000015261 001__ 15261 000015261 005__ 20250107133956.0 000015261 022__ $$a2542-4351 000015261 0247_ $$2DOI$$a10.1016/j.joule.2024.09.007 000015261 037__ $$aARTICLE 000015261 039_9 $$a2025-01-07 13:39:56$$b0$$c2025-01-07 09:04:37$$d1001044$$c2025-01-06 16:49:44$$d0$$y2025-01-06 16:49:36$$z1000099 000015261 041__ $$aeng 000015261 245__ $$aComparative life cycle analysis of electrolyzer technologies for hydrogen production :$$bmanufacturing and operations 000015261 260__ $$aAmsterdam$$bElsevier 000015261 269__ $$a2024-12 000015261 300__ $$a27 p. 000015261 506__ $$avisible 000015261 520__ $$9eng$$aThis study conducts a comprehensive life cycle assessment (LCA) of four electrolyzer technologies: alkaline electrolyzer (AEL), proton-exchange membrane (PEM), anion-exchange membrane (AEM), and solid oxide electrolyzer (SOE). It evaluates their environmental impacts across four main categories: climate change (CC), human health (HH), ecosystem quality (EQ), and abiotic stock resources (ASRs). In order to highlight the critical raw materials (CRMs) used in their manufacturing processes, the research identifies potential material replacements and reveals distinct environmental impacts associated with material choices, such as steel in AEL and AEM, platinum in PEM, and nickel in both SOE and AEL. Additionally, we examine the integration of diverse electrolyzer technologies under various scenarios of renewable electricity sources. Together with a sensitivity analysis of regional electricity mixes and the degradation of stacks across different years, the study provides insights into significant opportunities for performance enhancements in emerging electrolyzer technologies. 000015261 540__ $$acorrect 000015261 592__ $$aHEI-VS 000015261 592__ $$bInstitut Énergie et environnement 000015261 592__ $$cIngénierie et Architecture 000015261 6531_ $$9eng$$ahydrogen production 000015261 6531_ $$9eng$$alife cycle assessment 000015261 6531_ $$9eng$$aalkaline electrolyzer 000015261 6531_ $$9eng$$aanion-exchange membrane elctrolyzer 000015261 6531_ $$9eng$$apolymer electrolyte membrane elctrolyzer 000015261 6531_ $$9eng$$asolid oxide electrolyzer 000015261 6531_ $$9eng$$aelectrolyzer manufacture process 000015261 6531_ $$9eng$$aelectrolyzer system operation 000015261 655__ $$ascientifique 000015261 700__ $$aWei, Xinyi$$uEPFL, Lausanne, Switzerland ; EPFL, Sion, Switzerland 000015261 700__ $$aSharma, Shivom$$uEPFL, Lausanne, Switzerland 000015261 700__ $$aWaeber, Arthur$$uEPFL, Lausanne, Switzerland 000015261 700__ $$aWen, Du$$uEPFL, Lausanne, Switzerland 000015261 700__ $$aSampathkumar, Suhas Nuggehalli$$uEPFL, Sion, Switzerland 000015261 700__ $$aMargni, Manuele$$uCIRAIG, Polytechnique Montréal, Montréal, QC, Canada ; School of Engineering, HES-SO Valais-Wallis, HEI, HES-SO University of Applied Sciences and Arts Western Switzerland 000015261 700__ $$aMaréchal, François$$uEPFL, Lausanne, Switzerland 000015261 700__ $$aVan Herle, Jan$$uEPFL, Sion, Switzerland 000015261 773__ $$tJoule$$j2024, 8$$k12$$q3347-3372 000015261 8564_ $$uhttps://arodes.hes-so.ch/record/15261/files/Margni_2024_comparative_life_cycle_analysis_electrolyzer_technologies_hydrogen_production.pdf$$yPublished version$$95c954f3d-ddde-4a42-8cfe-f5741de8adb8$$s4807897 000015261 906__ $$aGOLD 000015261 909CO $$ooai:hesso.tind.io:15261$$pGLOBAL_SET 000015261 950__ $$aaucun 000015261 980__ $$ascientifique 000015261 981__ $$ascientifique