TY - GEN AD - Maastricht University Medical Centre - GROW (MAASTRO), Maastricht, The Netherlands AD - University of Leicester, Leicester, UK AD - Consiglio nazionale delle Ricerche, Instituto di Scienze e Technologie della Cognizione (CNR-IST), Roma, Italy AD - TheraPanacea, Paris, France AD - School of Engineering, Architecture and Landscape (HEPIA), HES-SO // University of Applied Sciences and Arts Western Switzerland AD - Athens University of Economics and Business, Athens, Greece AD - CENTAI Institute, Turin, Italy AD - CENTAI Institute, Turin, Italy AD - Maastricht University, Medical Center+, Maastricht, The Netherlands AD - University of Leicester, Leicester, UK AD - Gustave Roussy, Cancer Campus, Villejuif, France AD - Medical Data Works B.V., Maastricht, The Netherlands AD - Maastricht Unviversity, Maastricht, The Netherlands AD - University of Leicester, Leicester, UK AD - Maastricht University Medical Centre - GROW (MAASTRO), Maastricht, The Netherlands AD - Unitrad, Unicancer, Paris, France AD - Consiglio Nazionale delle Ricerche, Instituto di Scienze e Technologie della Cognizione (CNR-IST), Roma, Italy AU - Liang, Y. AU - Rainbird, J. AU - Cortellessa, G. AU - Balia, M. AU - Bologna, Guido AU - Koutsopoulos, I. AU - Pannison, A. AU - Perotti, A. AU - Ramaekers, B. AU - Rattay, T. AU - Rivera, S. AU - Romita, A. AU - Roumen, C. AU - Talbot, C. AU - Verhoeven, K. AU - Bergeaud, M. AU - Fracasso, F. CY - Amsterdam, The Netherlands DA - 2024-10 DO - 10.1016/j.ijrobp.2024.07.1451 DO - DOI EP - e661-e662 ID - 15494 JF - International Journal of Radiation Oncology*Biology*Physics ; Proceedings of the 2024 ASTRO Annual Meeting, 29 September-2 October 2024, Washington, DC, USA L1 - https://arodes.hes-so.ch/record/15494/files/Bologna_2024_Physicians_view_explainable_AI.pdf L2 - https://arodes.hes-so.ch/record/15494/files/Bologna_2024_Physicians_view_explainable_AI.pdf L4 - https://arodes.hes-so.ch/record/15494/files/Bologna_2024_Physicians_view_explainable_AI.pdf LA - eng LK - https://arodes.hes-so.ch/record/15494/files/Bologna_2024_Physicians_view_explainable_AI.pdf PB - Elsevier PP - Amsterdam, The Netherlands PY - 2024-10 SN - 0360-3016 SP - e661-e662 T1 - Physicians’ views on explainable artificial intelligence models to predict the risk of toxicity following breast radiotherapy TI - Physicians’ views on explainable artificial intelligence models to predict the risk of toxicity following breast radiotherapy UR - https://arodes.hes-so.ch/record/15494/files/Bologna_2024_Physicians_view_explainable_AI.pdf VL - 2024, 120 Y1 - 2024-10 ER -