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Abstract  

Demand forecast is a critical determinant of order quantity under newsvendor problem (NVP) framework and 

warrants major revision in the event of changing circumstances or happening of some unforeseen events having 

potential to alter the demand. Retailers of single period products such as fashion apparels are required to pass their 

orders far ahead of selling seasons and apply preseason two-stage ordering procedure, where an initial order (first 

stage) is followed by a final confirmed order (second stage). The enterprise forecasting experts may get additional 

information related to the occurrence of some unforeseen events that may significantly impact the initial demand 

estimation. In this paper, the potential impact of such events is combined using a weight factor to obtain revised 

demand forecasts. In this context, this paper develops inventory models under NVP framework to determine the 

optimal order quantity and weight factor on the basis of revised forecasts. Considering the bidirectional changes in 

demand, we formulate a unique objective function that operates as a profit maximization function for the positive 

demand adjustment and turns into a cost minimization function for the negative demand adjustment. Models 

developed without constraints at first instance are extended subsequently by incorporating constraints of budget 

limits, storage space capacity and required service level. Near closed form expressions of decision variables for four 

demand distributions with multiplicative demand forms are presented. The results demonstrate economic benefits of 

using revised demand through models developed, negative impact of constraints, and role of demand distribution 

entropy in determining the order size and expected profit.  

Keywords:  Inventory. Newsvendor problem. Expert judgment. Demand forecasting. Contextual information. 

Constraints. 

1. Introduction 

The retailing business environment of single period products (SPP) such as fashion apparels, holiday merchandize, 

sports goods, seasonal goods is characterized by a single and short selling season with high demand uncertainty, a 

long lead time with a purchasing commitment longer before the actual sales, a low salvage value and a limited 

possibility to increase supplies. In this context, the classical single-period problem also known as newsvendor 

problem is extensively used as a model to determine the procurement quantity of SPP for single ordering that 

maximizes the expected profit under probabilistic demand. Four review papers by Gallego and Moon [1], Khouja 

[2], Qin et al. [3], Kalpana and Kaur [4] provide rich information on the NVP. Demand distribution information is a 

critical input to the model. However, demand information is severely limited, uncertain and imprecise at the time of 

ordering because of the early placement of the order and novelty of the product involved. In such circumstances, 

demand forecast for the upcoming selling season is determined subjectively (Lau and Lau [5], Petrovic et al [6], 

Urban and Baker [7], Alfares and Elmorra [8], Dutta and Chakraborty [9], Yu et al. [10], Qin and Kar [11], Rossi et 

al. [12]).Expert judgement is recognised as an indispensable component of forecasting and much research attention 
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has been directed at understanding and improving its use with feedback, decomposition, combination and correction 

(Lawrence et al.[13]).The expert judgment is used in conjunction with quantitative methods to improve the demand 

forecast particularly when the past sales data is limited as judgmental approach has ability to integrate the contextual 

information into the forecast (Webby and O’Connor [14]).  The most common approach to forecasting demand is to 

generate initial forecast based on previous demand pattern using statistical methods and subsequently integrate with 

the judgmental adjustment provided by expert having domain knowledge and contextual information to arrive at 

‘final forecast’. The adjustment is effected to incorporate demand effects of potentially relevant contextual 

information about special events/exceptional circumstances that are not reflected in the initial forecast or of 

information that is difficult to include in a statistical model. The integration would be more beneficial under 

conditions of relevant quantitative data, judgmental inputs provide different information, unbiased judgments 

(Armstrong and Callopy[15]) and reliable information about the events (Goodwin and Fildes [16], Fildes et al [17]). 

Numerous studies have shown that integrating the forecasts improves accuracy (Lobo and Nair [18], Batchelor and 

Dua [19], Webby et al.[20]). 

 

Retailers of SPP (e.g. fashion apparel) have to pass their orders several months before the selling season due to the 

long procurement lead time and to take advantage of lower prices (Mostard et al. [21]). In such cases, the pre-season 

two stage ordering is practiced; retailers pass their orders to their suppliers before the selling season at two distinct 

moments. A soft order is passed at initial stage when the booking starts, and at stage two, when additional demand 

information is gained; the order is confirmed with possibility of modification using different possible methods of 

demand information updating (Choi et al. [22]). The time interval between the placement of the soft order and the 

confirmation of the order may provide additional contextual information on change in business (demand) 

environment, of recent events and of impending (future) events having potential to alter the demand during the 

selling season significantly. The forecasting experts having domain knowledge and contextual information would 

estimate the potential impact of additional contextual information and impending events on demand (Choi [23], 

Sanders and Ritzman [24]).In this context, integrating expert judgment would prove valuable as experts often know 

of recent events whose effects have not yet been observed, of events that have occurred in the past but are not 

expected to recur in the future, or of events that have not occurred in the past but are expected in the future 

(Armstrong and Callopy [14]). Marmier and Cheikhrouhou [25] present a refinement in eliciting demand impact of 

contextual information using expert judgment in more objective manner and integrating it into a mathematical 

forecast and demonstrated the improvement of forecast accuracy. The present paper uses this method in determining 

the demand adjustment and more details are given in section 2.1. Recently, Yan and Wang [26] presented a 

newsvendor model with capital constraint and demand forecast update with two instants to order from the supplier 

prior to the selling season.  

The size and sign of potential impact for each of exceptional events/ circumstances is determined separately by the 

experts and the aggregate of these potential impacts is termed as demand adjustment in this paper and is integrated 

to the initial forecast to obtain a (final) revised demand forecast. This decomposition approach add more objectivity 

(and reduces bias like over optimism) and as thrust of the paper is to determine the order size using revised forecast, 

equal treatment is effected to the sign of adjustment. Further, size of adjustment relative to initial forecast tend to 

large as events of significant demand are considered, demand adjustment would prove more effective in improving 

forecast accuracy than smaller ones [17] . 

The existence of the bias towards making overly positive adjustments or as a consequence of asymmetric 

management incentives is evident in literature [17]. The bias has been reduced by developing model with different 

levels of complexity to integrate expert judgment with statistical forecast. For instance, Blattberg and Hoch [27] 

assign equal weight of importance to both the approaches. Fildes et al. [17] provide a model based on linear 

regression that distinguishes the weight of statistical and judgmental forecasting considering the adjustments sign. 

The differences involved between positive and negative adjustments prompted the use of non-linear models that 

employs state dependent parameter estimation methods (Trapero et al. [28]).The rigour involved in these methods 
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has not been employed in this paper, however the paper determines weight assigned to demand adjustment for 

different purpose. It considers initial demand forecast without alteration as it is based on hard demand data. 

However, a weight is assigned to the demand adjustment, to signal its acceptability to a decision maker (DM). 

Although this family of methods shows improvement of the forecast accuracy, demand adjustment provided by the 

experts may not be acceptable in its entirety to a decision maker (DM). In fact, his experience, the credibility of the 

experts, or the risk involved might refrain from adopting the adjusted forecasts. In this case, in the present paper, a 

weight factor W(0 ≤ W ≤ 1) is associated with the demand adjustment as a decision variable to mitigate the 

uncertainty of the event occurrence. 

On the other side, scenarios where the demand adjustment is positive and negative both should be considered in 

modeling. For example, the increase of the advertisement expenditure, in normal course, leads to an increase of the 

demand. However, in some cases, the overall result of an advertisement campaign can be a demand decrease due to 

combative counter measures employed by the competitors. Though, Khouja and Robbins [21], Lee and Hsu [22], 

Dai and Meng [23] consider only a unidirectional demand change, where they consider a demand increase due to 

advertising expenditure. To the best of the authors’ knowledge, both “positive and/or negative” impact of 

unexpected events through expert judgment under NVP setting has not been addressed. Furthermore, the 

consideration of bidirectional change in demand necessitates two different models of demand adjustments - profit 

maximization for positive adjustment and cost minimization for negative adjustment (explained in model 

development section 2.2) (Lau [24], Khouja [2], Kao and Hsu [25], Khouja and Robbins [21]). Therefore, the 

contribution of the paper is stated as: A unique objective function is formulated that considers the bidirectional 

demand adjustments and determines the optimal procurement quantity. The inventory models under the NVP 

framework proposed determine the optimal weight factor and order quantity using a revised demand that captures 

the potential impact of impending events in an intuitive and integrative manner. The central problem first addresses 

models without constraints for both demand adjustments. Subsequently, these models are extended by imposing 

constraints for practical considerations. The constraints do not allow the revised order quantity to exceed an upper 

limit in the case of positive demand adjustment due to limited fund/storage capacity and to fall under a lower limit in 

the case of negative demand adjustment in order to maintain a target service level (Jammernegg and Kischka [26], 

Shi et al. [27], Abdel-Malek and Otegbeye [28]). A one-dimensional search algorithm is proposed to find the 

optimal values of the Lagrangian multipliers required in the constrained optimization problems. Near closed-form 

expressions are obtained for four demand distributions, viz.; uniform, normal, triangular and exponential. The results 

of the models are illustrated with a real example taken from a retailer of women ethnic fashion apparel. 

The rest of the paper is organized as follows. Section 2 being core of the paper include a summary on the basic 

NVP; method to obtain the revised demand forecast; development of the inventory models with bidirectional 

demand changes. Sub-section 2.3 and 2.4 extend these models by imposing constraints of service level and order 

size constraint respectively for practical consideration. Sub-section 2.5 provides a search algorithm to find the 

optimal value of the Lagrangian multipliers. Section 3 offers a closed-form expression of the expectation for the four 

demand distributions. Section 4 illustrates the models with numerical experiments on the basis of a real example and 

discusses the results. Finally, section 5 concludes the paper along with managerial implication and opens new 

research directions. 

2. Model development 

Consider the NVP with multiplicative form of stochastic demand. The following notations are used throughout the 

paper: 

C unit purchase cost  

P unit selling price  

V unit salvage value 

S unit shortage penalty cost 
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 CH demand adjustment cost per unit 

 D0 mean demand in base case 

ε non-negative randomness factor(variable ) with pdf f(.) and cdf F(.) 

∆ demand adjustment  

 DN mean of the revised demand 

Q order quantity (decision variable)   

W weight factor (decision variable)   

 X0  demand in base case 

 XN Revised demand for contextual information 

𝛼 target service level(0 ≤ α < 1) 

β order size constraint parameter (β ≥ 0) 

The initial demand forecast is the basis of the soft order of stage one. Although it is based on scarce past demand 

data of similar products, the initial forecast is assumed to be known with a statistical distribution form and its 

corresponding parameters. It is referred to as base demand in this paper and is assumed to be stochastic, with 

multiplicative form  X0 = D0. ε; where D0 is the mean demand and ε is the randomness factor (with mean equal to 1 

and a standard deviation equal to 𝜎0). Thus, the mean and the standard deviation (SD) of the base demand are D0 

and D0𝜎0 respectively. The probability density function (pdf) of the random variable ε is defined as 

g (x) =
1

D0
f (
x

D0
) ; x ∈ [0,∞) 

The case hereafter is referred to as base case. Given the expressions for the optimal procurement quantity and the 

expected profit for the base demand (Lau [32], Khouja and Robbins [29], Wang and Hu [37]), the profit function for 

an order size Q is: 

π0 = P min(Q, X0) − CQ + V  (Q − X0)
+ − S(X0 − Q)

+     (1) 

The terms in (1) are respectively: the sales revenue from the realized demand X0; the purchase cost for an order size 

of Q; the salvage value realized from the left over inventory, if the realized demand is less than Q; the shortage 

penalty cost when demand exceeds the order quantity. 

The expected profit function obtained from (1) is 

E(π0) = (P − V)D0– (C − V)Q – (P − V + S)∫ (x − Q)f(x)dx
∞

Q

 

The optimal base order quantity (Q0
∗ )(soft order) is  

Q0
∗ = D0F

−1 [
(P−C+S)

(P−V+S)
] =  D0F

−1(k)                     (2) 

where k = (P − C + S) (P − V + S)⁄  is the critical ratio. 

The optimal expected profit is  

E(π0)
∗ = D0[(P − V + S) ∫ xf(x)dx

F−1(k)

0
− S]                (3) 

2.1 Revision of demand using contextual information 

The demand impact of additional contextual information gathered between two stages of ordering is estimated by 

the experts having domain knowledge and is integrated with the initial forecast to obtain the revised demand 

forecast. Domain knowledge is knowledge gained by practitioners through experience as part of their jobs and 

develop understanding of many cause-effect relationships and environmental cues. Specific information available in 

the forecast environment is called contextual information and includes information about events and changes such as 

substantial price variation, unanticipated arrival of a competing product in the market, consolidation among 

competitors, an impending strike, new policies that may affect forecasts , transportation delays due to inclement 
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weather or even unplanned advertising campaign. Domain knowledge enables the practitioner to evaluate the 

importance of specific contextual information (Webby et al.[20]). 

Marmier and Cheikhrouhou [25] provide a method to determine the aggregate impact in an objective manner using 

expert judgment. The underlying principle in estimating the size of impact is splitting the judgmental task into 

smaller and cognitively less demanding tasks, to improve accuracy and then aggregating the resulting judgments.  

Three event characteristics are considered for this purpose: irregular and infrequent occurrence, significant impact 

on demand and advanced identification along with their potential impact. Based on the kind of impact, the events 

and other causal variables of the forecasting environment (context) are categorized under four contextual factors and 

are listed in Table 1 along with the associated potential impact provided by the experts. Thus, an aggregate impact 

(Δ) of events using the four contextual factors, referred to hereafter as demand adjustment, is the algebraic sum of 

the impact of these factors i.e.  ∆ = ∑ ∆i
4
i=1 . The demand adjustment can be positive or negative and accordingly, 

there would be either an increase or a decrease of the base demand.  

Table 1 Event based contextual factors 

Contextual 

Factors 

Meaning Illustrative 

Example 

Potential 

impact 

Quantum jump 

factor 

Impact of a non-repetitive event is 

permanent. 

Addition of new 

customers 
∆1 

Trend change 

factor 

Factor modifies the demand trend. Increase in price ∆2 

Transient 

factor 

Impacts the demand only during a time 

period in which it occurs. 

Strike 

 
∆3 

Transferred 

impact factor 

The impact is transferred from one set 

of periods to another set without 

changing the global forecasts of the 

related consecutive periods. 

Discount sale offer 

for limited period. 
∆4 

Considering that DMs may have different points of view with regard to the demand adjustment provided by the 

experts, there is the possibility to take into account only part of this adjustment. This is done by introducing a weight 

factor W (0 ≤ W ≤ 1). For example, if the demand adjustment suggested by the experts is 500 units, but the DM 

prefers to order only 300 extra units that would mean he has taken a weight factor of W= 0.6. The weight factor so 

defined is a decision variable and is used to define the mean and the standard deviation of the revised stochastic 

demand XN = DN . ε  with DN = (D0 +W∆) and σN = DNσ0 . 

2.2 NVP with demand adjustment using contextual information 

The revised demand (XN) obtained is used in the development of models under the NVP framework. Details of the 

model development are given below. 

2.2.1 Development of profit function  

The profit function (1) is redefined with two decision variables: the order quantity (Q) and the weight factor (W), 

and is given below: 

π = Pmin(Q, XN) − CQ + V(Q − XN)
+ − S(XN − Q)

+ − CH|Δ|W
γ                                                            (4) 

X0  in (1) is not only replaced by the new demand XN in (4). It has been fundamentally altered because XN is an 

implicit function of the decision variable W, with XN = (D0 +W∆) ε. Moreover, the term CH|∆|W
γ represents the 

cost adjustment due to the adjustment of demand. CH is the demand adjustment cost per unit [of demand adjusted Δ] 

and can be interpreted as: (i) a penalty per demand unit charged to a buyer due to the modification of his soft order, 

(ii) advertising expenditure for accrued demand. Experts may provide information on the possibility of an 

advertising expenditure and on the corresponding increase in demand, and thus provide an advertising cost per unit 

of accrued demand, or (iii) an adjustment of the objective function for the loss in revenue per unit due to discounts. 
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A discount brings additional demand that the experts may refer to. As the NVP provides only one selling price (P) 

for the entire selling season, the loss of revenue incurred per unit due to discounting can be construed as CH.  

As the weight factor (W) is a decision variable, its value varies from 1 if a full confidence is given to the expert 

assessment of the demand adjustment, to 0 if no confidence is given. The optimal value of weight factor is critically 

dependent on  CH and has inverse relationship. Acting on the expert advice on the demand adjustment involves a risk 

and a consequent cost represented by the total demand adjustment cost. As the latter varies nonlinearly with the 

corresponding risk, the exponent γ (γ > 1) maintains the total demand adjustment cost as a nonlinear function. 

2.2.2 Generalisation of the model 

The model considers positive or negative demand adjustment. For Δ > 0, eq. (4) represents the profit function and 

its maximization would give the optimal value of the order quantity and the weight factor. However, eq. (4) cannot 

be used for Δ < 0, as the analytical process of profit maximization would always set the weight factor to zero to 

minimize the diminishing effect of the negative demand adjustment on the demand. In other words, using a profit 

maximization in a case where Δ < 0 would always result in ignoring the valuable suggestion of demand reduction 

provided by the experts by setting the weight factor to zero. The benefit of cost minimization in case of Δ < 0 

inclusive of loss of business opportunity for the unmet demand viz.P(XN − Q)
+ through optimization can be sizable  

and hence cannot be ignored. Therefore to take into consideration of the negative demand adjustment, objective 

should be cost minimization for Δ < 0  as it will not allow automatic setting of weight factor to zero by the 

optimization process. 

In order to generalize the formulation of the problem, eq (1) is converted into a cost minimization problem. The 

optimal order quantity isQ0
∗ = D0F

−1[(C − S) (V − S)⁄ ], which is different from the one obtained for the profit 

maximization case i.e.Q0
∗ = D0F

−1[(P − C + S) (P − V + S)⁄ ]. Thus, we develop a formulation of the objective 

function that would give only one soft order size under single decision making in the base case (if the DM does not 

rely on the experts opinion and set the weight W = 0) regardless of the followed approach - cost minimization or 

profit maximization. 

2.2.3 Development of NVP solutions with adjusted forecasts 

A single objective function applicable to both positive and negative demand adjustments is formulated. Eq. (4) is 

modified using the identity min(Q, XN) = XN − (XN − Q)
+ (Gallego and Moon [1]) and taking the objective 

function as 

𝐸(π) = PDN − CQ + V𝐸(Q − XN)
+ − (P + S)𝐸(XN − Q)

+ − CH|Δ|W
γ                                                 (5) 

A binary variable (θ) is introduced to allow the use of the single objective function for both demand adjustments. 

The optimization problem is given below:  

Max. 𝐸(OF) = θPDN − CQ + V𝐸(Q − XN)
+ − (P + S)𝐸(XN − Q)

+ − CH|Δ|W
γ                                        (6) 

where θ = {
1    if     ∆ ≥ 0
0    if    ∆< 0

 

When θ = 1, the objective function is a profit function. However, when θ = 0, maximizing the objective function 

with negative cost terms is equivalent to minimizing the total costs.The term (P + S)(XN − Q)
+ in (6) in the cost 

minimization case represents a loss of sales revenue (loss of business opportunity) for the unsatisfied demand in 

addition to the shortage penalty cost (Hillier and Liebermann [38], Kao and Hsu [33]).  

Using the identity (Q − XN)
+ = (Q − XN) + (XN − Q)

+, we derive the optimisation problem as 

Max. 𝐸(OF) = θPDN − (C − V)Q − VDN − (P − V + S)∫ (x − Q)g(x)dx
∞

Q
− CH|Δ|W

γ                (7) 
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The randomness factor of the revised stochastic demand can be expressed as ε = XN DN⁄ . The revised demand XN 

with continuously differentiable density function holds the following relations (Wang et al. [39]): 

g (x) =
1

DN
f (
x

DN
) ; x ∈ [0,∞). 

Thus, eq. (7) can be restated as 

Max. 𝐸(OF) = θPDN − (C − V)Q − VDN − (P − V + S)∫ (DNx − Q)f(x)dx
∞
Q

DN

− CH|Δ|W
γ                      (P1) 

A weight factor more than 1 is meaningless. Therefore, it is necessary to determine the lower bound of CH, (termed 

as threshold value,CHT) that ensures an optimum value of W, noted W∗. In this regard, Lemma1given below defines 

the conditions as: 

Lemma 1.(i)For given values of P, C, S, V and γ, the lower bound of 𝐶𝐻 that would ensure optimum weight factor 

 𝑊∗ ≤ 1 is given by 

𝐶𝐻 ≥
((𝜃−1)𝑃−𝑆)∆+(𝑃−𝑉+𝑆)∆ ∫ 𝑥 𝑓(𝑥)

𝐹−1(𝑘)
0 𝑑𝑥

𝛾|𝛥|
   

(ii) For given values of P, C, S, V and γ, any other value of 𝐶𝐻 that does not satisfy the condition (i) would set the 

optimal weight 𝑊∗ to 1. 

Proof. The W represents weight assigned by a DM to the demand adjustment provided by the experts and it’s any 

value more than 1 is superfluous and meaningless; therefore, W ≤ 1. The optimal weight factor W∗ can be derived 

using (P1) and is proved in the following Theorem 1. To restrain the value of W∗  to 1 the net value of terms in 

bracket (see eq. (12)) needs to be less than 1 i.e. 

((θ−1)P−S)Δ+(P−V+S)Δ∫ xf(x)
F−1(k)
0 dx

γ CH|Δ|
≤ 1  

That provides for the lower limit of  CH 

CH ≥
((θ−1)P−S)∆+(P−V+S)∆ ∫ x f(x)

F−1(k)
0 dx

γ |Δ|
                 (8) 

For two demand cases, the optimum values of W∗ can be computed as 

CH ≥  
(P−V+S)∫ xf(x)

F−1(k)
0 dx−S 

γ
  for Δ > 0,      

CH ≥  
(S+P)−(P−V+S)∫ xf(x)

F−1(k)
0 dx

γ
  for Δ < 0        

Any other value of CH less than the threshold specified above would make W∗ more than 1 which is meaningless. 

Thus, for the given values of model parameters P, C, S, V and γ, the lower bound of CH that would ensure optimum 

weight factor W∗ ≤ 1 is given in (8). This completes the proof of Lemma 1. 

In light of Lemma 1, we propose the Theorem 1. 

Theorem 1. For given values of P, C, S, V, CH and γ, the optimal weight factor, optimal order quantity and optimal 

expected profit for unconstrained NVP with demand 𝑋𝑁 = 𝐷𝑁  . 𝜀 revised for contextual information are expressed as 

follows 

(i)  Optimal weight  

 𝑊∗ = [
((𝜃−1)𝑃−𝑆)∆+(𝑃−𝑉+𝑆)∆ ∫ 𝑥𝑓(𝑥)

𝐹−1(𝑘)
0 𝑑𝑥

𝛾𝐶𝐻|𝛥|
]

1

𝛾−1

          

(ii) Optimal order quantity (confirmed order) 
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𝑄∗ = (𝐷0 +  𝑊
∗∆)𝐹−1(𝑘) 

(iii) Optimal expected profit 

𝐸(π)∗ = (𝐷0 +  𝑊
∗∆) [(𝑃 − 𝑉 + 𝑆)∫ 𝑥𝑓(𝑥)𝑑𝑥

𝐹−1(𝑘)

0
− 𝑆] − 𝐶𝐻|𝛥| 𝑊

∗𝛾  

Proof. It is to be noted that the revised demand XN  is replaced with DN  in (P1) using the relationship XN =

DN . ε and g (x) =
1

DN
f (

x

DN
). To find the optimal order quantity  Q∗, first derivative of (P1) with respect to Q is 

equated to zero, which yields 

(V − C) + (P − V + S) ∫ f(x)dx
∞
Q

DN

= 0                 (9)  

Using the following standard result and mean value μ = 1, we get 

∫ f(x)dx
∞
Q

DN

= μ − ∫ f(x)

Q

DN

0
dx = 1 − ∫ f(x)

Q

DN

0
dx 

Substituting the above result in (9) and rearranging the terms, we get the expression for optimal ordering quantity for 

revised demand as 

Q∗ = DN F
−1 (

P−C+S

P−V+S
) = (D0 +W

∗∆)F−1(k);              (10) 

where critical ratio k = (
P−C+S

P−V+S
) 

To prove that (P1) is strictly concave in Q, the second derivative of (P1) with respect to Q is found strictly negative 

as follows 

∂2𝐸(OF)

∂Q2
= −(P − V + S)

1

DN
f (
Q

DN
) < 0 

The expected value of the objective function is obtained by substituting Q∗ into (P1) as 

E(OF) = (θP–V)DN + [(V − C) + (P − V + S) ∫ f(x)dx
∞
Q∗

DN

] Q1
∗ − (P − V + S) ∫ DN x f(x)dx 

∞
Q∗

DN

− CH|Δ|W
γ        (11)  

The optimal weight factor W∗ is obtained by setting derivative of the objective function (11) with respect to W to 

zero: 

(θP − V)D′N − (P − V + S)D
′
N ∫ xf(x)dx

∞
Q∗

DN

− γCH|Δ|W
γ−1 = 0  

i.e.(θP − V)D′N − (P − V + S)D
′
N [1 − ∫ xf(x)dx

Q∗

DN

0
] − γCH|Δ|W

γ−1 = 0 

As  DN is function of W and D′N = Δ, substituting and arranging the above equation result in 

W∗ = [
((θ−1)P−S)Δ+(P−V+S)Δ∫ xf(x)

F−1(k)
0 dx

γ CH|Δ|
]

1

γ−1

                 (12) 

As γ > 1 ,
∂2E(OF)

∂W2 = −γ(γ − 1)|∆|CHW
γ−2 < 0, the optimum values of  W∗ for two demand adjustment cases is 

given below 

W∗ =

{
 
 

 
 
[
(P−V+S) ∫ xf(x)

F−1(k)
0 dx−S 

γ CH
]

1

γ−1

          for Δ > 0,

[
(S+P)−(P−V+S) ∫ xf(x)

F−1(k)
0 dx

γ CH
]

1

γ−1

    for  Δ < 0

    

The optimum value of W obtained in (12) is used back in (10) to obtain Q∗. Subsequently, the optimal expected 

value of the OF (P1) is 
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𝐸(OF)∗ = (D0 +W
∗∆)[(P − V + S) ∫ xf(x)dx

F−1(k)

0
+ (θ − 1)P − S] − CH|Δ|W

∗γ
          (13) 

The objective function (13) represents optimal expected profit for Δ > 0and negative optimal expected cost for Δ <

0. Therefore, by substituting the values of θ in (13) and adding expected sales revenue (viz.PDN)  to the resulting 

negative cost only in case ofΔ < 0, we get the optimum expected profit for the unconstrained optimization problem 

as 

E(π)∗ = (D0 +W
∗∆)[(P − V + S) ∫ xf(x)dx

F−1(k)

0
− S] − CH|Δ|W

∗γ
            (14) 

Hence, the result of (10), (12) and (14) completes the proof of Theorem 1. 

The demand adjustment for contextual information can be sizeable and that may lead to significant deviation of the 

revised optimal order quantity from the optimal base order size (Q0
∗ ). Therefore, it is prudent to constraint revised 

order quantity within some limits for practical considerations. In case of ∆> 0, the revised order quantity is limited 

by an order size constraint for practical limitation of budget and storage space. For ∆< 0,  the reduced revised order 

quantity may prove inadequate in meeting the service level targeted by a retailer. Therefore, a lower limit is placed 

on Q through a service level constraint. These two situations are discussed separately as follows: 

2.3 Imposition of service level constraint  

A lower limit is imposed on the revised order quantity using the service level constraint. The constraint is imposed 

in a way that the probability of attaining the targeted service level (𝛼) is greater than η (0 ≤ η < 1). The concept is 

equivalent to the chance constraint (Charnes and Cooper [40], Panda et al. [41], Nagar et al. [42]) and noted as 

Ch (
Q

XN
≥ α) ≥ η; where η is the chance factor. The constraint is expressed as 

Q ≥ α(μ + σ zη) = α μ + α σ zη   (15) 

where zη = Φ−1(η), Φ  is the standard normal cdf andμ and σare the mean and standard deviation of the revised 

demand XN. Substituting the values of the mean and the standard deviation of the revised demand DN and σ0DN  

respectively in (15), we get 

Q − A(D0 + ∆W) ≥ 0 where A = α(1 + σ0 zη)              

With θ = 0 in (P1), the constrained optimization problem for Δ < 0 is stated as follows: 

Max. 𝐸(OF) = −[(C − V)Q + VDN + (P − V + S)∫ (DNx − Q)f(x)dx
∞

Q

DN

+ CH|Δ|W
γ ] 

subject to    Q − A(D0 + ∆w) ≥ 0                    (P2)  

2.4 Imposition of order size constraint  

The order size constraint is defined in terms of Q0
∗  as only accommodation for a limited amount of extra units is only 

possible. Therefore an order size constraint parameter β, (β ≥ 0)is introduced to limit the maximum revised order 

quantity (Abdel-Malek and Montanari [43]). The constraint is stated as 

Q ≤ (1 + β)Q0
∗                 

When β = 0.1, only10% of additional inventory can be accommodated. Therefore, the constrained optimization 

problem for ∆> 0  is stated as follows: 

Max. 𝐸(OF) = (P − V)DN − (C − V)Q − (P − V + S) ∫ (DNx − Q)f(x)dx
∞
Q

DN

− CH|Δ|W
γ  

Subject to    (1 + β)Q0
∗ − Q ≥ 0                    (P3)  

The two constrained optimization problems (P2) and (P3) are solved using the Lagrangian multiplier method with 

the multipliers λi, i= 1, 2 respectively. 
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The following Lemma 2 is introduced to define the lower limit of CH that ensures constrained weight factor Wc
∗ ≤ 1. 

Lemma 2.(i)For given values of P, C, S, V, γ and 𝜆𝑖, the lower bound of 𝐶𝐻 that would provide constrained optimal 

weight factor (𝑊𝑐
∗) between 0 and 1 𝑖. 𝑒. 0 ≤ 𝑊𝑐

∗ ≤ 1 is 

 𝐶𝐻 ≥  
(𝑃+𝑆)+𝜆1𝐴 −(𝑃−𝑉+𝑆) ∫ 𝑥𝑓(𝑥)

𝐹−1(𝑘𝑐)
0 𝑑𝑥

𝛾
 with 𝑘𝑐 =

𝑃−𝐶+𝑆+𝜆1

𝑃−𝑉+𝑆
  for  𝛥 <  0  

𝐶𝐻 ≥  
(𝑃−𝑉+𝑆) ∫ 𝑥𝑓(𝑥)

𝐹−1(𝑘𝑐)
0 𝑑𝑥−𝑆 

𝛾
 with 𝑘𝑐 =

𝑃−𝐶+𝑆−𝜆2

𝑃−𝑉+𝑆
  for  𝛥 > 0;  

(ii) For given values of P, C, S, V, γ and 𝜆𝑖, any other value of 𝐶𝐻 that does not satisfy the condition (i) would set the 

optimum value 𝑊𝑐
∗ to 1. 

The logic applicable to Lemma 2 is very similar to Lemma 1 and therefore proof is not presented to avoid 

unnecessary repetition. The Theorem 2 is proposed in light of Lemma 2. 

 

Theorem 2. For given values of P, C, S, V, CH and 𝛾, the optimal weight factor, order quantity and expected profit 

for constrained NVP with demand 𝑋𝑁 = 𝐷𝑁  . 𝜀 revised for contextual information are expressed as 

(i) The optimal weight  

𝑊𝑐
∗ =

{
 
 

 
 
[
(𝑃+𝑆)+𝜆1𝐴 –(𝑃−𝑉+𝑆) ∫ 𝑥𝑓(𝑥)

𝐹−1(𝑘𝑐)
0 𝑑𝑥

𝛾 𝐶𝐻
]

1

𝛾−1

    𝑓𝑜𝑟 𝛥 <  0 

[
(𝑃−𝑉+𝑆) ∫ 𝑥𝑓(𝑥)

𝐹−1(𝑘𝑐)
0 𝑑𝑥−𝑆 

𝛾 𝐶𝐻
]

1

𝛾−1

                  𝑓𝑜𝑟  𝛥 > 0

  

(ii) The optimal order quantity(confirmed order) 

Qc
∗ = (𝐷0 + ∆ 𝑊𝑐

∗) 𝐹−1(𝑘𝑐) 

(iii) The optimal expected profit 

𝐸(πc)
∗ = (D0 +𝑊𝑐

∗∆) [𝐹−1(𝑘𝑐)𝜆 + (𝑃 − 𝑉 + 𝑆)∫ 𝑥𝑓(𝑥)𝑑𝑥
𝐹−1(𝑘𝑐)

0

− 𝑆] − 𝐶𝐻|𝛥|𝑊𝑐
∗𝛾 

where 𝜆 is the Lagrangian multiplier for two demand adjustment cases and takes the value 𝜆 = −λ1 𝑓𝑜𝑟 𝛥 <

0 𝑎𝑛𝑑 λ2 𝑓𝑜𝑟 𝛥 > 0. 

Proof. Theorem 2 consists of two separate parts – proof of problem (P2) and (P3). The proof for problem (P2) is 

given here and proof for problem (P3) can be deduced using similar approach and therefore not provided. 

The objectives function of (P2) is concave (as proved in Theorem 1) and the service level constraint is a linear 

inequality, so any feasible solution to the problem (P2) that satisfies the Kuhn-Tucker conditions is an optimal 

solution. A Lagrangian Multiplier method (with multiplier λ1) is proposed. Therefore, the associated Lagrangian 

function is 

L = E(OF) − λ1[A(D0 + ∆W) − Q]  

= (V − C)Q − VDN − (P − V + S) ∫ (DNx − Q)f(x)dx
∞
Q

DN

− CH|Δ|W
γ − λ1[A(D0 + ∆W) − Q]         (16) 

Equating the first derivatives of L with respect to Q to zero gives 

(V − C) + (P − V + S) ∫ f(x)dx + λ1
∞
Q

DN

= 0  

which yields to 

Qc
∗ = DNF

−1 (
P−C+S+λ1

P−V+S
) = (D0 + ∆ Wc

∗) F−1(kc)      (17) 
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wherekc = (
P−C+S+λ1

P−V+S
) is the critical ratio. The value of Qc

∗  obtained in (17) is substituted in the objective function 

E(OF) as defined in (P2) and is derived as 

𝐸(OF) = [(V − C) + (P − V + S)∫ f(x)dx
∞

Qc
∗

DN

] Qc
∗ − (P − V + S)∫ DN x  f(x)dx

∞

Qc
∗

DN

− VDN − CH|Δ|W
γ 

           = [(P − C + S) − (P − V + S) ∫ f(x)dx
F−1(kc)

0
]Qc

∗ − [(P + S) − (P − V + S) ∫ xf(x)dx]
F−1(kc)

0
DN − CH|Δ|W

γ  

Substituting ∫ f(x)dx
F−1(kc)

0
= (

P−C+S+λ1

P−V+S
) and Qc

∗ = DNF
−1(kc), we get, 

E(OF) = [−F−1(kc)λ1 + (P − V + S) ∫ xf(x)dx
F−1(kc)

0
− (P + S)]DN − CH|Δ|W

γ            (18)  

Using (18), the Lagrangian function (16) can be rewritten as:  

L = [−F−1(kc)λ1 − (P − V + S)∫ xf(x)dx
F−1(kc)

0

− (P + S)]DN − CH|Δ|W
γ − λ1[A(D0 + ∆W) − Qc

∗] 

Setting the first derivative of L with respect to W to zero yields 

[−F−1(kc)λ1 + (P − V + S)∫ xf(x)dx
F−1(kc)

0

− (P + S)]DN
′ − γCH|Δ|W

γ−1 − λ1[AΔ − DN
′F−1(kc)] = 0 

Substituting DN
′ = ∆  and rearranging the terms of above expression provides for optimum weight factor as 

Wc
∗ = [

(P−V+S)Δ∫ xf(x)
F−1(kc)
0 dx−(P+S)Δ−λ1A Δ

γCH|Δ|
]

1

γ−1

  

Considering the negative sign of ∆, the above expression result in 

 Wc
∗ = [

(P+S)+λ1A−(P−V+S) ∫ xf(x)
F−1(kc)
0 dx

γCH
]

1

γ−1

                (19) 

The Wc
∗ obtained in (19) thus can be used back in (17) to obtain Qc

∗ .  

Thus the expression of (19) and (17) provides the respective optimum weight and order quantity for the problem 

(P2). Using (18), the subsequent optimum value of the objective function of (P2) is derived as 

𝐸(OF)∗ = (D0 +Wc
∗∆)[−F−1(kc)λ1 + (P − V + S) ∫ xf(x)dx

F−1(kc)

0
− (P + S)] − CH|Δ|Wc

∗γ           (20) 

Optimal weight factor and the corresponding value of objective function for the problem (P3) can obtained 

following the similar procedure and given as follows  

Wc
∗ = [

(P−V+S) ∫ xf(x)
F−1(kc)
0 dx−S 

γCH
]

1

γ−1

                  (21) 

𝐸(OF)∗ = (D0 +Wc 
∗∆)[F−1(kc)λ2 + (P − V + S) ∫ xf(x)dx

F−1(kc)

0
− S] − CH|Δ|Wc

∗γ;            (22) 

where kc = (
P−C+S−λ2

P−V+S
) is the critical ratio for (P3). 

Using (22) and addition of expected sales revenue to optimal expected negative cost of (20) for Δ < 0, we arrive at 

the optimum expected profit for the constrained optimization problem as 

E(πc)
∗ = (D0 +Wc

∗∆) [F−1(kc) λ + (P − V + S) ∫ xf(x)dx
F−1(kc)

0
− S] − CH|Δ|Wc

∗γ
             (23) 

where λ represents Lagrangian multiplier for two demand adjustment cases and takes the value λ = −λ1 for Δ <

0 and λ2 for Δ > 0. 
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Hence, the result of (17), (19), (21) and (23) completes the proof of Theorem 2. 

The next step is to find the optimal Lagrangian multiplier for (P1) and (P2). An algorithm to find the Lagrangian 

multiplier is provided in the next section. 

2.5 Proposed resolution algorithm 

Finding the optimal value of the Lagrangian multiplier (λi with i= 1, 2 for problem (P2) and (P3) respectively) for 

the given constrained optimization problems allows to determine the constrained critical ratio (kc) , Wc
∗  and 

consequently Qc
∗  and E(πc)

∗. 

First, we define a function h(λi)with (i= 1, 2) such that 

h(λi) = {
Q − A(D0 + ∆W)        for  Δ < 0  and  i = 1 

(1 + β)Q0
∗ − Q              for   Δ > 0 and  i = 2

 

The function h(λi) is defined in such a way that h(λi) ≥ 0 would satisfy the constraint for both defined cases of 

demand adjustments. 

Lemma 3.There exist a unique λi with i= 1, 2 such that ℎ(𝜆𝑖) = 0. 

Proof. It is clear that h(λi) is continuous and strictly increasing in 𝜆𝑖 . The problems (P2) or (P3) turn into an 

unconstrained optimization problem at λi = 0. Thus at λi = 0, h(λi) < 0  as it violates the service level or the 

capacity constraint. In particular, the value of λimust be positive. Therefore, there exist two distinct values λi
1 , λi

2 >

0 such that h(λi
1)h(λi

2) < 0. This implies that there exist a unique λi such that h(λi) = 0. 

Therefore, the proposed one dimensional search algorithm would determine the optimal value of λi
∗ that satisfies 

h(λi
∗) = 0. The proposed algorithm has the following sequential steps: 

Step1. Set λi
0 = 0 and obtain the values of kc, and the decision variables Wc

∗ and Qc
∗ . If these values satisfy h(λi

0) ≥

0, the current solution is optimal. Otherwise, the current solution is infeasible and step 2 must be followed. 

Step2. As h(λi
0) < 0, set next value of λi i.e. λi

1 sufficiently large so that h(λi
1) > 0. 

Find λi
2, which is the arithmetic mean of  λi

0and λi
1  viz. λi

2 =
λi
0+λi

1

2
. If h(λi

2) ≈ 0, stop the iterations. Otherwise, 

proceed as follows: 

Select either λ1
0 or λ1

1 such that h(λi
0) or h(λi

1) has the opposite sign to h(λi
2) and find the mean with λi

2 to obtain λi
3 

[viz.λi
3 =

λi
0+λi

2

2
 or λi

3 =
λi
1+λi

2

2
]. Continue the process until obtaining h(λi

m) = 0 for m ≥ 3. This value is the optimal 

one forλiand is renamed as λi
∗. 

Step3. Using λi
∗, find the value of kc and Wc

∗. Wc
∗ is set to 1 whenever its computed value is higher than 1. 

Subsequently, calculate the values of Qc
∗  and E(πc)

∗ using Theorem 2. 

3. Applications to specific distributions 

For simplification reasons, we denote H(. )for the expression of the expectation and T = F−1(k). 

Normal distribution 

The normal distribution N~ ( μ, 𝜎2)  for a variable x with standard normal variate 𝑧 =
𝑥−𝜇

𝜎
=

𝑇−𝜇

𝜎
  has the 

expectationH(z) = ∫ xf(x)dx
z

−∞
= μΦ(z) − σφ(z) ; where Φ(z) and φ(z ) are the standard normal cdf and pdf 

respectively. 

Uniform distribution 
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The uniform distribution is defined over the support interval [a, b]. Thus, T = a + (b − a)k and the expectation is 

H(T) = ∫ xf(x)dx
T

a
= ∫

x

(b−a)
dx

T

a
= 

T2−a2

2 (b−a)
. 

Triangular distribution 

Symmetrical triangular distribution is supported with the lower limit a, the upper limit b and the midpoint m, i.e. 

a < m < b and is represented as Tr [a, m, b]. As m ≤ T ≤ b,  we get T = b  −√(b − a)(b − m)(1 − k) 

Thus, the expectation isH(T)=∫ x
m

a
f(x)dx + ∫ xf(x)dx 

T

m
= H1(m) + H2(T) 

where 

H1(m) =∫
2 (x−a)

(b−a)(m−a)

m

a
 x dx  = 

2 

(b−a)(m−a)
[
(m3−a3)

3
−

a (m2−a2)

2
]; 

H2(T) = ∫
2 (b−x)

(b−a)(b−m)

T

m
 x dx = ∫

2 (b−x)

(b−a)(b−m)

T

m
 x dx= 

2 

(b−a)(b−m)
[
b (T2−m2)

2
−

(T3−m3)

3
]. 

Exponential distribution 

For a given exponential distribution for a variable x and mean μ having pdf f(x) = μe−μx  for x ≥ 0;  we get T=  
−1

μ
ln(1 − k) and the expectation is H(T)=∫ x

T

0
(μe−μx)dx=   

1

μ
− e−μT (T +

1

μ
 ). 

4. Numerical example 

The models developed are illustrated with a numerical example. The model parameters are obtained from a Mumbai 

based retail chain consisting of 25 stores specialized in women ethnic fashion apparel. The demand forecast level is 

considered for a group of Stock Keeping Units (SKUs) that have one type with a combination of different colors and 

sizes. The US$ is used as a monetary unit for convenience and a conversion rate of Rs. 62/$ is used. The basic 

parameters of the NVP are: P=$60, C=$30, V=$20, S=$5 and D0=1000 units. The demand adjustment provided in 

Table 2 is determined based on the estimations provided by a group of experts consisting of an apparel designer and 

three senior managers at the Mumbai office heading the departments of Supply chain, Retailing operations, and 

Marketing respectively. 

Table 2 Judgmental factors considered for the Indian ethnic fashion apparel demand 

Factor category Event  Impact 

Quantum jump factors (Δ1) Improvement in product’s design 200 

Trend change factors (Δ2) 
Price increase of product to 

compensate increased cost of inputs 
-50 

Transient factors (Δ3) 
Marketing and advertisement 

campaign 
100 

Transferred impact factors (Δ4) Nil Nil 

Total demand adjustment  +250 
  

According to Table 2, the demand adjustment for contextual information Δ is equal to 250. CH cannot be more than 

the profit earned per unit and therefore, CH=20 is used in this example. Assuming the nonlinearity of the total 

demand adjustment cost and γ > 1, the value of γ is assumed to be 1.6. The values of α, β and 𝜂 used in this 

example are 0.95, 0.15 and 0.99 respectively. 

The demand is assumed to follow one of the four continuous probability distributions considered; three symmetrical 

distributions, namely the uniform, the normal and the triangular distribution, and one asymmetrical, the exponential 

distribution. The four distributions of ε are specified as: N (1,0.01); U(0.7,1.3); Tr (0.7,1,1.3); Exp(1).The mean for 

all these distributions is 1 and the standard deviation (and range) are selected in order to have an equivalence. 

Distributions are chosen with considerations of (i) continuous distributions for reasons of mathematical tractability 
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and large demand for the product group under consideration (ii) symmetrical nature of the demand distribution as 

the realised demand can vary equally around the average (iii) different entropy of distributions-entropy is measure of 

the information carried a demand distribution with higher entropy corresponding to less information (or more 

uncertainty).  The distributions in increasing order of entropy for the given mean and range are normal, triangular 

and uniform distribution. 

The optimal base order quantity Q0
∗  and the expected profit 𝐸(π0)

∗ are computed using (2) and (3) for the stated 

model parameters and for the four demand distributions. The optimal order quantities are 1076, 1100, 1167 and 

1504 for normal, triangular, uniform and exponential distributions respectively. The expected optimal profits are 

28660, 28368, 27667 and 14959 for the respective distributions. With Δ=250, the values of Q∗and E(π)∗ for the 

unconstrained optimization with different distributions are computed using Theorem 1 and are given in Table 3. 

Table 3 Optimal results for the base and the unconstrained optimization cases 

 Entropy Q0
∗

 E(π0)
∗ Q∗ E(π)∗ W∗ 

Normal -0.88 1076 28660 1300 30896 0.832 

Triangular -0.70 1100 28368 1325 30543 0.818 

Uniform -0.51 1167 27667 1396 29702 0.785 

Exponential 1.00 1504 14959 1610 15354 0.282 
 

It is shown first, that for the positive demand adjustment case, the results show that the revised order quantity and 

the expected profit are increased compared to the ones of the base case. This means that this model would enhance 

the economic performance of the retailer. Secondly, the result for exponential distribution, an asymmetrical 

distribution, is significantly different than those obtained for other three distributions that are symmetrical. Thirdly, 

the order quantity increases with the entropy of the distribution (with the same mean and range) but the expected 

profit decreases. 

4.1 Experiments with positive demand adjustment 

The model variables for both the unconstrained and the constrained optimization problems are computed using 

Theorem 1 and 2 for ∆= 250; three values of CH, viz.; 15, 20, 25; two values of γ viz.; 1.6, 1.8 and are presented in 

Table 4. The resultsshow that the optimal order quantity and the expected profit for both the unconstrained and the 

constrained optimization are higher than those obtained in the base case; but the imposition of the order size 

constraint has brought down both order quantity and expected profit. 
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Table 4 Experiment results with positive demand adjustment (Δ > 0) 

Distribution   Unconstrained  Optimization Constrained  Optimization 

 CH γ W∗ DN Q∗ π∗ λ2
∗

 Wc
∗ DN Qc

∗  E(πc)
∗ 

Normal distribution 15 1.6 1 1250 1346 32075 7.2 0.806 1201 1238 31586 

μ=1, σ = 0.1  1.8 1 1250 1346 32075 6.2 0.779 1195 1238 31705 

Q0
∗  =1076 20 1.6 0.832 1208 1300 30896 2.9 0.688 1172 1238 30807 

E(π0)
∗=28660  1.8 0.752 1188 1279 31055 2.31 0.672 1168 1238 31008 

 25 1.6 0.574 1143 1231 30201 0 0.574 1143 1231 30201 

  1.8 0.569 1142 1230 30472 0 0.569 1142 1230 30472 

Triangular 

Distribution 

15 1.6 1 1250 1375 31709 6.25 0.842 1211 1265 31268 

 1.8 1 1250 1375 31709 5.23 0.806 1202 1265 31378 

a=0.7, m=1, b=1.3 20 1.6 0.818 1205 1325 30543 2.4 0.696 1174 1265 30462 

Q0
∗=1100  1.8 0.742 1186 1304 30708 1.85 0.677 1169 1265 30664 

E(π0)
∗=28368 25 1.6 0.564 1141 1255 29867 0 0.564 1141 1255 29867 

  1.8 0.562 1140 1254 30138 0 0.562 1140 1254 30138 

Uniform distribution 15 1.6 1 1250 1458 30833 4.895 0.873 1218 1342 30492 

a=0.7, b=1.3  1.8 1 1250 1458 30833 4.025 0.822 1205 1342 30587 

Q0
∗=1167 20 1.6 0.785 1196 1396 29702 1.728 0.693 1173 1342 29656 

E(π0)
∗=27667  1.8 0.720 1180 1377 29879 1.318 0.670 1168 1342 29856 

 25 1.6 0.541 1135 1324 29070 0 0.541 1135 1324 29070 

  1.8 0.544 1136 1325 29340 0 0.544 1136 1325 29340 

Exponential 

distribution 

15 1.6 0.455 1114 1675 15597 0 0.455 1114 1675 15597 

 1.8 0.478 1120 1684 15754 0 0.478 1120 1684 15754 

μ=1 20 1.6 0.282 1070 1610 15354 0 0.282 1070 1610 15354 

Q0
∗=1504  1.8 0.334 1083 1630 15514 0 0.334 1083 1630 15514 

E(π0)
∗=14056 25 1.6 0.194 1049 1577 15231 0 0.194 1049 1577 15231 

  1.8 0.252 1063 1599 15379 0 0.252 1063 1599 15379 
 

For example, for the base case with a normal demand distribution, Q0
∗  and E(π0)

∗ for the base case are 1076 and 

$28660 respectively, whereas for the unconstrained case, the optimal results show an increase up to Q∗ = 1300 and 

E(π)∗ = $30896, respectively for CH=20 and γ=1.6. The order quantity increased by 20.81% and the expected profit 
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increased by 7.8%. In the case of constrained optimization, the constraint reduced the optimal order quantity from 

1300 to Qc
∗ = 1238 (4.8%) and the expected profit from 30896 to E(πc)

∗ = 30807 (0.2%). 

Secondly, it can be observed that whenever the optimal order quantity without the constraint (Q∗) exceeds the limit 

set by the order size constraint, Qβ[= (1 + β)Q0
∗ ], the constraint turns binding and the order size is equated to  Qβ. 

Furthermore, the constraint reduced the optimal weight factor, viz. from 0.832 (W∗) to 0.688 (Wc
∗).  

Thirdly, CH adversely affects the optimal order quantity and the expected profit, and the value of these variables is 

reduced mainly through the reduction caused to the optimal weight factor. The effect of 𝛾 on these variables is 

similar. 

4.2 Experiments with negative demand adjustment 

To illustrate the results of the negative demand adjustment, a case when Δ= - 250 is provided. Results obtained 

using Theorems 1 and 2 are presented in Table 5. The results demonstrate that negative demand adjustment reduced 

both the optimal order quantity and the expected profit. 

Table 5 Experimental results with negative demand adjustment (Δ < 0) 

Distribution   Unconstrained  Optimization Constrained  Optimization 

 CH γ W∗ DN Q∗ π∗ λ1
∗

 Wc
∗ DN Qc

∗  E(πc)
∗ 

Normal distribution 15 1.6 1 750 807 17745 9.27 1 750 910 17126 

μ=1, σ = 0.1  1.8 1 750 807 17745 9.27 1 750 910 17126 

Q0
∗  =1076  20 1.6 0.988 759 817 17010 9.27 1 750 910 15876 

E(π0)
∗=28660  1.8 0.855 790 850 18975 9.27 0.869 783 950 17908 

 25 1.6 0.681 834 897 20628 9.27 0.695 826 1003 19499 

  1.8 0.647 841 905 21332 9.27 0.657 836 1014 20324 

Triangular Distribution 15 1.6 1 750 825 17526 8.15 1 750 910 17168 

a=0.7, m=1, b=1.3  1.8 1 750 825 17526 8.15 1 750 910 17168 

Q0
∗=1100 20 1.6 0.981 755 830 16563 8.15 1 750 910 15918 

E(π0)
∗=28368  1.8 0.851 787 866 18597 8.15 0.867 783 951 17981 

 25 1.6 0.676 831 914 20229 8.15 0.693 827 1004 19577 

  1.8 0.644 839 923 20975 8.15 0.656 836 1015 20393 

Uniform distribution 15 1.6 1 750 875 17000 3.6 1 750 910 16935 

a=0.7, b=1.3  1.8 1 750 875 17000 3.6 1 750 910 16935 

Q0
∗=1167  20 1.6 1 750 875 15750 3.6 1 750 910 15685 

E(π0)
∗=27667  1.8 0.874 781 912 17693 3.6 0.877 781 948 17582 

 25 1.6 0.701 825 962 19271 3.6 0.705 824 1001 19154 

  1.8 0.662 835 974 20120 3.6 0.664 834 1013 20016 

Exponential distribution 15 1.6 1 750 1128 7469 0 1 750 1128 7469 

μ=1  1.8 1 750 1128 7469 0 1 750 1128 7469 

Q0
∗=1504 20 1.6 1 750 1128 6219 0 1 750 1128 6219 

E(π0)
∗=14056  1.8 1 750 1128 6219 0 1 750 1128 6219 

 25 1.6 1 750 1128 4969 0 1 750 1128 4969 
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  1.8 1 750 1128 4969 0 1 750 1128 4969 
 

Secondly, it can be observed that the impact of negative adjustment is at the maximum level, as Wc
∗=1, and that the 

service level constraint turns binding. Qc
∗  is obtained by using the equation Qα[=A(D0 + ∆)] to the (lower) limit set 

by the constraint. The limit (Qα) depends on the demand distribution and on the given parameters. It is equal to 910, 

875, 825 for thenormal, the uniform and the triangular distributions respectively.  

Thirdly, it is important to note that the constraint reduced the expected profit despite of increase of the order 

quantity. For example, the constraint reduced the expected profit from 17010 to 15876 for the Normal distribution 

with CH=20 and γ=1.6, where theoptimal order quantity increases from 817 (Q∗) to 910 (Qc
∗). Fourthly, results show 

a significant influence of CH on the decision variables. The increase in CH raises the order quantity by reducing the 

weight factor when the latter is less than one. But, the same order quantity is maintained with a diminished expected 

profit if the weight factor is equal to one. Similarly, an increase in 𝛾 reduces the weight factor if it is less than one 

and raises the order quantity and the expected profit, but these variables remain unchanged when the optimal weight 

factor is equal to one.  

4.3 Effect of the order size constraint parameter(𝛃) 

The effect of β (β ≥ 0) on the model variables for Δ= 250, CH= 20 and 𝛾 = 1.6 is discussed here. The constraint 

gets more liberal as β increases and turns redundant at a certain value of β, considered as the limiting value of the 

order size constraint parameter  βl .  βl is equal to 0.208 for the given set of parameters for a Normal demand 

distribution. Thus, the constraint is binding for β <  βl, and the Qc
∗  is equal to the limit set by the constraint, Qβ [=

(1 + β)Q0
∗ ] . Both  Qc

∗  and E(πc)
∗ increase with  β for β <  βl  and converges toward the values obtained in the 

unconstrained case (viz., Q∗=1300 and E(π)∗ = 30896) at β =  β𝑙 . The constraint is redundant for β ≥  β𝑙 . The 

behaviour of Qc
∗  and E(πc)

∗ with respect to β is shown in Fig 1. 

The constrained weight factor (Wc
∗) increases linearly with β till it converges with unconstrained weight factor (W∗) 

at β =βl viz.W∗=0.831 at βl  =0.208. Thereafter, weight factor is unaffected by increase in β. This behaviour is 

shown in Fig.2. 

 

 

Fig.1.Effect of order size constraint parameter (β) on optimal order quantity and optimal expected profit 
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Fig.2.Effect of order size constraint parameter (β) on the weight factor 

 

4.4 Effect of the targeted service level 

The effect of the targeted service level (α) on the model variables for Normal demand distribution and values of Δ= - 

250, CH= 20, γ = 1.6 is presented in Table 6. It can be observed that Qc
∗   and E(πc)

∗ are affected only above a 

certain value of α, termed as limiting value of target service level (αl). The value of αl  is 0.842 for the given 

parameters. Thus, the constraint is binding within the interval 𝛼𝑙 < 𝛼 < 1. The expected profit function decreases 

despite the fact that Qc
∗  increases with respect to 𝛼 within this interval as presented in Fig. 3. Wc

∗ increases with 

respect to α, but that increase is not significant. 

Table 6 Impact of target service level (α) on the optimal weight, order quantity and expected profit 

α Wc
∗ Qc

∗  E(πc)
∗ 

0.7 0.96 817 17010 

0.8 0.96 817 17010 

0.842 0.96 817 17010 

0.85 0.97 824 16999 

0.90 0.98 868 16561 

0.95 1.00 910 15876 

0.99 1.00 949 15507 
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Fig.3. Effect of target service level factor (α) on optimal order quantity and expected profit 

4.5 Effect of the unit demand adjustment cost 

The influence of CH on the model variables for the unconstrained optimization with Δ= 250 and 𝛾 = 1.6 is given in 

Table 7. Both order quantity and expected profit decrease as CH increases, mainly due to the reduction of the value 

of  W∗. This behavior is plotted in Fig. 4. The threshold unit demand adjustment cost, determined by Lemma 1, 

provides a lower limit value for CH. For every lower value of CH the weight W is set to 1. CHT  is 17.8 for the given 

parameters. The behavior of  W∗ with respect to CH is shown separately in Fig. 5. Thus, the increase of  CH in the 

range 0 < CH ≤ CHT maintains  W∗ =1 andQ∗ = 1346 , but with consequent reduction in the expected profit. 

However, the increase of CH in the range CH > CHT decreases both Q∗and E(π)∗, mainly through reduction in W*. 

At very large (but unpractical) values of CH, W∗ converges tozero and both Q∗and E(π)∗converge to the values seen 

in the base demand case viz. Q0
∗=1076 and E(π0)

∗ = 28660. 

Table 7 Impact of unit demand adjustment cost (CH) on the optimal weight, order quantity and expected profit 

CH W∗ Q∗ E(π)∗ 

5 1 1346 34575 

10 1 1346 33325 

15 1 1346 32075 

17.8 1 1346 31375 

20 0.83 1300 30896 

25 0.57 1231 30201 

30 0.42 1190 29797 

40 0.26 1147 29364 

50 0.18 1125 29145 

60 0.13 1112 29018 

450 ≈0 1076 28660 
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Fig.4. Effect of unit demand adjustment cost (CH) on order quantity and expected profit 

 

 

Fig.5. Effect of unit demand adjustment cost on weight factor 

5. Conclusions and managerial implications 

The potential impact of contextual information related to the change of the demand environment and to non-

forecastable events obtained between the two stages of the preseason ordering procedure is estimated through expert 

judgment and is used to revise the demand forecast. Thus, in this paper, inventory models are developed with 

revised demand forecasts under the NVP setting to determine the optimal order quantity, the weight factor and the 

expected profit. The models consider bi-directional changes in demand and constraints are imposed for practical 

considerations. A decision maker may assign a weight W (0 ≤ W ≤ 1) to the demand adjustment suggested by the 

experts. In that case, the optimization models proposed determine the optimal weight that could be taken as 

indicative values by decision makers. The unit demand adjustment cost (CH) introduced in the model, can be 

interpreted as a penalty charged per unit by a supplier for modifying the initial order size, advertising expenditure 

per unit of accrued demand or an adjustment for the per unit revenue loss in the objective function for offering 

discount. For practical purposes, CH cannot be more than the unit contribution derived by selling the product. 
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One of the important novelties of the paper is simultaneous consideration of bidirectional changes in demand 

through a single model, which otherwise impossible as profit maximization (minimization) model applicable to 

demand increase (decrease) case always negate the impact of negative (positive) demand adjustment. Secondly, the 

models determine optimal weight that can be assigned to the demand adjustment suggested through weight factor 

considering the demand adjustment cost. Thirdly, many a times the objective functions are often overlook the lost 

sales revenue from unmet demand and consider only shortage penalty cost. The objective function  of the models 

developed includes this loss of lost sales revenue and the solution to such modified objective function provides not 

only a revised order quantity for both demand adjustment cases, but also provides the same order quantity following 

either of approaches in the base case. 

Fourthly, the results show that retailers would benefit economically if they were to use the models developed. 

Retailers increase their expected profit through a larger order size in an increasing demand case. On the other hand, 

in a reducing demand case, retailers still earn an optimal profit by determining an order quantity that minimizes the 

expected cost. Fifthly, the order quantity and expected profit reduction due to the order size constraint shows 

expected results. Surprisingly, imposing a service level constraint reduces the expected profit despite raising the 

order quantity.The loss of expected profit caused by these constraints can be interpreted as a cost a retailer bears for 

practical considerations of limited space or budget in the former case and for ensuring a defined service level in the 

latter case. Sixthly, symmetrical demand distributions (normal, uniform, triangular) are found more suitable for 

these models. Seventhly, entropy is measure of the information carried by a distribution and higher entropy 

corresponds to less information content (or more uncertainty). For a given mean and range, higher entropy of 

demand distribution means larger optimal order quantity and lower lesser expected profit. The same has been 

demonstrated by using different demand distributions having entropy in the increasing order of normal, triangular, 

uniform and exponential. One of the limitations of the present work is these models are parameter sensitive and 

conclusions drawn are based on limited numerical experiments. The present work can be extended to the distribution 

free NVP and multi-constrained optimization. 
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