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Abstract

This paper investigates the notion of changes in ambiguity over loss probabilities
in the smooth ambiguity model developed by Klibanoff, Marinacci and Mukerji (2005).
Changes in ambiguity over loss probabilities are expressed through the specific concept
of stochastic dominance of order n defined by Ekern (1980). We characterize conditions
on the function capturing attitudes towards ambiguity under which an individual always
considers one situation to be more ambiguous than another in a model of two states
of nature. We propose an intuitive interpretation of the properties of this function in
terms of preferences for harms disaggregation over probabilities, also labelled ambiguity
apportionment.
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1 Introduction

Since the seminal experiments of Ellsberg (1961), it is well recognized that individuals
are averse to ambiguity over probabilities. Ellsberg showed that individuals usually prefer
gambles with known rather than unknown probabilities, that is, they are ambiguity averse.
Many other experiments have confirmed Ellsberg’s work since then (e.g. Chow and Sarin,
2001), and several decision models have been proposed to integrate ambiguity preferences
in the face of risky situations (e.g. Gilboa and Schmeidler, 1989; Epstein and Schneider,
2003; Klibanoff, Marinacci and Mukerji, 2005).
A recent stream of literature addresses the effect of ambiguity aversion on economic

decisions, whether these are insurance decisions (Alary et al., 2013; Gollier, 2014), med-
ical decisions (Berger et al., 2013), prevention decisions (Snow, 2011), portfolio decisions
(Gollier, 2011), or decisions over the value of statistical life (Treich, 2010). Ambiguity
aversion is defined as a preference for non-ambiguous situations over ambiguous situations.
However, a more general question arises as to how an individual compares two situations
of ambiguity over probabilities. More precisely, when can we say that one situation is
considered as more ambiguous than another? The aim of this paper is to offer a response
to this question in the specific case of two states of nature.
We investigate the notion of changes in ambiguity using the recent theory of ambi-

guity axiomatized by Klibanoff, Marinacci and Mukerji (2005) (hereafter KMM). Their
approach separates ambiguity preferences from risk preferences. It also introduces a sim-
ple way to define ambiguity aversion, which is captured through the idea of aversion
to any mean-preserving spread in the space of probabilities. This comes from the fact
that the introduction of ambiguity constitutes a mean-preserving spread in the space of
probabilities.
Consider a probability of loss. In the absence of ambiguity, the decision-maker knows

the value of this probability, but is uncertain about its value when ambiguity is present.
Uncertainty about the loss probability is represented by a probability distribution over this
loss probability. We define changes in ambiguity over probabilities through the specific
concept of stochastic dominance of order n defined by Ekern (1980). This approach makes
it possible to define a statistical link between the probability distributions capturing the
level of ambiguity over the loss probability. It also makes it possible to link the notion of
changes in ambiguity to the properties of the function capturing the individual attitudes
towards ambiguity, and in particular, to the signs of the successive derivatives of this
function. These properties, referred to as ambiguity apportionment, are interpreted in
terms of preferences for harms disaggregation over probabilities in a similar way as the
ones developed by Eeckhoudt and Schlesinger (2006) in the expected utility theory to
explain the meaning of the signs of the successive derivatives of the utility function in
terms of preferences for harms disaggregation over wealth.
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Changes in ambiguity have been recently addressed in the literature either in the
KMM model or in a more general framework. Snow (2010, 2011) and Huang et al. (2015)
express increases in ambiguity in the KMM model either in terms of mean-preserving
spread or mean-variance-preserving spread of the loss probability and in relation to only
ambiguity aversion or ambiguity prudence in the sense that more ambiguity makes an
ambiguity-averse or ambiguity-prudent individual worse off. Changes in ambiguity have
also recently been defined by Jewitt and Mukerji (2014) in a more general environment
also in relation to ambiguity aversion. Our definition of change in ambiguity stems from
these works and considers different orders of stochastic dominance and other properties
of the function capturing the individual attitudes towards ambiguity to have more ambi-
guity making an ambiguity-averse individual worse off. Our work should also be related
to Baillon (2015) who introduces the concept of ambiguity apportionment. We provide
a different interpretation of ambiguity apportionment than his in terms of preferences
for harms disaggregation over probabilities in the specific model of KMM. While Baillon
(2015) establishes which specifications of widely used ambiguity models imply ambiguity
apportionment, we introduce the concept of ambiguity apportionment to express prefer-
ence for one ambiguous situation over another in the specific ambiguity model of KMM.
This paper is organized as follows. In the next section, we introduce the model of

ambiguity aversion. We define the notion of one situation being considered as more
ambiguous than another in Section 3. We then propose the concept of change in ambiguity
in terms of ambiguity apportionment in Section 4. Finally, a short conclusion is provided
in the last section.

2 The benchmark model

Let us consider an individual with an initial wealth w and confronted with two states of
nature, a good state that occurs with probability (1−p) and a bad state that occurs with
probability p (such that 0 < p < 1). The individual expected utility is written as

V0(w, p) = (1− p)uG(w) + puB(w) (1)

where uG
′′
(x) < 0 < uG′(x) ∀x, uB ′′(x) < 0 < uB ′(x) ∀x and uG(x) > uB(x) ∀x. Utility

functions uG and uB can be either state-independent1 or state-dependent as in the value
of a statistical life literature (Drèze, 1962) or as in models of irreplaceable commodity
(Cook and Graham, 1977) widely used in the health economics literature.
So as to introduce ambiguity and following Treich (2010), Snow (2010) and Berger

et al. (2013), we add a parameter ε on the probability of the bad state of nature. This

1 i.e. uG(w) = u(w) and uB(w) = u(w−L) with L > 0 and u′′ < 0 < u′ as in the classical model with
a monetary loss L
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probability of the bad state of nature, p+ ε, is ambiguous in the sense that the parameter
ε is not known precisely and takes on values in [ε, ε]. The ambiguity takes the form of
a probability distribution for ε. We denote the associated random variable by ε̃. The
probability of the bad state of nature writes then p̃ = p + ε̃. Obviously, we assume that
the realizations of the random variable p̃ = p+ ε̃ belong to ]0,1[, i.e. for all ε in [ε, ε], p+ ε

verifies 0 < p+ ε < 1.
In our benchmark model, risk arises because the decision-maker does not know in

which state of nature he will be, the bad state with utility level uB(w) or the good state
with utility level uG(w). Ambiguity arises because the decision-maker lacks knowledge of
the probability of being in the bad state or in the good state of nature, i.e. he does not
know the value of the parameter ε.
Let us consider the smooth ambiguity model axiomatized by KMM (2005). According

to this model, the decision-maker’s welfare writes as

V (w, p+ ε̃) = E[Φ{(1− (p+ ε̃))uG(w) + (p+ ε̃)uB(w)}] (2)

where E denotes the expectation operator over the random variable ε̃, which probability
distribution is assumed to be implicitly known. The function Φ captures the attitude
towards ambiguity and is supposed to be smooth and increasing, i.e. Φ′ > 0. The decision-
maker is considered as strictly ambiguity-averse if and only if Φ is strictly concave, as
shown by KMM (2005). Φ′′ < 0 represents then strict ambiguity aversion, and Φ(x) = x

represents ambiguity neutrality.
In the same way as in the expected utility model, where the addition of ε̃ on the

wealth level w reduces the utility of a risk-averse decision-maker2, in the ambiguity model
of KMM (2005), the introduction of ε̃ on the probability p reduces the decision-maker’s
welfare if he is ambiguity-averse, compared to the case where the probability does not
face any ambiguity. Indeed, Φ′′ < 0 implies

E[Φ{(1− (p+ ε̃))uG(w) + (p+ ε̃)uB(w)}] < Φ(E[{(1− (p+ ε̃))uG(w) + (p+ ε̃)uB(w)}]),

which can be rewritten equivalently (using our notations),

V (w, p+ ε̃) < Φ(V0(w, p+ E(ε̃))). (3)

Note that for an ambiguity-neutral decision-maker, the presence of ε̃ does not modify the
welfare. Indeed, when Φ(x) = x, we have:

E[Φ{(1− (p+ ε̃))uG(w) + (p+ ε̃)uB(w)}] = Φ(E[{(1− (p+ ε̃))uG(w) + (p+ ε̃)uB(w)}]),

that is equivalent to

V (w, p+ ε̃) = Φ(V0(w, p+ E(ε̃))) = V0(w, p+ E(ε̃)). (4)

2Because risk aversion means that E[u(w + ε̃)] < u(w + E(ε̃)).
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While ambiguity aversion expresses preferences for a non-ambiguous event over an
ambiguous event, it does not allow to express preferences over two ambiguous events.
A more general issue is to define preferences between two ambiguous events. This is
addressed in the next section.

3 Defining more ambiguity

To define one event as being more ambiguous than another, we consider the framework of
Jewitt and Mukerji (2014) who provide conditions under which one act is more ambiguous
than another, an act being a choice with contingent consequences.
Let’s consider that the preferences of the decision-maker with a wealth level w are

defined over a set of Anscombe-Aumann acts. Uncertainty is modelled by a state space
Z containing all possible states of the world. For each state of the world ζ in Z, an act
assigns lotteries to states, i.e. for each state ζ, the decision-maker welfare level will be
uB(w) with probability p + εζ , and will be uG(w) with probability 1 − (p + εζ). An act
assigns, for a given wealth level w, a distribution for the parameter εζ , or equivalently,
assigns a random variable ε̃. An act, therefore, captures a level of ambiguity.
Following Jewitt and Mukerji (2014), one act is more ambiguous than another if an

ambiguity-averse decision-maker prefers the first act to the second but an ambiguity-
neutral is indifferent between the two acts3. Jewitt and Mukerji (2014)’s definition in the
KMM model corresponds also to the definition of “an increase in ambiguity according
to Ekern”proposed by Huang et al. (2015). In order to rewrite this definition of more
ambiguity in our framework, let us consider a strictly ambiguity-averse decision-maker and
define two acts, i.e. two random variables capturing ambiguity ε̃1 and ε̃2, with E(ε̃1) =

E(ε̃2) and for a given wealth level w. The decision-maker’s utility writes now as

V (w, p+ ε̃i) = E[Φ{(1− (p+ ε̃i))u
G(w) + (p+ ε̃i)u

B(w)}], (5)

where ambiguity is captured by ε̃i, i = 1, 2.

Consequently, following Jewitt and Mukerji (2014), ε̃2 is more ambiguous than ε̃1 if
an ambiguity-averse decision-maker (with Φ that satisfies Φ′ > 0 and Φ′′ < 0) prefers ε̃1
to ε̃2, i.e. if V (w, p + ε̃2) ≤ V (w, p + ε̃1). Note that an ambiguity-neutral decision-maker
is indifferent between ε̃1 and ε̃2 since E(ε̃1) = E(ε̃2).
An important feature of such a definition of more ambiguity is that the link between the

random variables ε̃1 and ε̃2 is restricted to a statistical property of order 2 only. However,
if the statistical link between ε̃1 and ε̃2 is of higher order than two, the comparison between
V (w, p+ ε̃1) and V (w, p+ ε̃2) requires conditions on the sign of derivatives of Φ higher than

3More precisely, this definition corresponds to the definition (I) proposed by the authors. Jewitt
and Mukerji (2014) also propose a second definition based on choices of agents with different levels of
ambiguity aversion.
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two. The aim of this article is to investigate how at higher orders the sign of the derivatives
of Φ and the statistical link between ε̃1 and ε̃2 interacts to have V (w, p+ ε̃2) ≤ V (w, p+ ε̃1).

To do so, we assume that Φ is such that (−1)(k+1)Φ(k) > 0 for all k = 1, . . . , n,
i.e. that the signs of the successive derivatives of the function Φ alternate. This is a
natural assumption in the literature dealing with the KMM (2005) model. Indeed, in
their original paper, KMM (2005) suggest using the function Φ(x) = −exp(−αx)

α
with α > 0

(which exhibits constant absolute ambiguity aversion) as an illustration of their model
(see also Taboga (2005), Collard et al. (2009)). It is easy to verify that this function
is such that (−1)(k+1)Φk > 0 ∀k = 1, . . . , n, i.e. sharing the same properties as those
exhibited above. This is also the case for the function Φ(x) = ln(x) for x > 0, or the

function Φ(x) =
xγ

γ
with 0 < γ < 1 which are used by Gollier (2011) and Ju and Miao

(2012) to express various attitudes towards ambiguity. As noted by Brockett and Golden
(1987), all commonly used functions in economic theory, with the first derivative being
positive and the second one being negative, have all successive derivatives that alternate in
signs. Such functions are referred to as mixed risk-averse utility functions in the expected
utility theory (see Caballé and Pomansky, 1996). By analogy, we call functions such as
(−1)(k+1)Φk > 0 ∀k = 1, . . . , n mixed ambiguity-averse functions.
To model changes in ambiguity between ε̃1 and ε̃2, we use the specific concept of

stochastic dominance of order n defined by Ekern (1980) that establishes a partial ordering
of probability distributions. Consider two random variables X̃ and Ỹ valued in some
interval [z1, z2] of the real line, with respective distribution functions F and G. Starting
from F1 = F and G1 = G, define iteratively for z ∈ [z1, z2]

Fk+1(z) =

∫ z

z1

Fk(t)dt and Gk+1(z) =

∫ z

z1

Gk(t)dt

for k ≥ 1. Then, X̃ is said to be dominated by Ỹ (X̃ �n Ỹ ) via Ekern nth-order
stochastic dominance if Gn(z) ≤ Fn(z) for all z where the inequality is strict for some z,
and E(X̃k) = E(Ỹ k) ∀k = 1, . . . , n− 1, i.e. the first n− 1 moments being identical.
The concept of Ekern’s dominance is very usual in risk theory. As an example, the

notion of “mean-preserving increase in risk”introduced by Rothshild and Stiglitz (1970)
is equivalent to Ekern’s dominance of order 2 (X̃ �2 Ỹ ). Similarly, the notion of “increase
in downside risk”introduced by Menezes et al. (1980) is equivalent to Ekern’s dominance
of order 3 ( X̃ �3 Ỹ ).
We then have the following definition.

Definition
Let two random variables capturing two different levels of ambiguity, ε̃1 and ε̃2 be linked

by an Ekern’s dominance relation of order n. Given a strictly ambiguity-averse decision-
maker with a function capturing ambiguity attitude Φ such that (−1 )(k+1 )Φ(k) > 0 for
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all k , k = 1 . . . n, the random variable ε̃2 is considered by the decision-maker to be “more
ambiguous”than the random variable ε̃1 if V (w, p+ ε̃2) ≤ V (w, p+ ε̃1).

The next section proves that, contrary to intuition, a more ambiguous random variable
is not always equivalent to a dominated variable in Ekern’s sense, but depends on whether
the order of the Ekern’s dominance relation is even or odd.

4 Ambiguity apportionment

From Ekern (1980) and Ingersoll (1987), the following properties are well-known: X �n Y
is equivalent to E[f(X)] ≤ E[f(Y )] for all functions f such that (−1)n+1f (n) > 0, where
f (k) denotes the kth derivative of the function f .
Using these properties, we obtain the following proposition (see the proof in appendix

1).

Proposition 1
Let two random variables capturing two different levels of ambiguity, ε̃1 and ε̃2 be linked

by an Ekern’s dominance relation of order n. Given a strictly ambiguity-averse decision-
maker with a function capturing ambiguity attitude Φ such that (−1 )(k+1 )Φ(k) > 0 for all
k , k = 1 . . . n, the decision-maker considers the random variable ε̃2 to be more ambiguous
than ε̃1 if ε̃2 �n ε̃1 when n is even, and if ε̃1 �n ε̃2 when n is odd.

Proposition 1 shows that, for a mixed ambiguity-averse decision-maker, a greater level
of ambiguity between ε̃2 and ε̃1 is not always equivalent to the variable ε̃2 being dominated
by ε̃1 in Ekern’s sense4, but can also correspond to the other way round5.
The properties of the function Φ can be interpreted in terms of preferences for harms

disaggregation, or preferences to “combine good with bad”in a similar way as the prop-
erties developed by Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009) in the
expected utility theory to explain the meaning of the alternation of signs of the successive
derivatives of the utility function, i.e. the concept of risk apportionment of order n. We
coin the term “ambiguity apportionment”of order n such preferences (see also Baillon,
2015) that coincide with preferences over simple random variables capturing the attitude
towards ambiguity as presented in Proposition 1.

4We cannot extend this result to the case of a link of stochastic dominance between ε̃1 and ε̃2 since
successive derivatives of the function f as defined in appendix 1 do not alternate in signs (see appendix
1).

5If ambiguity were defined on the good state of nature, contrary to what is usually done in the
literature, a greater level of ambiguity would be equivalent to a dominated variable in Ekern’s sense.
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Let us recall the concept of risk apportionment. In the expected utility framework,
Eeckhoudt et al. (2009) show that a decision-maker with a utility function u verifying
(−1)(N+M+1)u(N+M) > 0 prefers the lottery [w + XN + YM , w + YN + XM ; 1

2
, 1
2
] to the

lottery [w + XN + XM , w + YN + YM ; 1
2
, 1
2
] where random variables XN , XM , YN , YM are

mutually independent and where Xk dominates Yk to the order k = N,M in Ekern’s
sense (Yk �k Xk). The idea is that a decision-maker exhibiting (N + M)th-order risk
apportionment preference will allocate the random variables in such a way as not to group
the two “bad”random variables in the same state, where “bad”is defined via nth-order
Ekern’s dominance. The decision-maker prefers to combine “good”with “bad”and “bad”
with “good”rather than “good”with “good”and “bad”with “bad”. The random variable
Xk is “good”and Yk is “bad”because Yk is dominated by Xk, i.e. Yk is more risky than
Xk. In risk theory, “more risky”coincides with “dominated in Ekern’s sense”6. While in
risk theory, harms are random variables added to the wealth level w, in our framework
harms are random variables added to the probability level associated to the bad state of
nature p. Contrary to intuition, Proposition 1 shows that “more ambiguous”does not
always coincide with “dominated in Ekern’s sense”. The explanation of Proposition 1 is
the following.
If ε̃1 and ε̃2 are degenerated random variables, ε̃1 = 0 and ε̃2 = k with k > 0, then

according to the definition of Ekern, ε̃2 dominates ε̃1 to the order of 1. However, the
passage from ε̃1 to ε̃2 corresponds in our model to an increase in the probability of loss.
Thus this passage is considered as an adverse or “bad”outcome for the decision-maker,
and any individual such as Φ′ > 0 dislikes this. This explains why the passage from ε̃1

to ε̃2 constitutes an increase in ambiguity, where more ambiguity corresponds to a higher
probability of loss.
If ε̃1 = 0 and ε̃2 = ε̃ with E(ε̃) = 0, then ε̃1 dominates ε̃2 to the order of 2 in

Ekern’s sense. The passage from ε̃1 to ε̃2 is a mean-preserving spread in the space of
probabilities which is disliked by all individuals averse to ambiguity, i.e. such that Φ′′ < 0.
Consequently, this passage is an adverse or “bad”outcome for the decision-maker, which
explains why ε̃2 is considered as more ambiguous than ε̃1 by the decision-maker, where
more ambiguity corresponds to an uncertain probability of loss7. This case is equivalent
to the definition of increased ambiguity as proposed by Snow (2010), Jewitt and Mukerji
(2014) and Huang et al. (2015).
Let us now consider the case n = 3 with the two following random variables: ε̃1 =

[k, ε̃; 1
2
, 1
2
] and ε̃2 = [k + ε̃, 0; 1

2
, 1
2
]. Using the property of Ingersoll (1987), it is easy to

6Eeckhoudt et al. (2009) results also apply to stochastic dominance.
7As suggested by one referee, for n = 1 and n = 2, changes in ambiguity can be represented through

the linear transformation function proposed by Sandmo (1971) t(p) = γ(p − p) + p + k, where γ is a
multiplicative shift parameter, k is an additive shift parameter, and p is the mean probability. For n = 1,
an increase in k (from k = 0 with γ = 1) is similar to a first-degree risk improvement. For n = 2, an
increase in γ (from γ = 1 with k = 0) is similar to a Rothschild-Stiglitz increase in risk.
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verify that ε̃2 dominates ε̃1 in Ekern’s sense to the order of 3. However, Proposition 1
means that an ambiguity-prudent decision-maker, i.e. such as Φ(3)(x) > 0 following the
terminology of Baillon (2015), prefers ε̃1 to ε̃2. Why is ε̃2 considered as more ambiguous
than ε̃1? The intuitive explanation is the following. Recall that k and ε̃ represent adverse
or “bad”outcomes for the decision-maker. Consequently, an ambiguity-prudent decision-
maker prefers not to be confronted with these two adverse outcomes together in one state
of nature as is the case with the lottery ε̃2. He prefers rather to disaggregate these two
adverse outcomes across states of nature as is the case with the lottery ε̃1. Hence, a more
ambiguous random variable defined through a specific case of stochastic dominance of
order 3 makes an ambiguity-averse worse off only if he is also ambiguity-prudent. This
case is equivalent to the definition of “increased in downside ambiguity according to
Ekern”introduced by Huang et al. (2015).
Such preference for disaggregation of adverse outcomes also applies for higher orders.

Indeed, let us consider now the case n = 4 with the following random variables: ε̃1 =

[θ̃, ε̃; 1
2
, 1
2
] and ε̃2 = [θ̃ + ε̃, 0; 1

2
, 1
2
], with E(θ̃) = 0 and θ̃ and ε̃ are independent. According

to the definition of Ekern, ε̃2 is dominated by ε̃1 to the order of 4. Proposition 1 tells
us that ε̃2 is considered to be more ambiguous than ε̃1. Indeed, both risks ε̃ and θ̃ are
adverse outcomes for the individual. An ambiguity-temperant decision-maker, i.e. such
as Φ(4)(x) < 0 following the terminology of Baillon (2015), prefers to disaggregate these
adverse outcomes rather than aggregate them, and thus prefers ε̃1 to ε̃2. The random
variable ε̃1 is thus considered as less ambiguous than ε̃2.
To summarize and using the notations of Eeckhoudt et al. (2009), the case n = 3

corresponds to N = 1 and M = 2 with “bad”≡ YN = k and “good”≡ XN = 0, “bad”≡
YM = ε̃ and “good”≡ XM = 0. The case n = 4 corresponds to N = 2 = M with “bad”
≡ YN = θ̃ (with θ̃ and ε̃ independent), and “good”≡ XN = 0, “bad”≡ YM = ε̃ and
“good”≡ XM = 0. For higher orders, all even orders n can be written as n = N + M

with N = 2 and M even, and where “bad”≡ YN = θ̃ and “good”≡ XN = 0, and
“bad”≡ YM and “good”≡ XM for all XM and YM such that YM �M XM . When n is
even, ε̃2 can be written as the lottery [w + XN + XM , w + YN + YM ; 1

2
, 1
2
], and ε̃1 as the

lottery [w + XN + YM , w + YN + XM ; 1
2
, 1
2
]. It is easy to show that ε̃2 �N+M ε̃1. The

decision-maker prefers combining “good”with “bad”and then prefers ε̃1 that dominates
ε̃2. For all odd orders n, n can be written as n = N +M with N = 1 and M even where
“bad”≡ YN = k and “good”≡ XN = 0, “bad”≡ YM and “good”≡ XM for all XM and
YM such that YM �M XM with M even. When n is odd, ε̃2 can be written as the lottery
[w + XN + XM , w + YN + YM ; 1

2
, 1
2
] and ε̃1 as [w + XN + YM , w + YN + XM ; 1

2
, 1
2
]. It is

easy to show that in this case, ε̃1 is dominated by ε̃2 (ε̃1 �N+M ε̃2). But as previously
explained, the decision-maker prefers combining “good”with “bad”rather than “good”
with “good”and “bad”with “bad” and then prefers ε̃1 to ε̃2 despite the fact that ε̃1 is
dominated by ε̃2.
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This interpretation is similar to the one developed in expected utility theory. These
higher-order ambiguity attitudes entail a preference for combining relatively good out-
comes with bad ones and can be interpreted as a desire to disaggregate the harms of
unavoidable random variables and losses8.

5 Conclusion

While ambiguity aversion expresses preferences for non-ambiguous situations over am-
biguous situations, this paper goes one step further and proposes preferences over more
ambiguous probabilities in the specific case of two states of nature. Changes in ambigu-
ity over probability distributions are expressed through the specific notion of stochastic
dominance of order n defined by Ekern (1980). A random variable being more ambiguous
than another for the individual is equivalent to having the first variable dominated to the
order n by the second one in Ekern’s sense when n is even and the second variable being
dominated to the order n by the first one in Ekern’s sense when n is odd. This notion
of changes in ambiguity is linked to the signs of the successive derivatives of the function
capturing the individual attitudes towards ambiguity. These properties, referred to as am-
biguity apportionment, are interpreted in terms of preferences for harms disaggregation
over probabilities.

Our results imply that, contrary to previous literature, changes in ambiguity are not
defined only in relation to ambiguity aversion or ambiguity prudence. Hence, further
conditions on ambiguity attitudes of higher orders are required to have more ambiguity
making a more ambiguity-averse individual worse off.
There are limitations of this analysis that need to be pointed out. First, we have

considered the model of KMM (2005) to express ambiguity preferences. An extension of
this paper would be to consider other models of decisions incorporating attitude towards
ambiguity. Yet, it should be stressed that the KMM (2005) model is especially adapted
to our analysis since individuals’subjective beliefs about objective probabilities are rep-
resented by a probability distribution which makes it easy to use the specific concept of
stochastic dominance of order n. Second, we have considered a binary risk where ambi-
guity impacts only two states of nature. A generalization would be to consider ambiguity
impacting a continuum state of nature. Extending our work in these directions would
provide some interesting topics for future research.

8In Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009), lotteries are independent 50-50
lotteries. A more general case is to consider dependent and binary lotteries which are not necessarily
50-50 lotteries (see Denuit and Rey, 2013).
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Appendix 1
V (w, p+ ε̃2) ≤ V (w, p+ ε̃1) is equivalent to
E[Φ{(1−(p+ ε̃2))u

G(w)+(p+ ε̃2)u
B(w)}] ≤ E[Φ{(1−(p+ ε̃1))u

G(w)+(p+ ε̃1)u
B(w)}],

that rewrites as:
E[Φ{V0(w, p)+ε̃2∆u(w)}] ≤ E[Φ{V0(w, p)+ε̃1∆u(w)}], with∆u(w) = uB(w)−uG(w).
Let us define the function f as follows: f(ε) = Φ

(
V0(w, p) + ε∆u(w)

)
.

The previous inequality rewrites as: E[f (̃ε2)] ≤ E[f (̃ε1)].
We obtain:
f ′(ε) = ∆u(w)Φ′

(
V0(w, p) + ε(∆u(w))

)
,

f ′′(ε) = (∆u(w))2Φ′′
(
V0(w, p) + ε(∆u(w))

)
,

f (3)(ε) = (∆u(w))3Φ(3)
(
V0(w, p) + ε(∆u(w))

)
,

f (4)(ε) = (∆u(w))4Φ(4)
(
V0(w, p) + ε(∆u(w))

)
,

... ,
f (n)(ε) = (∆u(w))nΦ(n)

(
V0(w, p) + ε(∆u(w))

)
.

As by assumption, ∆u(w) < 0, we obtain:
Φ′(x) > 0 ∀x ⇔ f ′(ε) < 0 ∀ε,
Φ′′(x) < 0 ∀x ⇔ f ′′(ε) < 0 ∀ε,
Φ(3)(x) > 0 ∀x ⇔ f (3)(ε) < 0 ∀ε,
Φ(4)(x) < 0 ∀x ⇔ f (4)(ε) < 0 ∀ε,
. . .,
Φ(n)(x) > 0 ∀x when n is odd ⇔ f (n)(ε) < 0 ∀ε,
Φ(n)(x) < 0 ∀x when n is even ⇔ f (n)(ε) < 0 ∀ε.
Using Ekern (1980), we obtain:
if ε̃2 �n ε̃1 for n even, E[f (̃ε2)] ≤ E[f (̃ε1)] for all f such that f (n)(ε) < 0 ∀ε,
if ε̃1 �n ε̃2 for n odd, E[f (̃ε2)] ≤ E[f (̃ε1)] for all f such that f (n)(ε) < 0 ∀ε, that proves

Proposition 1.
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