is terminated. Tour construction
stops when the pool of unassigned containers is empty, or the pool of unassigned vehicles is empty, or
infeasibilities prohibit further insertions. When each tour is constructed, it is individually improved
using the single-tour operators described below.

For a solution to be feasible, it is assumed that the fleet is sufficient to service all containers, which
is actually the case for all benchmark instances considered in the numerical experiments presented in
Section 5. Nevertheless, in a real-life application where, for a given instance, the fleet is insufficient,
the provided solution will still respect all constraints for the containers in it.

4.3 Iterative Solution Improvement

In order to keep the improvement phase as general as possible, we consider three neighborhoods—
swap, 2-opt and reinsert, with each neighborhood using classical single- and inter-tour operators of the
respective type. Figure 2 depicts the six operators with possible improvements from the application of
each of them. The interrupted gray arcs form parts of the tours before the application of the operators.
The resulting improved tours are given in solid black arcs. The application of an operator, whether
single- or inter-tour, may lead to a feasible or an infeasible neighbor. If the neighbor solution is infeasible,
its objective function (1) is multiplied by a factor infFactor larger than one. If the next neighbor is
feasible, this factor is reduced by infStepDown, and if infeasible, it is increased by infStepUp. The factor
infFactor will never drop below one.

To define the operators more precisely, the single-tour swap disconnects i− 1 from i, i from i+ 1, j − 1
from j, and j from j + 1, and reconnects i− 1 to j, j to i+ 1, j − 1 to i, and i to j + 1. Its inter-tour
version works in exactly the same way with the only difference being that i and j belong to different
tours. The single-tour 2-opt disconnects i− 1 from i, and j from j + 1, and reconnects i− 1 to j, and i
to j + 1, thus reversing the orientation of the section i, . . . , j, inclusive of i and j. The inter-tour 2-opt
performs the same actions, where i and j belong to different tours, which results in the exchange of the
end portions of the two affected tours, inclusive of i and j. Finally, the single-tour reinsert disconnects
i− 1 from i and i from i+ 1, reconnecting i− 1 directly to i+ 1. Then it disconnects j − 1 from j and
reconnects j−1 to i and i to j. The logic of the inter-tour reinsert is the same, with i and j belonging to
different tours. In essence, the last two operators remove a point i from its original position and insert
it in the position of another point j, from the same or a different tour, pushing j to the right.

As described in Algorithm 2, the succession of neighborhoods (swap, 2-opt, reinsert in that order) is
applied until either maxIter iterations or maxNonImpIter non-improving iterations has been reached.
Each individual neighborhood is applied for maxNbIter iterations or maxNbNonImpIter non-improving
iterations from the last visited local minimum, and at each neighborhood change we start again from
the best feasible solution found so far and reset infFactor. For each neighbor, a random sample of
single- and inter-tour moves of the current neighborhood is evaluated and the cheapest one, be it
feasible or infeasible, in the last case evaluated after multiplication by infFactor, is accepted as the new
incumbent. To prevent cycling and encourage diversification towards less explored areas of the search
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Figure 2: Neighborhood Operators

(a) Single-tour swap (b) Single-tour 2-opt (c) Single-tour reinsert
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This figure depicts improvements that can result from the application of each operator, with the inter-
rupted gray arcs replaced by the solid black arcs.

space, a solution with the same objective value is not admitted more than once for a given number of
iterations, denoted by cycleFreq. These non-admissible solutions are held in a ban list. When a new
incumbent is generated, the ban list is updated to include its cost and exclude the cost older than
cycleFreq.

At every recoverFreq iterations, and if the available fleet is heterogeneous (i.e. at least one vehicle
is different from the rest), we evaluate and perform vehicle reassignments to tours. The vehicle re-
assignment evaluation procedure unassigns all assigned vehicles and starts inspecting the tours in a
descending order of total load. For each consecutively examined tour, the best vehicle is assigned so
that the assignment is feasible. The assignment feasibility is verified after applying the capacity recov-
ery procedure described next. If no feasible assignment is possible, the available vehicle with the largest
capacity is assigned to the tour. After the assignment, the capacity recovery procedure is rerun and the
tour is individually improved. Alternatively, if the available fleet is homogeneous, we proceed directly
to the capacity recovery procedure, followed by individual improvement of all tours.

The logic of the vehicle reassignment evaluation procedure is somewhat different compared to what
would befit Taillard’s (1999) HFFVRP formulation. Here the procedure tries to balance between two
conflicting goals. Assuming a fleet with correlated characteristics, assigning cheaper vehicles to tours is
counterbalanced by the necessity for more frequent visits to the dumps, because cheaper vehicles have
smaller capacities. This is compounded by the fact that in a realistic scenario dumps (intermediate
facilities) are located outside the collection area (for example in suburbs or industrial zones) instead of
centrally as in the benchmark instances we see. Therefore, the logic of this procedure is different, as is
its direct applicability to a pure HFFVRP formulation where reassignments have to be examined with
every move. In our case, capacity infeasibility resulting after a move can easily be recovered by adding
more dump visits or simply reordering them. Moreover, if a tour is attracting points from other tours,
reassigning vehicles too often may have an adverse effect.

The capacity recovery procedure first removes all dump visits from the tour, after which it inspects the
best dump insertion positions close to where capacity feasibility would become violated. This action
serves two purposes. First, it removes unnecessary dump visits from short tours. Secondly, it may
need to insert additional dump visits or reorder the dump visits in tours that may have been rendered
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Algorithm 2 Iterative improvement procedure

Define: K is the set of all available vehicles
Input set of constructed tours K ′ ∈ K
Output set of improved tours K ′′ ∈ K

1: initialize infFactor
2: initialize ban list
3: initialize start neighborhood
4: currentIncumbent := solution from tour construction
5: for maxIter do
6: for each neighborhood do
7: for maxNbIter do
8: N := random neighbor sample of currentIncumbent
9: currentIncumbent := min(n){cost(n) | ∀n ∈ N : cost(n) /∈ ban list}

10: update infFactor
11: update ban list
12: if reached recoverFreq then
13: vehicle reassignment evaluation procedure with cap. recovery and depot reasg.
14: improve tours individually
15: update ban list
16: end if
17: if reached maxNbNonImpIter then
18: change neighborhood
19: reset currentIncumbent to best feasible solution found so far
20: reset infFactor
21: break
22: end if
23: end for
24: change neighborhood
25: reset currentIncumbent to best feasible solution found so far
26: reset infFactor
27: end for
28: if reached maxNonImpIter then
29: break
30: end if
31: end for

capacity infeasible by the neighborhood operators [expand explanations].

This is followed by the reassignment evaluation of destination depots, where all possibilities are evaluated
given the fact that the number of depots tends to be small. The subsequent individual improvement
may be able to recover infeasibilities related to maximum tour duration or time window violations.
Moreover, if unassigned containers remain and can be feasibly inserted, new insertions are attempted
during individual tour improvement before switching back from reinsert to swap. There is a penalty
associated with unassigned containers, which encourages assignment with a near-guarantee of cost
improvement. In the end, the logic of the local search heuristic is such that it remains fairly general
rather than being tailored to a narrowly specified problem.
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Table 2: Heuristic Parameter Values

Parameter Value Parameter Value
maxNbIter 30 infStepUp 0.05
maxNbNonImpIter 7 infStepDown 0.02
maxIter 100 (10a) cycleFreq ∞
maxNonImpIter 15 (3a) recoverFreq 5
infFactor 1.10 sample size 10b

a value for individual tour improvement
b at a given iteration, the chosen operator is evaluated on each node i for a random sample of 10 j
nodes, see Figure 2

5 Numerical Experiments

To assess the quality of the heuristic, we compare its results to the optimal ones produced by the
mathematical model on modifications of the small instances of Schneider et al. (2014a), to the best
known solutions (BKS) of Kim et al.’s (2006) waste collection VRP-IF and Crevier et al.’s (2007)
MDVRPI instances, and to the state of practice of a recyclable waste collector in the canton of Geneva,
Switzerland. All tests were carried out on a 3.20 GHz Intel Core i5 machine with 8 GB of memory
running a 64-bit Windows 7. The local search heuristic was coded in Java and the mathematical model
was solved using the Gurobi 6.0.0 MIP solver via its Java API. The solver was warm-started, for each
instance, with the solution obtained by the heuristic. Our tests are conducted using the same values of
the heuristic parameters presented in Table 2. The analysis and comparisons below, with the exception
of the case study, are presented in terms of best and average over 10 runs.

The BKS in the literature were obtained on different hardware. Benjamin (2011) uses a 3.16 GHz
Intel Core2 Duo machine with 3.23 GB of memory, Buhrkal et al. (2012) use a 2.67 GHz Intel Core i7
machine with 8.00 GB of memory, and Hemmelmayr et al. (2013) use a 2.4 GHz machine with 4 GB of
memory, but the processor type is not specified. Moreover, the algorithms are implemented in different
languages and some run on different platforms. Thus, scaling of computation times will almost certainly
be biased. Therefore, we report the original computation times with the remark that all results were
produced on recent processor architectures.

5.1 Evaluation on Randomly Generated Instances

[New results using modified Schneider et al. (2014a) instances to come here.]

5.2 Tests on Benchmark Instances from the Literature

The first set of instances from the literature was developed by Kim et al. (2006). These include 10
instances with a single depot, up to 19 dumps and up to 2092 containers. They have time windows
and a mandated break with a time window. We solved the first five instances. In all tables below,
instance sizes are specified as (number of containers, number of dumps). The BKS for these instances
were obtained by either Benjamin (2011) or Buhrkal et al. (2012). Benjamin’s (2011) algorithm is
deterministic and she reports only one result per instance, while Buhrkal et al. (2012) report the best
and average over 10 runs. Therefore, in Table 3 we report the best result from Benjamin (2011) or
Buhrkal et al. (2012), and the average of Buhrkal et al. (2012). Computation times are those of Buhrkal
et al. (2012). Benjamin’s (2011) computation times are up to two degrees of magnitude longer than
those of Buhrkal et al. (2012).
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Table 3: Comparison Against the Best Known Solutions to the VRP-IF (Kim et al., 2006) Instances

BKS from literature This work
Inst- (points, Runtime Runtime Gap Gap
ance dumps) Best Average avg(s.) Best Average avg(s.) best(%) avg(%)
102 (99,2) 156.90 176.03 2.00 150.66 153.67 217.88 -3.98 -12.70
277 (275,1) 447.60 455.70 8.00 444.24 448.85 2304.57 -0.75 -1.50
335 (330,4) 182.10 196.49 10.00 177.84 180.63 2606.67 -2.34 -8.07
444 (442,1) 78.30 79.00 18.00 77.88 78.42 1893.39 -0.54 -0.73
804 (784,19) 604.10 650.65 72.00 594.13 618.18 3884.68 -1.65 -4.99
Avg 22.80 2181.44 -1.85 -5.60

Table 4: Comparison Against the Best Known Solutions to the MDVRPI (Crevier et al., 2007) Instances

Hemmelmayr et al. (2013) This work
Inst- (points, Runtime Runtime Gap Gap
ance dumps) Best Average avg(s.) Best Average avg(s.) best(%) avg(%)
a1 (48,2) 1179.79 1180.57 85.20 1189.18 1202.89 21.12 0.80 1.89
b1 (96,2) 1217.07 1217.07 383.40 1217.07 1231.33 190.62 0.00 1.17
c1 (192,2) 1866.76 1867.96 1224.00 1885.57 1910.21 712.35 1.01 2.26
d1 (48,3) 1059.43 1059.43 94.20 1059.43 1071.19 19.33 0.00 1.11
e1 (96,3) 1309.12 1309.12 373.20 1309.12 1333.99 157.02 0.00 1.90
f1 (192,3) 1570.41 1573.05 1536.00 1576.81 1597.78 1148.62 0.41 1.57
g1 (72,4) 1181.13 1183.32 202.80 1186.59 1202.28 72.50 0.46 1.60
h1 (144,4) 1545.50 1548.61 876.60 1559.21 1571.26 531.82 0.89 1.46
i1 (216,4) 1922.18 1923.52 2014.80 1933.30 1956.97 1224.14 0.58 1.74
j1 (72,5) 1115.78 1115.78 166.80 1119.39 1139.20 66.34 0.32 2.10
k1 (144,5) 1576.36 1577.96 873.60 1581.23 1598.25 555.05 0.31 1.29
l1 (216,5) 1863.28 1869.70 2128.80 1880.93 1903.15 1435.59 0.95 1.79
a2 (48,4) 997.94 997.94 73.80 997.94 998.90 37.81 0.00 0.10
b2 (96,4) 1291.19 1291.19 384.60 1294.77 1343.87 217.86 0.28 4.08
c2 (144,4) 1715.60 1715.84 900.60 1731.60 1756.83 432.03 0.93 2.39
d2 (192,4) 1856.84 1860.92 1808.40 1863.97 1884.91 1031.17 0.38 1.29
e2 (240,4) 1919.38 1922.81 2958.60 1939.02 1979.30 1621.11 1.02 2.94
f2 (288,4) 2230.32 2233.43 4274.40 2273.17 2291.38 2451.33 1.92 2.59
g2 (72,6) 1152.92 1153.17 222.60 1153.21 1167.65 77.96 0.02 1.26
h2 (144,6) 1575.28 1575.28 939.60 1583.12 1601.21 506.46 0.50 1.65
i2 (216,6) 1919.74 1922.24 2515.20 1927.44 1958.01 1402.32 0.40 1.86
j2 (288,6) 2247.70 2250.21 4402.80 2259.99 2291.22 3056.50 0.55 1.82
Avg 1292.73 771.32 0.53 1.81

As shown in Table 3, we obtain significant improvements over the BKS from the literature, but our
computation times are slower for several reasons. First, the heuristic is not designed for such problem
sizes as they do not appear in our case studies. Secondly, we did not optimize the heuristic parameters
for specific instance classes, and all results were produced with the parameter values from Table 2.
And thirdly, there is an overhead from the additional features considered in our problem. Since these
instances assume an unlimited homogeneous fleet, we also report the number of vehicles used in each
instance, respectively 3, 3, 6, 11, and 5, like in the BKS.

Table 4 presents our results for the MDVRPI (Crevier et al., 2007) instances, which include a single
vehicle depot, various numbers of intermediate facilities and a maximum tour duration, but no time
windows or driver breaks. The BKS are obtained by Hemmelmayr et al. (2013), who use a VNS with
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Table 5: Potential Savings from a Flexible Assignment of Destination Depots in the MDVRPI (Crevier
et al., 2007) Instances [add an explanatory note]

Hemmelmayr et al. (2013) This work
Inst- (points, Runtime Runtime Gap Gap
ance dumps) Best Average avg(s.) Best Average avg(s.) best(%) avg(%)
a1 (48,2) 1179.79 1180.57 85.20 1094.85 1106.46 20.52 -7.20 -6.28
b1 (96,2) 1217.07 1217.07 383.40 1208.23 1218.30 132.22 -0.73 0.10
c1 (192,2) 1866.76 1867.96 1224.00 1851.59 1885.82 764.14 -0.81 0.96
d1 (48,3) 1059.43 1059.43 94.20 1009.14 1023.26 27.05 -4.75 -3.41
e1 (96,3) 1309.12 1309.12 373.20 1280.14 1294.99 147.48 -2.21 -1.08
f1 (192,3) 1570.41 1573.05 1536.00 1544.27 1568.29 945.87 -1.66 -0.30
g1 (72,4) 1181.13 1183.32 202.80 1131.75 1138.56 65.15 -4.18 -3.78
h1 (144,4) 1545.50 1548.61 876.60 1523.97 1542.88 448.36 -1.39 -0.37
i1 (216,4) 1922.18 1923.52 2014.80 1900.70 1936.75 1443.26 -1.12 0.69
j1 (72,5) 1115.78 1115.78 166.80 1076.55 1080.02 68.83 -3.52 -3.21
k1 (144,5) 1576.36 1577.96 873.60 1525.45 1542.00 519.69 -3.23 -2.28
l1 (216,5) 1863.28 1869.70 2128.80 1846.76 1874.47 1249.17 -0.89 0.26
a2 (48,4) 997.94 997.94 73.80 887.58 911.09 45.10 -11.06 -8.70
b2 (96,4) 1291.19 1291.19 384.60 1256.27 1273.99 184.68 -2.70 -1.33
c2 (144,4) 1715.60 1715.84 900.60 1691.70 1715.05 421.25 -1.39 -0.05
d2 (192,4) 1856.84 1860.92 1808.40 1860.77 1870.70 833.90 0.21 0.53
e2 (240,4) 1919.38 1922.81 2958.60 1913.66 1951.95 2016.85 -0.30 1.52
f2 (288,4) 2230.32 2233.43 4274.40 2249.43 2274.70 2472.20 0.86 1.85
g2 (72,6) 1152.92 1153.17 222.60 1070.38 1085.91 119.28 -7.16 -5.83
h2 (144,6) 1575.28 1575.28 939.60 1550.94 1566.95 369.27 -1.54 -0.53
i2 (216,6) 1919.74 1922.24 2515.20 1903.29 1925.68 946.27 -0.86 0.18
j2 (288,6) 2247.70 2250.21 4402.80 2239.79 2271.01 2913.17 -0.35 0.92
Avg 1292.73 734.26 -2.54 -1.37

a dynamic programming procedure for the insertion of the intermediate facilities. Overall, in several
cases we reach the BKS and our best solutions have an average gap of 0.53% with respect to the BKS.
The gap with respect to the average solutions over 10 runs stands at 1.81%. These instances are also
attempted by Benjamin (2011) who reach an average gap of 7.87% from the BKS. We can thus stress
on the importance of the more general nature of our approach, which is stable across various instance
classes.

[CAREFULL - REWRITE POSSIBLE (FLEXIBLE ASSIGNMENT OF DESTINATION DEPOTS):
In order to assess the potential savings from allowing a flexible assignment of destination depots, we
relax the MDVRPI instances by considering all intermediate facilities as possible destination depots of
any vehicle. It should be noted that in the original MDVRPI formulation, intermediate facilities are
actually depots with no vehicles stationed there. We consider the extreme case of a relocation cost
term weight Ψ of zero in the objective function. Table 5 demonstrates that important improvements
can be obtained. Naturally, using a relocation cost term with a weight between zero and one will
lead to results that fall between the restricted case and the extreme case presented in Table 5. In the
results we obtained, the improvements over the restricted case are due both to the fact that vehicles
can now use any depot for origin and destination and also to the fact that many tours start and end at
different depots, thus better exploiting the geographical characteristics of the instances. In a realistic
situation where depots are not located in the center of the service area, the benefits may be even more
pronounced. The case study area to which this type of tours are applicable is in a French sparsely
populated rural area. However, no historical tour data is available from the collector for comparison.
The purpose of this test was therefore to justify the approach and quantify the potential benefits using
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Figure 3: Distance Improvements Against the Current State of Practice
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5.3 Real-world Case Study

The real-world case study considers a Swiss collector of recyclable waste in the Geneva area that uses
specialized software to plan its collection tours. The collector is responsible for approximately 750
containers positioned at 250 distinct locations, and the software is currently used for planning some
of the tours for collecting white glass and PET. The number of white glass and PET containers is
170 and 140, respectively, and the available fleet consists of six vehicles with varying characteristics,
whose weight capacities range from nine to 14 tons. The currently used software can only plan one
tour at a time and does not support all features required by the collector and present in our problem
definition.

We obtained a sample of 35 planned tours for white glass and PET, their size ranging from seven to
38 containers, and with up to four dump visits per tour. The distances between all depots, containers
and dumps are shortest paths on a road network obtained from a geographic information system. To
perform a fair comparison between the software currently used for planning the tours and our local search
heuristic, we re-solved the problem for each tour separately, only enforcing the supported features, which
are limited to vehicles’ volume and weight capacity. Moreover, in the sample we obtained, all tours were
planned for a different date, and could therefore use the same vehicle or visit the same container. As a
consequence, we could not combine multiple tours to be solved as a single instance. To compensate for
the lack of richer features in the available real-world data, the latter have been tested in the experiments
in Sections 5.1 and 5.2

Figure 3 compares the distances of the tours as planned by the software currently used by the collector
and as proposed by our local search heuristic. The results of our heuristic are averaged over 10 runs
and computation times range from 0.05 to 7.58 s., with an average of 1.21 s. As the figure shows, all
tours are improved and average improvement per instance ranges from 1.73% to 34.91%, with a mean
of 14.64%. It is interesting to observe that the distance improvements are due both to better container
sequencing and better planned visits to the available recycling facilities.

After consultations with the concerned company, we can estimate direct financial savings from fuel and
labor in the order of 300,000 USD annually. These estimations assume that the number of tours is
kept unchanged. However, given that the proposed solution approach can optimize multiple tours at
the same time, rather than one at a time as in the current state of practice, further savings from a
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reduced number of tours, better planning of dump visits and more efficient labor utilization can also be
expected. To give a better idea of the scale of the savings, we remark that the company in question is
just one of several in a canton of 480,000 inhabitants.

It should be mentioned here that the software currently used by the collector requires a validation step
once the planned tour has been executed. During validation, the collector deletes those containers from
the originally proposed sequence that for some reason were not collected during the tour. However, the
ordering of the sequence cannot be changed. We use our heuristic to build tours for the containers in
the validated sequences and compare to their travel distances. The originally proposed sequences before
validation are not available, but fortunately, not all validated tours have had containers removed, and
those that have usually have one or two containers removed.

Thus the results from Figure 3 provide strong evidence in favor of our local search heuristic as compared
to the current state of practice. Moreover, our heuristic is capable of solving a much richer problem
and for a fraction of the computation time.

6 Conclusion

This article proposes a mathematical model and a local search heuristic for a complex solid waste
collection problem, an extension of the VRP-IF with a heterogeneous fixed fleet and a flexible assignment
of destination depots. We include several additional side constraints, such as a mandated break period
contingent on tour start time, multiple vehicle capacities and site dependencies, and consider a general
cost function corresponding to the cost structure of a typical firm.

The extensive computational testing we performed shows that the heuristic achieves optimality on
small random instances, exhibits competitive performance in comparison to state-of-the-art solution
methods for special cases of our problem, and leads to important savings in the state of practice. We
demonstrated that the flexibility in destination depot assignment can lead to noticeable savings if it
is properly understood and optimized, which is not the case for most waste collectors, especially in
rural and sparsely populated areas where such benefits will be most pronounced. Another benefit of
our solution approach is its short computation times for the size of the currently observed real-world
instances. Moreover, it outperforms significantly the solution currently in place in terms of quality and
functionality.

The evaluation of the heuristic on multi-tour real-world instances using a heterogeneous fixed fleet
remains a task for the future, when more detailed historical performance records will be available as
the system is currently being deployed to more collectors. The heuristic implementation remains to be
integrated into the business processes of a Swiss software-as-a-service and infrastructure management
provider of waste collection logistics solutions. The flexibility and robustness of the methodology will
thus be subject to real-world testing and assessment. Future extensions of the solution approach will
also see the development of a non-linear forecasting model for the container filling rates based on sensor
data and its integration into an inventory routing solution with more sophisticated search algorithms.
Given the applied nature of our problem, the inclusion of detailed European driver regulations presents
opportunities for further useful extensions of the solution algorithm.
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