000015308 001__ 15308 000015308 005__ 20250120134309.0 000015308 022__ $$a2226-4310 000015308 0247_ $$2DOI$$a10.3390/aerospace11121037 000015308 037__ $$aARTICLE 000015308 039_9 $$a2025-01-20 13:43:09$$b0$$c2025-01-20 08:33:38$$d1000305$$c2025-01-10 11:17:24$$d0$$y2025-01-10 11:17:16$$z1000099 000015308 041__ $$aeng 000015308 245__ $$aReducing antenna leakage in quasi-monostatic satellite radar using planar metamaterials 000015308 260__ $$aBasel, Switzerland$$bMDPI 000015308 269__ $$a2024-12 000015308 300__ $$a12 p. 000015308 506__ $$avisible 000015308 520__ $$9eng$$aIn an autonomous robotic space debris removal mission, an essential sensor used for navigation is an FMCW radar designed for close-range relative navigation. To achieve the required range performance, minimizing RF leakage between the transmitter (Tx) and receiver (Rx) antennas is essential for the accurate detection of the range and velocity of the targeted space debris. Antennas positioned above the metallic satellite front face are highly susceptible to RF leakage, primarily caused by surface current propagation and lateral waves traveling parallel to the platform. This study presents two lightweight, single-layer planar metamaterials—a novel compact electromagnetic bandgap (EBG) and a non-uniform high-impedance surface (HIS)—optimized to suppress both surface waves and interact with space waves within the 9.3–9.8 GHz frequency range. These designs address strict size, weight, and power (SWaP) constraints while ensuring compatibility with extreme space conditions and resistance to mechanical shocks. Experimental validation indicates that a minimum Tx/Rx isolation improvement of 10 dB is achieved using the HIS, and 20 dB is achieved using the EBG across the radar’s operational bandwidth (5%). 000015308 540__ $$acorrect 000015308 592__ $$aHEIG-VD 000015308 592__ $$bIICT - Institut des Technologies de l'Information et de la Communication 000015308 592__ $$cIngénierie et Architecture 000015308 6531_ $$9eng$$aantenna decoupling 000015308 6531_ $$9eng$$aplanar metamaterials 000015308 6531_ $$9eng$$aantenna isolation 000015308 6531_ $$9eng$$alateral wave suppression 000015308 6531_ $$9eng$$aelectromagnetic bandgap 000015308 6531_ $$9eng$$ahigh-impedance surface 000015308 6531_ $$9eng$$aautonomous relative navigation 000015308 655__ $$ascientifique 000015308 700__ $$aKhalvati, Mohammad Reza$$uSchool of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland 000015308 700__ $$aBovey, Dominique$$uSchool of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland 000015308 773__ $$tAerospace$$j2024, 11$$k12$$q1037 000015308 8564_ $$uhttps://arodes.hes-so.ch/record/15308/files/Bovey_2024_reducing_antenna_leakage.pdf$$yPublished version$$974ee10ff-6e20-40a3-8b26-3b251154b1ab$$s4087164 000015308 906__ $$aGOLD 000015308 909CO $$ooai:hesso.tind.io:15308$$pGLOBAL_SET 000015308 950__ $$aaucun 000015308 980__ $$ascientifique 000015308 981__ $$ascientifique