000015261 001__ 15261
000015261 005__ 20250107133956.0
000015261 022__ $$a2542-4351
000015261 0247_ $$2DOI$$a10.1016/j.joule.2024.09.007
000015261 037__ $$aARTICLE
000015261 039_9 $$a2025-01-07 13:39:56$$b0$$c2025-01-07 09:04:37$$d1001044$$c2025-01-06 16:49:44$$d0$$y2025-01-06 16:49:36$$z1000099
000015261 041__ $$aeng
000015261 245__ $$aComparative life cycle analysis of electrolyzer technologies for hydrogen production :$$bmanufacturing and operations
000015261 260__ $$aAmsterdam$$bElsevier
000015261 269__ $$a2024-12
000015261 300__ $$a27 p.
000015261 506__ $$avisible
000015261 520__ $$9eng$$aThis study conducts a comprehensive life cycle assessment (LCA) of four electrolyzer technologies: alkaline electrolyzer (AEL), proton-exchange membrane (PEM), anion-exchange membrane (AEM), and solid oxide electrolyzer (SOE). It evaluates their environmental impacts across four main categories: climate change (CC), human health (HH), ecosystem quality (EQ), and abiotic stock resources (ASRs). In order to highlight the critical raw materials (CRMs) used in their manufacturing processes, the research identifies potential material replacements and reveals distinct environmental impacts associated with material choices, such as steel in AEL and AEM, platinum in PEM, and nickel in both SOE and AEL. Additionally, we examine the integration of diverse electrolyzer technologies under various scenarios of renewable electricity sources. Together with a sensitivity analysis of regional electricity mixes and the degradation of stacks across different years, the study provides insights into significant opportunities for performance enhancements in emerging electrolyzer technologies.
000015261 540__ $$acorrect
000015261 592__ $$aHEI-VS
000015261 592__ $$bInstitut Énergie et environnement
000015261 592__ $$cIngénierie et Architecture
000015261 6531_ $$9eng$$ahydrogen production
000015261 6531_ $$9eng$$alife cycle assessment
000015261 6531_ $$9eng$$aalkaline electrolyzer
000015261 6531_ $$9eng$$aanion-exchange membrane elctrolyzer
000015261 6531_ $$9eng$$apolymer electrolyte membrane elctrolyzer
000015261 6531_ $$9eng$$asolid oxide electrolyzer
000015261 6531_ $$9eng$$aelectrolyzer manufacture process
000015261 6531_ $$9eng$$aelectrolyzer system operation
000015261 655__ $$ascientifique
000015261 700__ $$aWei, Xinyi$$uEPFL, Lausanne, Switzerland ; EPFL, Sion, Switzerland
000015261 700__ $$aSharma, Shivom$$uEPFL, Lausanne, Switzerland
000015261 700__ $$aWaeber, Arthur$$uEPFL, Lausanne, Switzerland
000015261 700__ $$aWen, Du$$uEPFL, Lausanne, Switzerland
000015261 700__ $$aSampathkumar, Suhas Nuggehalli$$uEPFL, Sion, Switzerland
000015261 700__ $$aMargni, Manuele$$uCIRAIG, Polytechnique Montréal, Montréal, QC, Canada ; School of Engineering, HES-SO Valais-Wallis, HEI, HES-SO University of Applied Sciences and Arts Western Switzerland
000015261 700__ $$aMaréchal, François$$uEPFL, Lausanne, Switzerland
000015261 700__ $$aVan Herle, Jan$$uEPFL, Sion, Switzerland
000015261 773__ $$tJoule$$j2024, 8$$k12$$q3347-3372
000015261 8564_ $$uhttps://arodes.hes-so.ch/record/15261/files/Margni_2024_comparative_life_cycle_analysis_electrolyzer_technologies_hydrogen_production.pdf$$yPublished version$$95c954f3d-ddde-4a42-8cfe-f5741de8adb8$$s4807897
000015261 906__ $$aGOLD
000015261 909CO $$ooai:hesso.tind.io:15261$$pGLOBAL_SET
000015261 950__ $$aaucun
000015261 980__ $$ascientifique
000015261 981__ $$ascientifique