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Abstract: Generally, each member of a supply chain (SC) optimizes 
his own individual objective and accordingly, plans his activities (e.g. 
production operations, inventories) without considering a global 
perspective. The goal of this work is the development of a multi-
objective optimization model for cooperative planning between 
different manufacturing plants belonging to the same SC. The 
model aims at minimizing simultaneously the total production cost and 
the average of inventory level for several items and over a multi-period 
horizon. To solve this problem, a non-dominated sorting elitist genetic 
algorithm (NSGA-II) is developed to derive the Pareto front 
solutions. Several tests are developed to show the 
performance of the solution method and the behavior of the cooperative 
planning model with respect to different demand patterns. The proposed 
model shows high performance in the tested cases with comparison to 
the literature. 
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1 Introduction  

Planning the operations across supply chains (SC) is considered in the literature as a 
major task of supply chain management (SCM). Christopher (1998) defined the SC as 
“ the network of organizations that are involved, through upstream and downstream 
linkages, in the different processes and activities that produce value in the form of 
products and services in the eyes of the ultimate consumer”. In other words, a SC is 
composed of two or more organizations that are linked by materials, information and 
financial flows, with the aim to fulfil customer request /demand. According to Stadtler 
(2005), “Supply chain management (SCM) is the task of integrating organizational units 
along a SC and coordinating materials, information and financial flows in order to fulfil 
(ultimate) customer demands with the aim of improving competitiveness of the SC as a 
whole”. SCM is turning into one of the major activities of the management, which has 
great importance in competitive markets (Ganjavi et al., 2015).  

Planning tasks are classified into three planning levels, depending on the corresponding 
planning horizon: strategic, tactical and operational levels. In this work, the tactical 
planning (mid-term planning), that is concerned with the productions decisions, the 
resources utilization and the material flows management, is considered. 
Many works addressed the issue of coordination between partners and its impact on SC 
performances ((Xu & Meng, 2014), (Shukla et al., 2014), (Chan & Zhang, 2011), Lyu et 
al. (2010), Li & Wang, (2007) , Dudek & Stadtler (2005, 2007), Schneeweiss & Zimmer 
(2004), Ertogral & Wu, (2000)). The collaboration between partners and the ability to 
exchange information are important entities that can be adopted by SC to enhance their 
competitiveness (Mishra et al., 2014). Coordination in SCs depends on the decision-
making nature, which can be either centralized or decentralized. Independent decisions 
characterizing decentralized planning benefit some parties of the SC, while the aligned 
decisions benefit all parties and maximize the profits ((Cárdenas-Barrón & Treviño-
Garza 2014), (Cárdenas-Barrón et al., 2012). To ensure good coordination, one approach 
is the implementation of centralized decision-making ((Hu et al. 2010), (Kumar et al., 
2014)). Li & Wang (2007) provided a review of coordination mechanisms of SC systems 
based on the demand nature and the SC decision structure. To improve the SC 
performances, cooperative planning is one of the important levers of action. In this case, 
the decision makers planning tasks are interconnected to achieve a global objective. 
Centralization occurs by considering the whole system as one entity, while coordination 
appears from the information exchange between the planning domains: information on 
demand as well as manufacturing and inventory capacities are provided to each others. 
Erengüç, et al. (1999) and Jaber & Zolfaghari (2008) provided a review of mathematical 
programming planning models within centralized SCs. According to Axsater & Rosling 
(1993), Lee & Billington (1993), Haehling von Lanzenauer & Pilz-Glombik (2002), and 
Rudberg (2004), centralized management offers better cost-effectiveness, possibilities of 
higher resources utilization and avoidance of duplication of activities, due to a better 
coordination than in decentralized management.  

 According to Sobhani & Wong (2013), in SCM, a series of organizations integrate and 
cooperate in order to improve the competitive capabilities of the whole chain. In this 
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context, they developed a mono-objective model, which aims to minimize the 
transportation cost and inventory holding cost, in order to optimize the distribution 
quantity of products in a three-stage SC system. They developed a robust elitist genetic 
algorithm (GA), which outperforms the EXCEL SOLVER.  Timpe & Kallrath (2000), 
Berning et al. (2002) and Schröpfer et al. (2009) presented different models and 
algorithms for centralized master planning in chemical industry SC that show the 
advantages of cooperation between partners in SC. All these proposed models aimed at 
minimizing a total cost function, which is composed of production costs, shipping costs, 
and holding costs. Manimaran & Selladurai (2014) developed a mixed integer 
programming model, which aims to minimize the total distribution cost of the multi-stage 
SC network by selecting the optimum numbers, locations and capacities of plants and 
distribution centers to open in order to satisfy all customer demand. In considering total 
profit maximization, Alemany et al. (2010) developed a deterministic mixed-integer 
linear programming, for multi-period centralized planning problem of SCs in the ceramic 
sector. The objective of the model is to maximize the total net profit. Kim et al. (2009) 
developed an equitable mechanism of sharing the profits achieved due to cooperation 
between a single manufacturer and a single retailer in a SC.  

From a technical perspective, the problem considered in this paper is the deterministic 
multi-period, multi-level, multi-item capacitated lot-sizing problem (MLCLSP). 
According to Ertogral & Wu (2000), MLCLSP in a multiple tier SC context can be 
defined as follows: Given external demand for end items over a time horizon, a bill-of-
material structure for each end item where the production of sub-assemblies may be 
spread across multiple facilities, the problem is to find a production plan over multiple 
facilities that optimizes specific objectives. The MLCLSP represents a major decision in 
production planning by defining the appropriate lot sizes under capacity restriction 
constraints (Jans & Degraeve, 2008). The MLCLSP belongs to the production 
management area and it can represent real situations or scenarios in different industries 
(Toledo et al. 2013). Maes (1991) proved that the MLCLSP is NP-complete problem. 
Sahling et al. (2009) proposed a dynamic multi-level capacitated lot sizing problem with 
setup carry-overs, which aims to minimize the sum of overtime costs, setup costs and 
inventory holding costs. They solved the problem via an iterative heuristic called the fix-
and-optimize algorithm. To solve the same problem, Goren et al. (2012) developed a 
hybrid approach by combining GAs and a fix-and-optimize heuristic. Furlan & Santos 
(2015) addressed the MLCLSP to find a production plan that satisfies the demand on time 
and minimizes the sum of inventory holding costs, setup costs and overtime costs. To 
solve the problem, they proposed a hybrid heuristic based on the bees’ algorithm 
combined with the fix-and-optimize heuristic. Taghipour & Frayret (2013) proposed a 
dynamic mutual adjustment search heuristic, in order to coordinate the operations plans 
of two independent SC partners, linked by material and non-strategic information flows. 
Each partner solves a local MLCLSP taking into account the local capacity constraints of 
his partners. Almeder (2010) combined an ant colony optimization algorithm with the 
exact solver CPLEX, to solve the MLCLSP based on the formulation proposed by 
Stadtler (1996). The metaheuristic fixes the binary variables, and the mixed-integer 
programming finds the continuous variables. The objective is to minimize the total cost, 
which consists of the sum of the setup, inventory and overtime costs. Reiß & Buer (2014) 
proposed a coordination mechanism based on a negotiation approach to enable 
collaborative planning in the context of an n-tier SC, where agents jointly solve a 
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distributed MLCLSP in order to minimize the joint total cost. Kim & Shin (2015) 
proposed a production planning algorithm for the MLCLSP in a SC that takes back order 
into account, aiming to minimize the sum of the inventory holding, setup, and back-order 
costs. They developed a hybrid heuristic algorithm named greedy rolling horizon search 
to solve the problem.  

The common objective of the papers dealing with the MLCLSP is the minimization of a 
total cost function, with some differences in the considered assumptions or the structure 
of the SC system. According to Deb (2001), decomposing an original single-objective 
function into multiple, conflicting objectives gives more flexibility in exploring the 
solution space. Thus, unlike standard models, we consider in this paper the MLCLSP as a 
multi-objective model. In fact, inventory is crucial to the success of many activities and is 
a part of the effective management of a firm (Kumar et al., 2013). It is considered as one 
of the most important and essential issue in production and operations management 
(Elsayed, 2014). Moreover, the inventory level is a fundamental measure in SC planning 
and particularly in MLCLSP. In order to control the inventory more effectively, avoid 
diluting it in a total cost function and consider it with its adequate weight, we consider 
the inventory level as a separate measure to be minimized rather than a cost component 
from the total cost function as considered in the literature. The considered MLCLSP is so 
modelled as a bi-objective model, which aims to minimize the total production cost and 
the average inventory level. 
The literature of SC planning presents some multi-objective models, but not in the 
context of MLCLSP. Cheng et al. (2009) proposed a multi-objective optimization model 
for the manufacturing of complex products in SC. The first objective is to minimize the 
total cost, which is the sum of the processing cost, linked cost between manufacturing 
units and penalty cost. The second one is to minimize the whole production load. They 
solved the problem using the non-dominated sorting elitist genetic algorithm (NSGA-II), 
which show its performance compared to three other GAs. Paksoy et al. (2010) proposed 
a mixed integer linear programming model composed of three objective functions. The 
first one aims to minimize the total transportation costs between partners, the second one 
aims to minimize holding and ordering costs in distribution centres (DCs), and the last 
objective function aims to minimize the unnecessary and unused capacity of plants and 
DCs. Kébé et al. (2012) modeled an industrial SC planning problem, which aims to 
determine the flows between DCs and the suppliers, while minimizing the total cost. A 
Lagrangean heuristic is developed to solve the problem. Bandyopadhyay & Bhattacharya 
(2013) proposed a modified version of NSGA-II to minimize first, the transportation and 
inventory holding costs and second, the bullwhip effect of a two echelon serial SC. 
Sazvar et al. (2014) developed a multi-objective model in a two-echelon centralized SC. 
The first objective is to minimize the total cost, which consists of the inventory holding 
costs, the purchasing costs, the ordering costs, the recycling costs, the transportation 
costs, the backordered costs and the lost sale costs minus revenues. The second objective 
aims to minimize the expected greenhouse gas produced in the SC. Ivanov et al. (2014) 
developed a multi-objective, multi-period planning model for a multi-stage centralized 
SC. The model aims to maximize the service level and minimize the total cost composed 
of the fixed, the transportation, the storage, the return and the sourcing costs. Ganjavi et 
al. (2015) developed a goal programming model, which aims to minimize the total 
deviation cost from the selected target. The purpose is to determine appropriate lot-size to 
procure in each period, which meets the total available periodic budget and the buyer’s 
maximum acceptable quality, and minimizes the shortage. To solve the model, they 
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developed a differential evolutionary algorithm, which outperforms GAMS software and 
the GA. For an overview of various mathematical programming models for SC 
production planning, one may refer to Mula et al. (2010), Steeneck & Sarin (2013) and 
Esmaeilikia et al., (2014). 

We contribute to the literature on SC planning by developing and solving a multi-
objective multi-level, multi-item, multi-period optimization model for cooperative 
planning. In fact, cooperation between partners can lead to the generation of a global 
optimal production plan. To solve the multi-objective model, we design and develop an 
elitist based on the non-dominated Sorting Genetic Algorithm -II (NSGA-II).   

The paper is organized as follows. The MLCLSP in a cooperative scheme is modelled 
and formulated in section 2. The resolution methodology is presented in section 3, 
followed by the computational results in section 4. Section 5 provides a comparative 
study to evaluate the performance of the proposed model. Finally, a conclusion and 
discussion of future research directions close the paper. 

2 Problem statement and proposed methodology 

Consider a multi-echelon SC planning problem over a fixed number of periods with a 
finite capacity of personnel and machines. Products are interconnected by successor and 
predecessor operations according to the bill of materials and the sequences of operations 
that increase the problem complexity. The demand for every finished product or semi-
finished product is assumed to be given and has to be fully met in time and quantity. The 
deadline to satisfy the customer’s demand corresponds to the end of the planning period. 

The following assumptions are considered in the multi-objective optimisation problem: 

• Raw materials are always available. 

• Periodic external demand of each item is known. 

• Inventories at the starting planning period are empty. 

• Several resources, with limited availabilities, can process several items. 

• The sequence of operations required to produce an item is fixed, and any 
alternative routing is forbidden. 

• Overtime is allowed to extend the main production capacity availability. 

• Setup time is neglected. 

• Items can be only produced if all their predecessor components are available. 

• Backlogging is not allowed. 

• Inventory is calculated at the end of each planning period. 

The cooperative SC structure considered is represented in Figure 1, where different 
production sections or manufacturing plants cooperate together in order to generate a 
global optimal production plan, which satisfies all the concerned parts. The plant that 
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produces the finished product requested by the customer receives orders from his 
customers and transmits them to the other plants. Besides the inherent nature of SC 
actors, these plants share different information with each other, such as production 
capacity and production costs. Products are moved from an upstream plant to the 
downstream one until reaching the last plant, where the finished products are stored and 
delivered to the customer. To generate the production plans, within the whole SC, the 
mathematical programming of the MLCLSP is used. This choice is motivated by the fact 
that it is a standard problem which is well known and documented in the literature. In 
fact, it depicts the important decision in production planning of determining adequate lot-
sizes from final products onward, to subassemblies, parts and raw materials. Moreover, it 
captures the essential planning issues presented above: several final products, a multi-
level process structure, limited capacities, and discrete setup decisions. 

Figure 1   Cooperative supply chain planning structure  

 
 

The following notations are considered:  

• Indexes sets 

T  set of planning periods 
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Sj  set of direct successor operations of j  
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cfi fix setup cost of operation j  

cor unit cost of overtime (capacity expansion) at resource r 

Dj,t (external) demand for operation j in period t  

Cr,t Capacity at resource r in period t 

Lj,t Large constant 

ar,j Unit requirement of resource r by operation j 

r j,k Unit requirement of operation j by successor operation k 

• Decision variables 

C  total production cost  

Imoy  average of inventory level for all operations  

xj,t   output level of operation j in period t (lot size) 

i j,t  inventory level of operation j at the end of period t 

yj,t  setup variable of operation j in period t  

(yj,t =1 if operation j is set up in period t; yj,t =0 otherwise ) 

or,t  overtime at resource r in period t 
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The purpose of this model is to determine the adequate production plan, which minimizes 
simultaneously the total production cost and the average inventory level of the whole SC. 
The objective functions are represented by equations (2) and (3). The first objective 
function considered is the total production cost as the sum of operations costs, setup 
costs, and overtime costs. The second function is the average inventory level with respect 
to the number of planning periods. The second objective gives to the inventory level its 
importance as a fundamental measure by considering it as a separate quantity to be 
minimized and not as a component of a total cost function. This formulation favours the 
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inventory level optimization, especially in the case where the storage cost is low or 
negligible. The first decision variable consists of the operations levels (xj,t), which 
presents the units of operation j to be produced at period t; in other words the lot-size to 
be produced in order to fully satisfy the external demand. The second decision variable is 
the inventory levels (i j,t) for all operations considered, which represents the units of 
operation j in the inventory at period t (Any amount exceeding the demand is stored for 
future use). The third decision variable is the setup binary variable, which indicates 
whether a setup for the operation j occurs in period t. Finally, the last model output is the 
expansions of resource capacity through overtime (or,t), which presents the overtime 
needed for resource r during the period t to finish production. Operations represent 
production or other value-adding activities. Equation (4) provides the constraints 
capturing the flow balance between output, inventory and consumption by external 
demand or successor operations. In fact, external demand has to be fulfilled at any stage 
and any time using the items either produced at that period or stored. The constraint (5) 
ensures the capacity restrictions in using the resources to produce the different items. 
This limitation in capacity is a representation of real-life SC situations, where overtime 
could be used as a means to extend the capacity of a plant at any period. The setup 
constraints are expressed in (6), forcing the binary setup variable (yj,t) to be set to 1 when 
the operation j is performed in period t. The domains of the different decision variables 
are specified in the constraints (7), (8) and (9).  

Formulating the MLCLSP with a bi-objective representation fosters the innovation and 
presents the advantage of considering the inventory level as a dissociated objective 
function. This allows giving the inventory level its real importance rather than artificially 
converting it into a cost component within a total cost function. The developed bi-
objective optimization model allows finding a compromise between two contradictory 
phenomena, which are the inventory level and the total production cost. 

3 The resolution method 

The original MLCLSP is a NP-hard mixed integer programming (MIP) problem with 
binary and integer variables, which means that it is hard to solve. In this paper this 
problem is transformed to a multi-objective problem, which increases the complexity of 
the resolution.  

In multi-objective optimization problems, the objective functions conflict with each 
other. In other words, improving one of the objectives leads to sacrifice on another. 
Unlike mono-objective problems, there is no single optimal solution that can optimise all 
objective functions simultaneously. But rather, there exist a set of trade-off solutions, 
called the Pareto-optimal solutions. To solve such multi-objective optimization problems, 
some researchers transformed the objective problems into a series of mono-objective 
problems. For this purpose, an order of importance on the objectives could be given, and 
the objectives are optimized separately without degrading the values already obtained for 
the priority objectives. Another approach in optimizing a linear aggregation target, each 
objective may have a weight representing its importance. However, in a real multi-
objective context, it is not always possible to find an order of importance of the criteria. It 
is then necessary to look for best compromise between the objectives solutions. 
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According to Vanchipura & Sridharan (2014), it is difficult to get an optimal solution for 
even small size NP hard problems; thus, Metaheuristics, and more specifically GAs 
represent suitable solution approaches in such situations. According to (Bandyopadhyay 
& Bhattacharya, 2013) the mathematical techniques have limited search ability to find 
optimal solutions for SC planning compared to biological methods such as GAs. GAs 
have a high potential in solving varieties of NP-hard multi-objective problems and show 
good performances in finding near-optimal solutions for multi-level lot sizing ((Dellaert 
et al., 2000), (Dellaert & Jeunet, 2000), (Xie & Dong, 2002), (Guner Goren et al., 2010)). 
In the case of multi-objective problem, no single optimal solution can optimize all the 
objectives, especially when the objectives are conflicting. GAs are able to provide a set of 
compromised solutions called Pareto optimal solution (Coello et al., 2007) that answer to 
the optimization model. For this reason, we slightly modified the well established NSGA-
II (Non-dominated Sorting Algorithm II), initially developed by (Deb & Agrawal, 2002), 
to make it suitable for use in cooperative SC planning with integer decision variables. 
This algorithm is chosen for the following reasons:  

• The use of elitism: A comparison made by Zitzler et al. (2001) on a set of test 
problems shows that elitism is an important factor to consider in evolutionary multi-
objective optimization. 

• The low computational complexity: According to (Deb & Agrawal, 2002), 
NSGA-II has a computational complexity equal to O(MN²) (M is the number of 
objectives and N is the population size). Compared to other Multi-objective Evolutionary 
Algorithms (MOEAs), where the computational complexity is equal to O(MN3), NSGA-
II is an efficient algorithm. 

• Its wide use: NSGA-II is one of the contemporary multi-objective evolutionary 
algorithms that demonstrates high performance. The algorithm was successfully used in 
various problems (see for instance (Bekele & Nicklow, 2007), (Kanagarajan et al., 2007), 
Cheng et al. (2009), (Bensmaine et al., 2011), (Lingxiao & Liangyou, 2013), 
(Bandyopadhyay & Bhattacharya, 2013), (Pasandideh et al., 2015)).  

•  Its good convergence features: Deb (2001) shows the ability of NSGA-II to 
maintain a better spread of solutions and to converge better than two other elitist 
MOEAs: Pareto Archived Evolution Strategy and Strength Pareto Evolutionary 
Algorithm.  

A population in NSGA-II is a set of possible solutions that may produce Pareto fronts (set 
of optimal solutions with equal performances). Firstly, a random parent population P0 is 
created, the population is formed by different feasible and infeasible solutions called 
individuals. From N parents, N new individuals (offspring) are generated in every 
generation by the use of the Simulated Binary Crossover (SBX) and Polynomial mutation 
(Agrawal & Deb, 1995). The selection is made using tournament between two 
individuals. Both parents and offspring compete with each others, which ensures the 
elitism and forms a population of 2N individuals. The population is then sorted based on 
the concepts of domination and the crowding distance. An individual x1 dominates 
another individual x2, if all the objective functions of x1 are better than those of x2, or at 
least x1 is strictly better than x2 for one objective function. Each solution is assigned a 
fitness value (or rank) equal to its non-domination level. Individuals in the first front are 
given a fitness value of 1, individuals in the second front are assigned a fitness value of 2, 
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and so on.  In addition, the crowding distance parameter is calculated for each individual. 
This parameter allows estimating the density of solutions surrounding a particular 
individual in the population. The solution located in a lesser crowded region is selected. 
Finally, if the stopping criterion (which can be the generation number) is reached, the 
first front obtained represents the Pareto optimal solutions. Otherwise, a new population 
is formed and the procedure is repeated. 

Relying on the features of the considered problem, the proposed algorithm operates with 
two fitness functions: the total production cost and the average of inventory level. The 
decision variables representing the genes in the algorithm are xj,t, yj,t, or,t, and i j,t. All the 
genes represent integer variables. To ensure elitism, the best chromosome obtained, 
corresponding to the current optimal solution is included in the population of the next 
generation.  

In the proposed model, there are J*T equality constraints and (2*R*T+4*J*T) inequality 
constraints as well. To generate the Pareto optimal solutions, the constrained-domination 
principle, proposed in Deb & Agrawal (2002), is used. All the constraints are then 
normalized, and the equality constraints are transformed into two inequality constraints. 
Hence, all the resulting constraint functions are f (xi)≥ 0. In the initiation phase of the 
algorithm, the difficulty is to obtain a feasible solution. The initial generated solution 
must at least satisfy the non-negativity constraint. After that the constraints violation is 
calculated for each constraint. If the sum of the constraints violation is null, so the 
constraints are satisfied and the solution is feasible. Otherwise, if the solutions are 
infeasible, the solution that has a smaller overall constraint violation is chosen to be 
included in the new population. After the selection of the feasible solutions, they are 
ranked in accordance to their non-domination level based on the fitness function values. 
Finally, the solutions that belong to the first non-dominated front are chosen. 

4 Experimental results 

4.1. Test description 

Consider a linear SC constituted of two production units (2R). The demand is given and 
has to be fulfilled, while the SC is facing finite capacities of personnel and machines. 
Three types of items necessitating three types of operations (3J) are produced: product 1 
made from one unit of operation 1, product 2 made from one unit of operations 1 and 2, 
and product 3 made from one unit of operations 1, 2 and 3. Two tests are designed, where 
the objective is to find the optimal production plan. The first test considers a planning 
horizon constituted of two periods (2T), whereas the second test considers three periods 
(3T).  
The genetic parameters shown in Table 1 are selected using trial and error methodology, 
to solve the proposed model. The algorithm is run several times with different parameters 
combinations. They correspond to the best combination that is selected for running the 
different tests.  
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Table 1   Genetic parameters 

NSGA-II 
(parameters) 

N, 
Population 

size 

G,  
generation 

number 

Pc,  
crossover 

probability 

Pm, 
 mutation 

probability 

ηc,  
Crossover 

Index 

ηm, 
 Mutation 

Index 

r,  
controlled 

elitism 

Parameter 
values 

150 1000 0.99 1/n 
(n=number 

of 
variables) 

50 100 0.123 

In the first test “2R.3J.2T”, two examples are studied with two different demand trends. 
As shown in table 2, in the first example, the external demand increases from the first to 
the second period, to exceed the main production capacity. For the second example, the 
very high demand in the first period decreases in the second period. The demand profile 
of the second test “2R.3J.3T”, dealing with three planning period horizon, is presented in 
table 3. Three cases are generated. In the first case, the demand is triangular: low in the 
first and the third period and very high in the second period until exceeding the main 
available capacity. In another words the external demand has triangular shape. In the 
second case, the demand increases from the first period to exceed the main available 
capacity in the third period. In the last case, the demand follows a “V” shape (inverted 
triangular), thus overtime is only expected to occur in the first and the third period. 

Table 2   Customer demand features in the first test “2R.3J.2T”  

 Example 1 Example 2 

Demand of T1     T2 T1 T2 

Product 1 20 140 90 15 

Product 2 15 70 40 5 

Product 3 10 70 50 5 

Table 3   Customer demand features in the second test “2R.3J.3T” 

 Example 1 Example 2 Example 3 

Demand of T1 T2 T3 T1 T2 T3 T1 T2 T3 

Product 1 5 140 15 5 35 140 90 15 140 

Product 2 15 70 10 15 25 70 40 10 70 

Product 3 10 70 10 10 20 70 50 10 70 

4.2 Test results 

The developments of NSGA-II algorithm for the different designed tests are coded in C-
language. The execution time does not exceed 5 minutes for all the examples tested. The 
results of tests are shown in Table 4 and Table 5. One can notice that at the convergence 
of the algorithm, only one compromise solution is provided at the Pareto front. In 
particular, the problem presents many equality constraints and integer decision variables, 
which imply discontinuities in the solution domain and limit the search space for the 
algorithm.  
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4.2.1. The “2R.3J.2T” test results 

The first example of the “2R.3J.2T” test considers high demand during the second period 
that exceeds the main capacity. If the plants produce the items needed (to fulfil the 
demand) in the same period, the first plant requires 1600 minutes of overtime and the 
second plant requires 620 minutes of overtime. Therefore, a solution as given in Table 4 
is to produce in advance the products needed and to store them in the first period. 
Consequently, there is no need for overtime to meet the demand, since overtime is more 
expensive compared to nominal capacity utilisation costs. Besides, at the end of the 
planning period, the inventory level is null. Normally, to meet the exact demand in every 
period, the plants have to achieve 45 operations of operation 1 in the first period, 35 units 
of the operation 2 and 10 units of the operation 3. But in the solution provided by the 
algorithm, the production exceeds the needs by 68 units for the product 1, 50 units for the 
product 2 and 48 units for the product 3. Thus, the plants have to complete the products 
needed to satisfy the customer’s demand in the second period. The total production cost 
for this plan is about 2669 [MU] and the average inventory level is equal to 34 units. 

In the second example, the demand increases starting from the first period. To meet the 
demand of that period, the first plant needs 60 minutes of overtime, whereas, the main 
capacity of the second plant is sufficient. Despite using the same genetic parameters, the 
algorithm does not provide good solutions as expected. In fact, the solution provided by 
the algorithm proposes that the production plants produce the exact quantities needed to 
satisfy the demand of the first period and use the needed overtime only in that period. 
Hence, there is no storage at that period. At the second period, the production quantities 
are higher than the demand. This explains the needs for storage of the second and the 
third operation at the end of the planning horizon. The total production cost of this 
example is equal to 3130 [MU] and the average level of inventory is equal to 33. 

Table 4   Results of the first developed test “2R.3J.2T” 

 Example1 Example 2 

x1,1 113 180 

x2,1 85 90 

x3,1 58 50 

x1,2 212 91 

x2,2 80 76 

x3,2 22 36 

o1,1 0 60 

o2,1 0 0 

o1,2 0 0 

o2,2 0 0 

i1,1 8 0 

i2,1 12 0 

i3,1 48 0 

i1,2 0 0 

i2,2 0 35 
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i3,2 0 31 

C 2669 3130 

Imoy 34 33 

Figure 2 shows the optimisation process from the first generation until the convergence 
of the two examples of 2R.3J.2T. For both examples, at least 75 generations are 
necessary to find feasible solutions. During the first 300 generations, both objective 
functions are simultaneously optimized, where the solutions Pareto contains up to five 
solutions. Afterwards, the curve shows that the inventory level stabilizes around a certain 
value. In the last generations, only the total cost is minimized, by minimizing the use of 
overtime, until its convergence to a unique optimal solution. During the optimization 
process, the total cost is reduced by more than 90%, whereas the reduction of the average 
inventory levels does not exceed 50%. 

Figure 2  The optimization evolution for example 1 and example 2 for “2R.3J.2T” 

 
In the case of the proposed model, to find a Pareto of multiple optimal solutions the 
NSGA-II parameters must be varied. Thus, the algorithm is run several times with 
different parameters combinations and the Pareto optimal solution is obtained with 
respect to the non-domination concepts. 

The search strategies of the examples are different. In the first example, the solutions 
region is larger and conflict between the considered objectives occurs especially in this 
case. In fact, for an increasing demand case, in order minimize the total production cost; 
the use of the overtime must be avoided. However, the production must be made in 
advance because the demand exceeds the available capacity, which will increase the 
average inventory level. The contradictory phenomenon allows obtaining a Pareto of 
multiple optimal solutions, as shown in Figure 3. The Pareto contains seven solutions. 
The decision maker can choose the suitable production plan according to his preferences. 
Moreover, we notice that, NSGA-II provides multiple production plans for the same 
objective functions, which gives a wider range of choice to the planners. However, for 
the second example, the demand has a decreasing pattern, which does not exceed the 
available production capacity of the planning period. Therefore, there is no need for 
storage and the objective functions are not conflicting. The NSGA-II provides one global 
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optimal solution as shown in Figure 3. Finally, the choice of the most suitable production 
plan is made by the partners according to their preferences. 

Figure 3  Pareto optimal solution of “2R.3J.2T” 

 

4.2.2. The “2R.3J.3T” test results 

The results of the different examples of the “2R.3J.3T” test are shown in Table 5. In the 
first example, the demand is very important in the second period. So the production of the 
first and the second operation is done in advance. Instead of producing 30 units of the 
first operation, which is the necessary quantity that satisfies the demand, the solution 
provided by the algorithm is to produce 135 units without use of overtime in the first 
period. So, taking the two first periods, the algorithm reacts in the same way as in the last 
test of the first example. The production of the units needed to fulfil the second period’s 
demand is completed in that period. Overtime is then used by 802 minutes for the first 
resource and 18 minutes for the second one. However, if in every period the production is 
done to satisfy the demand of that period, the first plant would need in the second period 
1600 minutes of overtime and the second plant would need 620 minutes of overtime. But 
in this case, storage is required at the end of the second period. In the third period, there 
is no need of overtime. At the end of the planning horizon, there are only 14 units in the 
inventory, 7 units each of product 3 and 2. The total production cost of this example is 
equal to 11400 [MU] and the average level of inventory is equal to 44.33 units. 

For the second example the demand increases starting from the first to the last period. 
There is no need to use overtime at the two first periods. But, at the third period, the first 
plant will need 2060 minutes of overtime and the second plant will need 1990 minutes of 
overtime, if they produce the quantity asked at that period. However in the proposed 
compromise solution, shown in column 2 of Table 5, the third plant uses only 878 
minutes of overtime and the second plant uses only 64 minutes of overtime. In this case, 
the solution optimizes the SC production cost by minimizing the use of overtime. The 
produced quantities in the first and the second period exceed the quantities needed to 
satisfy the external demand. For the second operation, the SC produces 46 items instead 
of 25 items at the first period, and 53 items instead of 45 items. At the end of the 
planning horizon, the inventory level of all products is null. The total production cost of 
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this example is equal to 13043 [MU] and the average level of inventory is equal to 25 
units. 
Considering the third example, the solution is shown in the third column of Table 5. The 
demand has an inverted triangular shape. The demand of the first period exceeds the main 
capacity only of the first plant by 60 minutes. To satisfy the demand of the third period at 
that period, both plants will need overtime; 1600 minutes for the first plant and 620 
minutes for the second one. To minimize the use of overtime, which is very expansive, 
the demand size has to be fulfilled at an earlier period. But, to satisfy the second 
objective, which is minimizing the average of inventory level, does not allow a high 
minimization of overtime. In the first period, instead of producing 180 units of the first 
operation, the plants produced 230 units and 45 units more for the second operation. 
There are then 5 units of the first operation stored, 45 units of the second operation and 
no inventory of the third operation. At the second period, only 38 units of the second 
operation and 12 units of the third operation are stored. At the end of the planning 
horizon, there are only 6 units of the third operation in the storage. For this example, the 
proposed compromise solution consists on a total production cost equals to 21876 [MU] 
and an average level of inventory equals to 35 units. 
One can note that when the demand is important in the second or the third period and 
exceeds the available main capacity, the algorithm minimizes the total production cost by 
the minimization of the use of overtime because of its high cost. The average of inventory 
level then increases as production is done in advance. At the end of the planning horizon, 
the inventory level is very low or null. Generally, it is noticed that when the number of 
planning periods horizon increases, a better customer service is provided with high cost 
saving. The generated solutions consist on compromise between the both contradictory 
objectives. 

Table 5  Results of the second developed test “2R.3J.3T” 

 Example 1 Example 2 Example 3 

x1,1 135 51 230 

x2,1 32 46 135 

x3,1 10 10 50 

x1,2 189 113 35 

x2,2 133 53 25 

x3,2 70 20 22 

x1,3 35 226 236 

x2,3 34 111 96 

x3,3 17 70 64 

o1,1 0 0 910 

o1,2 802 0 0 

o1,3 0 878 736 

o2,1 0 0 80 

o2,2 18 0 0 

o2,3 0 64 0 

i1,1 98 0 5 

i1,2 14 25 0 
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i1,3 0 0 0 

i2,1 7 21 45 

i2,2 0 29 38 

i2,3 7 0 0 

i3,1 0 0 0 

i3,2 0 0 12 

i3,3 7 0 6 

C 11400 13043 21876 

Imoy 44.33 25 35.33 

In order to generate the Pareto of multiple optimal solutions of the developed examples, 
the NSGA-II is run several times with different parameters combinations. The Pareto 
optimal solutions are obtained with respect to the non-domination concepts, as shown in 
figure 4. The Pareto optimal set contains six optimal solutions, for the first examples, 
where the demand has a triangular shape during the planning horizon. For the second 
example, where the demand is increasing during the planning horizon, the algorithm 
provides seven optimal solutions. In this case, there is the highest number of compromise 
solutions due to the contradictory objectives. But, for the third example where the 
demand has a “V” shape, only two optimal solutions are found. The three extracted 
Pareto have different shapes, which shows different impacts of the demand pattern on the 
evolution of the objective functions. In fact, in all studied examples the demand shape 
influences the optimization process behavior. In the case of an increasing external 
demand, the contradictory phenomena between objectives functions rises, the algorithm 
provides more optimal solutions. Finally, the partners could choose the appropriate 
production plan to follow according to their preferences. 

Figure 4   The Pareto optimal solution of “2R.3J.3T” 

 

5 Model Performance analysis 

To evaluate the proposed model and the solution quality provided by NSGA-II, a 
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benchmark is created with respect to a mono-objective model of MLCLSP in a 
cooperative SC. The latter is a well known and established model (cf. (Dudek & Stadtler 
(2005), (Stadtler, 2003), (Almeder, 2010)). The objective function of the mono-objective 
model is to minimize the total costs, composed of the operations cost, the inventory 
holding cost, the setup cost and the overtime cost, as presented in Equation (10). 
Inventory levels are transformed into costs and incorporated in the objective function. 
Hence, for this model, the average inventory level is indirectly optimized using the flow 
balance constraint presented in Equation (4).  However, in the proposed model, the 
inventory is not treated as cost but kept as a quantity to be minimized. In order to obtain 
the same total cost function for a comparison purpose, we assume that the inventory 
holding cost is neglected in the mono-objective model. The other constraints of both 
models are the same. Two tests are designed and run using NSGA-II. 

, , ,,
1 1

[( . ) ( .            ) ( . )] .   (10)
T T

j j t j j t r r tj j t
t j J t r R

C cv x ch i cf y co o
= ∈ = ∈

= + + +∑∑ ∑∑  

5.1 First set of tests: 2R.3J.2T 

In these tests, the notation 2R.3J.2T indicates that the SC consists of two manufacturing 
Plants (2R) and the planning is done over two periods (2T) for three types of products 
that require three kinds of operations (3J). The first product requires one unit of operation 
1. The second product needs one unit of operations 1 & 2. And the third product needs 
one unit of operations 1, 2 & 3. The external demand Dj,t of each product is represented in 
Table 6. 

Table 6  External demand of different items 

D1,1 D2,1 D3,1 D1,2 D2,2 D3,2 

90 40 50 80 60 70 

To satisfy the external demand for each period over the same period, the first plant needs 
60 minutes in the first period, and 940 minutes of overtime in the second period; whereas 
the second plant does not need any overtime. 
To solve the standard mono-objective model as well the multi-objective MLCLSP, the 
NSGA-II algorithm is used. In each test, the population size N varies, while keeping the 
other NSGA-II parameters unchanged. In terms of convergence, the proposed multi-
objective model needs only 1000 iterations to converge to the optimal solution, whereas 
the mono-objective model needs about 2000 generations. Consequently, in order to 
objectively compare the models in their best conditions, the maximum generation number 
used in the tests is limited to 2500 generations. The results are visualized in Table 7 that 
contains the quantities produced, the binary setup variable, the overtime used, the 
inventory levels and the objective functions, for both the mono-objective model and the 
proposed multi-objective model.  
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Table 7  Results of 2R.3J.2T test for the proposed model and the mono-objective model 

N 60 100 150 200 300 

 
Model

The 
mono-

objective 
model 

The 
proposed 

model 

The 
mono-

objective 
model 

The 
proposed 

model 

The 
mono-

objective 
model 

The 
proposed 

model 

The 
mono-

objective 
model 

The 
proposed 

model 

The 
mono-

objective 
model 

The 
proposed 

model 

yj,t 1 1 1 1 1 1 1 1 1 1 

x1,1 302 300 227 231 244 236 235 233 283 282 

x2,1 158 157 127 137 117 117 114 114 134 134 

x3,1 101 101 67 65 60 60 64 64 88 88 

x1,2 138 135 265 199 176 178 250 210 170 168 

x2,2 108 108 150 123 133 127 159 159 149 146 

x3,2 40 40 71 65 60 60 96 96 85 85 

o1,1 2328 2303 1010 1118 962 898 908 892 1780 1772 

o2,1 600 580 0 0 0 0 0 0 242 236 

o1,2 0 0 1608 722 578 534 1862 1542 990 944 

o2,2 0 0 206 0 0 0 276 36 0 0 

i1,1 54 53 10 4 37 29 31 29 59 58 

i2,1 17 16 20 32 17 17 10 10 6 6 

i3,1 51 51 17 15 10 10 14 14 38 38 

i1,2 4 0 45 8 0 0 42 0 1 0 

i2,2 25 24 39 30 30 24 13 13 10 7 

i3,2 21 21 18 10 0 0 40 40 53 53 

C 36372.9 35799.7 33585.7 22343.4 19178.4 18043.2 36269 29162 35798.9 35141.3 

Imoy 86 82.5 74.5 45.5 47 40 75 53 83.5 81 

From these results, one can note as an important issue, that the production level of the 
mono-objective model is higher than the production level of the proposed model by 
100%. This difference between the produced quantities reflects the fact of adding the 
inventory level as a separate objective. For different population sizes, the performances 
reached by the proposed model are better than those of the mono-objective model in all 
the tested cases. For example, for a population size equal to 60, we save 573.2 [MU] in 
the production costs compared to the mono-objective model. Moreover, the inventory 
level (82.5) is lower than the mono-objective model (86). Besides, for a population size 
equal to 100, the total production cost is equal to 33585.7 [MU] in the mono-objective 
model, whereas the proposed model solution provides 22343.4 [MU]. This difference is 
due to the high use of overtime during the second period for the mono-objective model. 
In fact, for the mono-objective model, the first resource uses 1608 units of time compared 
to only 722 units of time in our case, and the second resource uses 206 minutes, while no 
overtime is used in the proposed model. 

One can note that the average of inventory level in the proposed model is always lower 
than that in the mono-objective model. For instance, for a population size equals to 100, 
the average inventory level is equal to only 45.5 units, for the proposed model, compared 
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to 74.5 units in the mono-objective model case. Consequently, considering the inventory 
level as an objective function and not as a constraint clearly improves the results. 

At the last planning period, the inventory level of the first operation is null in 80% of the 
tested cases of the proposed model. For the second operation, the inventory level is 
always higher in the case of the mono-objective model. Finally, for the third operation, 
one can note that the inventory levels for both models are almost the same in 80% of the 
tests. The best result is found using a population size equal to 150. For the proposed 
model, the total production cost is equal to 18043.2 [MU] (respectively vs. 19178.4 [MU] 
for the mono-objective model). And, the average inventory level is equal to 40 units, for 
the proposed model, compared to 47 units provided for the mono-objective model.  

5.2 Second set of tests: 3R.2J.3T 

In these tests 3R.2J.3T, the cooperative SC consists of three manufacturing Plants (3R) 
planning over three time Periods (3T) to provide two types of Products requiring two 
kinds of operations (2J). The production starts in the first plant, followed by the second 
plant where parts are manufactured and transmitted to the third plant from where the 
finished products are stored and delivered to the ultimate customers. In these tests, the 
production plan is optimized over three periods, where the demand for products is known 
and has to be fulfilled while facing finite capacities of personnel and machines. The 
product 1 requires one unit of operation 1 to be produced. The product 2 requires one unit 
of operations 1 &2. The demand Dj,t is visualized in Table 8. 

Table 8  External demand for different items for the 3R.2J.3T test 

D1,1 D2,1 D1,2 D2,2 D1,3 D2,3 

40 50 60 30 55 55 

For this test, the external demand of each period doesn’t exceed the main available 
capacity of each planning period and for the three planners. Thus, there is no need of 
overtime. The generation number used for the tests is equal to 1300 and the population 
size N varies. Both models are coded and solved with NSGA-II algorithm. The results are 
shown in Table 9; the produced quantities, the binary setup variable, the used overtime, 
the inventory level and the objective functions for both the mono-objective model and the 
proposed model.  

Table 9  Results of 3R.2J.3T test for the proposed model and the mono-objective model 

N 100 150 200 300 

 
Model 

the 
mono-

objective 
model 

The 
proposed 

model 

the 
mono-

objective 
model 

The 
proposed 

model 

the 
mono-

objective 
model 

The 
proposed 

model  

the 
mono-

objective 
model 

The 
proposed 

model 

yj,t 1 1 1 1 1 1 1 1 

x1,1 144 152 106 100 137 135 136 128 

x2,1 53 66 54 50 65 60 68 60 

x1,2 70 50 87 103 90 98 117 81 
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x2,2 46 36 27 41 37 53 44 36 

x1,3 113 117 99 102 75 57 72 81 

x2,3 63 62 56 59 33 22 58 39 

o1,1 0 0 0 0 0 0 0 0 

o1,2 0 0 0 0 0 0 0 0 

o1,3 0 0 0 0 0 0 0 0 

o2,1 0 0 0 0 0 0 0 0 

o2,2 0 0 0 0 0 0 0 0 

o2,3 0 0 0 0 0 0 0 0 

o3,1 0 0 0 0 0 0 0 0 

o3,2 12 0 0 0 0 0 0 0 

o3,3 0 0 0 0 0 0 0 0 

i1,1 51 46 12 10 32 35 28 28 

i1,2 3 0 12 12 15 20 18 13 

i1,3 15 0 0 0 25 0 41 0 

i2,1 19 16 4 0 22 10 32 10 

i2,2 10 22 1 11 12 33 0 16 

i2,3 27 29 2 15 0 0 35 0 

C 3086.7 3056.1 2699.7 2871.3 2741.7 2673.3 3135.3 2673.3 

Imoy 41.66 37.66 10.33 16 35.33 32.66 51.33 22.33 

For the different population sizes, the performances of the proposed model are better by 
75% than those provided by the mono-objective model. For instance, for a population 
size equals to 200 the proposed model saves 68.4 [MU] compared to the mono-objective 
model. Additionally, the average of inventory level (35.3 units) in the mono-objective 
model is higher compared to the proposed model (32.6 units). Besides, for a population 
size equal to 300, the total production cost is equal to 3135.3 [MU] in the mono-objective 
model, whereas for the proposed model it is equal to 2673.3 [MU]. The cost difference of 
462 [MU] is due to the high production level in the mono-objective model. The mono-
objective model provides an inventory level of 51.3 units compared to the proposed 
model where it is equal to 22.3 units, a reduction of 29 units, which shows the influence 
of addressing the inventory level as a second objective function on the performance 
improving. Both models do not use overtime to fulfill customer demand, except once for 
the mono-objective model. 

At the last planning period, the inventory of the first operation is empty in 100% of the 
tested cases for the proposed model. For the mono-objective model, the inventory is 
empty only in 25% of the tested cases. For the second operation, the inventory level is 
null in 50% of the tested cases of the proposed model and 25% of the cases using the 
mono-objective model. 

In running both tests, the proposed model is faster than the mono-objective model despite 
of its complexity. The time needed to provide a solution by the proposed model does not 
exceed 5 minutes, whereas the mono-objective model needs about 10 minutes to 
converge and a very large number of iterations (generations). 
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6 Conclusion and future work 

 
The main contribution of this paper consists on developing a cooperative tactical 
planning framework for a multi-objective deterministic multi-period, multi-level, multi-
item capacitated lot-sizing problem in SC. Unlike, the standard MLCLP, the developed 
optimization model is a bi-objective model, which aims at minimizing simultaneously the 
total production cost and the average inventory level, taking into account capacities and 
demand constraints. The developed formulation considers the case of several production 
plants are planning together in order to generate a global optimal production plan. The 
proposed model shows different advantages over those discussed in the literature. Indeed, 
compared to simplistic mono-objective models, the bi-objective model considers not only 
costs but also inventory levels as separate measure to be optimized. This represents an 
interesting issue since inventory optimization is a fundamental concern in SCM and its 
consideration as a cost component as in the literature can neglect it, especially when it is 
characterized by lower costs than other considered cost components. Therefore, it allows 
assessing the real needs of inventories in each period with respect to the demand. 

The developed model gives to the inventory level its importance, especially in the case of 
low or negligible inventory holding cost. The model is solved using the developed 
NSGA-II, coded with C language. The advantage of using such multi-objective method is 
avoiding aggregation and transformation of the original multi-objective problem into a 
mono-objective one. Actually, this method seeks to define compromise between the 
considered objectives rather than choosing an alternative over another, it provides a set of 
efficient solutions. 

The proposed model is tested on several examples with different demand patterns. 
Results show that when the number of planning periods increases, the planning task 
becomes easier, balancing the workload between different periods, and the use of 
overtime decreases. At the convergence, the Pareto front surprisingly contains only one 
optimal solution. This is due to the complexity of the problem and particularly to the flow 
equality constraints between SC tiers. The main limitation of using NSGA-II, is the 
presence of large number of integer variables and equality constraints simultaneously. In 
fact, it is hard to handle efficiently integer restrictions on decision variables and satisfy 
equality constraints. Thereby, it is hard to maintain solutions on the Pareto optimal front. 
Indeed, equality constraints severely restrict the search space; each equality constraint 
absorbs one degree of freedom. In addition, the equality constraint becomes harder when 
considering the connection between manufacturing operations (successors and 
predecessors). Thus, to obtain a Pareto of multiple solutions, the NSGA-II parameters are 
varied during optimization, and the optimal solutions are kept with respect to the non-
domination concept. The demand shape shows its influence on the optimization process, 
especially in the case of the increasing demand. In fact, in that case the contradictory 
phenomena between objectives functions rises, and the number of optimal solutions 
increases. 

To evaluate the performances of the proposed model and the solution quality provided by 
NSGA-II, the model is compared to a mono-objective model of MLCLSP for several 
cases. The results show that the total production cost and the average inventory level are 
lower in all the cases tested in the setting “2R.3J.2T” and in 75% of the cases tested for 
the setting “3R.2J.3T”. The results show how considering the inventory level as an 
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additional performance measure, decreases better its level and offer better production 
plans that satisfy the SC planners. Furthermore, computational time is significantly 
reduced at least by a factor of two, which proves the efficiency of the proposed approach. 

The proposed model is used in the case of cooperative SC, where partners are sharing 
pertinent information, e.g. production costs. In most real-world cases, this access cannot 
be accepted by all partners. Thus, in the future, the model proposed can be further 
developed for SC with decentralized decision-making. In this case, the approach is useful 
to coordinate SCs, particularly when asymmetric information is shared and opportunistic 
behaviours take place. In such a situation, modelling the negotiation process between 
echelons using a decentralized planning system is considered as an interesting future 
research topic. 
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